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This paper discusses theoretically the evolution of a conjugate direction algorithm for minimizing an 
arbitrary nonlinear, non quadratic function using Broyden-Fletcher-Goldfarb-Shano (BFGS) update in 
quasi-Newton Method. The updating rule is initialized by a Moore Penrose’s generalized inverse. 
Specifically, an approximation to the inverse Hessian is constructed and the updating rule for this 
approximation is imbedded in the BFGS update. Numerical experiments show that, using the proposed 
line search algorithm and the modified quasi-Newton algorithm for unconstrained problems are very 
competitive. This paper produces a new analysis that demonstrates that the BFGS method with a line 

search is  step q-superlinear convergent with assumption of linearly independent iterates. The 

analysis assumes that the inverse Hessian approximations are positive definite and bounded 
asymptotically, which from computational experience, are of reasonable assumptions.  
 
Key words: Quasi-Newton method, Moore-Penrose generalized inverse, Broyden-Fletcher-Goldfarb-Shano 
(BFGS) update, superlinear convergence, conjugate directions, orthogonalization of matrices.  

 
 
INTRODUCTION 
 
This paper is connected with interactions in the form: 
 

 
 

Where  and  is a 

scalar and it is the step length parameter chosen under 

the condition min  and is determined by: 

 

𝛼𝑘 =
 ∇𝑓 𝑥0 , 𝑆𝑘 

 𝐵𝑆𝑘 , 𝑆𝑘 
=
 ∇𝑓 𝑥0 , 𝑆𝑘  

 𝑃𝑘 , 𝑆𝑘 
, 𝑘 = 0,1,…𝑛 − 1, 

 
 

 is the search direction,  is the gradient vector 

at . Each  is intended to approximate inverse 

Hessian at  and is chosen to prevent  divergence  of 

the sequence , f is assumed to be at least twice 

continuously differentiable. Bea-Israel (1996) developed 
an iterative scheme which can be employed for inversion 
of the Hessian of the objective function to be minimized, 
namely; 
 

 
 

where H is an n × n matrix, is an orthogonal matrix 

and B0
 
 is chosen to be the Moore-Penrose generalized 

inverse of H and it is derived as follows (Altman, 1960; 
Bernet 1979, Demidovich 1981, Rao and Mitra 1971, Rao 
1973): Let M and N be given positive definite matrices, 

 be non-zero Eigenvalues of  with 

respect    to         or     of         with     respect
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to N,  be Eigenvectors of  with respect 

to  and  be eigenvectors of  with 

respect to N. We can write H in the form:  
 

𝐻 = 𝑀−1 𝜇1ℑ1𝜂1
𝑇 +⋯+ 𝜇𝑛ℑ𝑛𝜂𝑛

𝑇 𝑁                         (1) 

 

and  the more Penrose generalized inverse of H 

as: 
 

𝐻+
𝑀𝑁 = 𝜇1

−1𝜂1ℑ1
𝑇 + 𝜇2

−1ℑ2
𝑇 + ⋯+ 𝜇𝑛

−1𝜂𝑛ℑ𝑛
𝑇                 (2) 

 
We shall take: 
 

                                                            (3) 

 

In a previous paper, was taken to be  the n × n 

identity matrix since it satisfied the properties of .; 

namely: 
 

 𝐻𝐵0 − 𝑃𝐻 < 1,  .   is  is any valid matrix norm 

 

 𝐻0𝐵 − 𝑃𝐻 < 1.  
 

We shall chose the Frobenius norm  defined by: 

 

 𝐻 𝐹 =   ℎ𝑖𝑗
2  

1

2
, ℎ𝑖𝑗    i,j, = 1,2,..,n..                       (4) 

 
Being the entries of H and PH to be the matrix derived as 
follows:  
 

Let us take  where non-singular and real 

is. That is the Hessian matrix at the initial point. Let us 
represent this by: 
 

   (5) 

 

And leave unchanged the first two rows, from each  

row,  subtract the second row of  multiplied by 

a scalar The new matrix is: 

 

, for i = 1,2.                                     (6) 

 
and  
 

                       (7) 

 

Observing that the first  row  of    coincides  with  the  
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first row of  and all the other rows of  are linear 

combinations of the rows of  orthogonal to the first 

row of  and therefore the row of  will also be 

orthogonal to its first row, we chose  the multiplier so 

that the row of , from the third onwards are 

orthogonal to the second row. In summary, this is 
equivalent to: 
 

      (8) 
 
or  
 

 (9) 
 
Whence,  
 

    (10) 
 

From each ith row of  

beginning with the second subtract the first row multiplied 

by a scalar,  dependent on the 

number of the row we get the transformed matrix  

given by: 
 

        (11) 

 

We chose multiplier  such that the first row of matrix 

 is orthogonal to the other rows of the matrix.  
We then have:  
 

  (12) 
 
 

Whence,  
 

                        (13) 
 
This process is continued until we get the matrix: 
 

                    (14) 
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All the rows are orthogonal in pairs, that is, until: 
 

        (15) 
 

The matrix  has orthogonal row and it is, 

therefore, not difficult to see that: 
 

        (16) 

 
That is, a diagonal matrix. Also if H is a matrix with 
orthogonal columns, then: 
 

                    (17) 

 
Also, if a matrix H has orthogonal row/column it is 
sufficient to normalize each row/column to orthogonalize 
it (Barnet 1979; Demidovich  1981) 
That is: 
 

               (18) 
 

is an orthogonal matrix, we shall next set: 
 

               (19) 

 
and the iteration is defined by: 
 

  (20) 

 

Since is an approximation to  we intend to 

improve upon this using the Broyden–Fletcher–Goldfarb 
(BFGS) update defined by: 
 

                     (21) 

 
That is,  
 

         (22) 

 
Where  
 

 

 
A major drawback to quasi-Newton method (other than 
the difficulty of obtaining analytical derivatives) is that the 
value of the objective function is guaranteed to be 
improved on each cycle only if the Hessian matrix  of  the  

 
 
 
 

objective function,  is positive definite. 

 is positive definite for strictly convex functions but 

for general functions, quasi-Newton method may lead to 

search directions diverging from the minimum of . 

Recall that a real symmetric matrix is positive definite if 
all the Eigenvalues are positive. We shall, therefore need 
to demonstrate or present schemes for “forcing” positive 
definiteness on the approximate inverse Hessian.  

Certain authors have proposed that the Hessian matrix 
be forced to be positive definite at each stage of the 
minimization. Himelblau, (1972) and Rao, (1978) devised 
a scheme of Eigenvalue analysis that guaranteed that an 

estimate of the inverse, , would be positive definite. 

Let B
-1

 be approximate to H(x), scale the matrix B
-1

 as 
follows:  
 

         (23) 

 

Where  is a diagonal matrix whose elements are: 

 

           (24) 

 
That is, the positive square root of the absolute values of 

the elements on the main diagonal of  will 

have all positive or negative ones on its main diagonal. 

Because  and  are non singular and of 

order n, the inverse of the product is the product of the 
inverses in reverse order, or: 
 

 
 
That is: 
 

(25) 

 

Then  can be calculated from the scaled matrix as: 

 

                            (26) 

 

We can express, in terms of the Eigenvalues  

of  and the Eigenvalues of the inverse matrix are 

simply the inverse , of the Eigenvalues of the original 

matrix. Therefore:  
 

                                             (27) 
 

Where  is the normalized Eigenvector corresponding to 

the Eigenvalues . Instead of using , however, 

 is used: 



 
 
 
 

                                 (28) 
 

in which any of  is replaced by a small positive number, 

so that BK can now be guaranteed positive definite if 
computed from: 
 

                             (29) 

 
This scheme described above shall be employed in this 
presentation. The second scheme that shall be employed 
in this study was due to Marquardt (1963); Levenberg 
(1994) and Goldfield et al. (1966). To ensure that the 

estimate of  was positive definite the above 

named authors suggested the following computation 
scheme:  
 

   (30) 

 

Where,  is a positive constant such that 

. Because the Eigenvalues of 

 are , Equation (30) guarantees that 

 is positive definite since use of an approximate  

in Equation (30) in effect destroys negative small 
Eigenvalues of the approximation to the Hessian matrix. 

Note that with  sufficiently large,  can overwhelm 

 and the minimization approach a steepest descent 

search. A third scheme which is only good for mentioning 
in this study is due to Zwart (1969) but will not be 
employed in this investigation.  

The main purpose of this paper is to better understand 
the computational and theoretical properties of the BFGS 
update in the context of basic line search and quasi-
Newton methods for unconstrained optimization for the 
BFGS method. Ge and Powell (1983) proved, under a 
different set of assumptions from those of Conn et al. 
(1988a; 1988b; 1991), that the sequence of general 

matrices converges, but not necessarily to . We 

shall demonstrate that under the assumption of uniform 
linear independence of sequence of steps and 
boundedness and positive definiteness of the guaranteed 
matrices a new convergence analysis is possible. We 
presented computation experience with the BFGS update 
using a standard line search technique and quasi-Newton 
algorithms for small to medium size unconstrained 
optimization problems. Convergence analysis is 
undertaken and some brief conclusion and comments 
regarding future research were made.  

 
 
COMPUTATIONAL RESULTS AND ALGORITHM  
 
In   order   to   test   the   performance   of   quasi-Newton  
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(conjugate direction) method for unconstrained 
optimization using BFGS update we present and discuss 
some numerical experiments that were conducted. 
Minimization of the function after orthogonalization of the 
Hessian matrix using: 
  
i) The Broyden-Fletcher-Goldfarb-Shano (BFGS) Update 
ii) The Davidon-Fletcher-Powell (DFP) update, 
iii) The symmetric rank one update and,  
iv) Minimization of RsenBrock’s Banana-shape valley 
function using Lagrange’s reduction of quadratic forms in 
quasi-Newton (lagroqf q-n) method for comparism.  

The line search is based on a cubic modelling of  
in the direction of search developed by the authors and 
the Quasi-Newton is determined using the New Line 
Search Technique (Rao, 1978; Walsh, 1968) to 
approximately minimize the function in the experimental 
set of questions. The frame works of these algorithms are 
presented below: 
 
 

Algorithm 
  
Quasi-Newton method (line search) 
 

Step 0: give an initial vector  of independent variables, 

an initial positive definite matrix  and 

. Set k (the interaction counter) = 0 

Step 1: if a convergence criterion is achieved, then stop  
Step 2: Compute a quasi-Newton direction 

 if is safely positive definite, else 

set  where  such that 

 as defined in Equations 23 to 29 or 30 

such that  is safely positive definite. 

Step 3: find an acceptable step length  using algorithm 

(31) (Adewale, 2003; Demidovick, 1981):  

Step 4: Set  

Step 5: Compute the next inverse Hessian approximation 

 using the BFGS update  

Step 6: Set  and go to Step 1.  

 
 
Error in the inverse Hessian approximation and 
uniform linear independence 
 
Definition  
 

A sequence of vectors  in   is said to be 

uniformly linearly independent if there exist   

and nm   such that, for each nm  , one can choose n 

distinct indices: 
 

mkkkk n  ...1  such that the minimum 

singular value of the matrix  
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

















n1

1

kk

k

S
...

S

S
nk

k

S
S                                               (31) 

 

Also det  kkS , an arbitrarily small  positive 

number and .0  kasSk
 

Conn et al. (1991) analyzed the Hessian error for the 
Symmetric-Rank-One update (SR1) and under the 
assumption of uniform linear independence which is 
redefined above. Using this definition we shall establish 
how close the inverse Hessian approximation produced 
by the BFGS algorithm is to the exact inverse Hessian at 
the final iterates. 
 
 

Theorem  
 

Suppose that  is twice continuously differentiable 

everywhere, that is  is bounded and 

Lipschitz continuous, that is there exist constants M > 0 

and  such that : 

 

    (32) 

 

Let where  is a uniformly linearly 
independent sequence of steps, and suppose that 

 for some . Let  be 
generated by the BFGS formula: 
 

 (33) 
 

 is as defined in (3) and suppose that 

 and  satisfy: 

  

         (34) 

 

          (35) 

 

         (36) 

 

 
 

Then we have with any  

 

         (37) 

 
 
Proof 
 
Using  Lagrange’s  formula  for   operator   (Hessian   and  

 
 
 
 
inverse Hessian included): 
 
We can write: 
 

     (38) 

 

 
 

     (39) 
 
Using this expression we have: 
 

 
 

                     (40) 

 
Introducing the notation:  
 

, we obtain                     (41) 

 

 

  

 

Since  is a bounded sequence, with any k we have 

 is a closed bounded set.  

The function  is uniformly continuous since 

 is assumed uniformly continuous in set Q.  

Consequently: 
 

 

      (42) 
 
Thus it follows from (41) that: 
 

      (43) 

 

Where, . According to the definition 

of the operator norm,  
 

 
 

Let the maximum be attained at element  if:  



 
 
 
 

                     (44) 

 
Then because of the condition: 
  

Where  defined in (31), the 

coefficients  will be bounded, that is, 

. Using (44) we obtain:  

 

    (45) 
 

Hence by (43 and the fact that  is bounded we 

have: 
  

 
 
That is: 
 

 and the theorem 

is proved.  
 
 
Theorem  
 

If  is a continuously differentiable strongly convex 

function and sequence  is such that  

and then . 

 
 
Proof 
 

According to condition  we have: 

 with any . The 

set  is strongly convex since  is a strongly convex 

function. Then there is a positive number  any 

point , where , is an 

internal point of the set . Let  where 

 is a plane tangent to the set and  

Then noting that: , we obtain 

. 

But µ since otherwise in addition to point 

 set  and plane  would have other point in 

common, which contradicts the strong convexity of .  
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Therefore: 
 

 
 

Hence, if . But 

if , then since  is strongly convex, 

the maximum diameter of set  which implies 

that . The theorem is proved. 

 
 
Theorem 
 

 If  is a twice continuously differentiable function for 

which  

are valid, matrix  with any  is defined by 

system of equations: 
  

 and satisfies the 
condition: 
  

 is determined to be 

, then whatever the initial point the 

following statement stated are valid for sequence: 
  

 
 

 and  at a superlinear 

rate of convergence,  
 
Where  with any  

 
 
COMPUTATIONAL RESULTS  
 

On the basis of analogical heuristics, we shall implement 
the algorithm on four test problems, three of which are 
non quadratic functions common with authors of quasi-
Newton methods. We shall orthogonalize the constant 
matrices resulting from the Hessian of the quadratic 
approximations to the function. They shall be compared 
under BFGS, SRL and DFP updates.  
 
 

Problem  
 

A quadratic function 
 

 
 

 𝐻 =  
4 2
2 4

 , 𝐻 =  

1 0

0 1

 , 𝑧1 = 𝑥1 

𝑧2 =  𝑥1 + 𝑥2 , 𝑓  𝑧 = 𝑧1
2 + 𝑧2

2 ,  𝑧0 = (1,2)  
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Table 1. Minimization of Rosenbrock’s function (using the BFGS update). 
 

     
0 101 104 18 8.6 × 10

-20
 

10
-5

 72 74 18 6.8 × 10
-20

 
10

-3
 60 61 17 1.6 × 10

-16
 

10
-1

 52 53 21 2.6 ×10
-16

 
0.5 48 49 26 5.1 × 10

-18
 

0.75 40 42 32 2.8 × 10
-20

 
0.9 40 42 32 2.8 ×10

-20
 

1.0 39 40 31 1.3 × 10
-7

 
 

 = Steplength parameter;  =  number of function evaluation;  = error of function 

value approximation;  =  number of iteration. 
 
 
 

Table 2. minimization of Rosenbrock’s function using the DFP update. 
 

     

0 118 119 22 3.7 × 10
-20

 

10
-5

 88 89 22 3.4 × 10
-20

 

10
-3

 77 78 22 5.8 × 10
-20

 

10
-1

 61 63 24 1.3 × 10
-20

 

0.5 59 60 29       1.1 × 10
-17

 

0.75 41 42 36 2.1 × 10
-19

 

0.9 45 46 35 8.2 × 10
-20

 

1.0 41 42 35 2.7 ×10
-18 

 

 = Steplength parameter;  =  number of function evaluation;  = error 

of function value approximation;   =  number of iteration. 

 
 
 
Problem  
 
Powell’s quattic  
 

 

𝑓 𝑋1 , 𝑋2 , 𝑋3, 𝑋4 =  𝑋1 + 10𝑋2 
2 + 5 𝑋3 − 𝑋4 

2 +  𝑋2 − 2𝑋3 
4 + 10 𝑥1 − 𝑋4 

4  
 

 

𝑋0 =  3,−1,0,1 𝑇,𝐻 =

 

 
 
 
 

4 0 0 0

0 10 0 0

0 0 2 0

0 0 0 20 

 
 
 
 

 

  
 
. 
Problem 
 
Woods function  
 

 

Problem  
 
Rosenbrock’s banana – shaped valley function 
 

 
 
The numerical results are reported in Tables 1-11 

including the Steplength parameter( , number of 

function evaluation( ), error of function value 

approximation( ), number of iteration( ). 
 
 
DISCUSSION OF COMPUTATIONAL RESULTS  
 
 
The BFGS update has appeared to be superior in general 
application. This finding was corroborated by S.H.C 
Dutoit when developing computer programs for the 
analysis of covariance structure arising from nonlinear 
growth curves and from autoregressive time series with 
moving average residual (Rao, 1978) In this  presentation  
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Table 3. Minimization of Rosenbrock’s function using the symmetric-rank-one update (SR1). 
 

     

0 128 4.9 × 10
-17

 130 23 

10
-5

 97 5.2 × 10
-17

 99 23 

10
-3

 83 6.0 × 10
-17

 84 23 

10
-1

 67 1.9 × 10
-21

 69 27 

0.5 56 6.2 × 10
-16

 56 30 

0.75 53 1.8 ×10
-14

 54 35 

0.9 55 2.1 × 10
-15

 56 41 

1.0 55 2.1 × 10
-20

 57 44 
 

 = Steplength parameter;  =  number of function evaluation;  = error of function 

value approximation;  =  number of iteration. 

 
 
 

Table 4. Minimization of wood’s (using the BFGS update). 
 

     

0 191 194 40 1.3 × 10
-16

 

10
-5

 142 144 40 1.6 × 10
-16

 

10
-3

 113 116 37 1.7 × 10
-21

 

10
-1

 85 86 38 3.8 × 10
-20

 

0.5 96 98 69 4.0 × 10
-17

 

0.75 93 95 73 5.4 × 10
-17

 

0.9 87 89 73 4.6 × 10
-16

 

1.0 97 98 75 9.0 × 10
-15

 
 

 = Steplength parameter;  =  number of function evaluation;  = error of function value 

approximation;  =  number of iteration. 

 
 
 

Table 5. Minimization of wood’s function using DFP update. 
 

     

0 259 261 40 6.7 × 10
-17

 

10
-5

 210 213 40 1.5 × 10
-16

 

10
-3

 167 168 36 1.9 × 10
-21

 

10
-1

 172 173 48 3.2 × 10
-19

 

0.5 450 452 158 1.9 × 10
-21

 

0.75 - >1086 >1032 3.2 

0.9 - >1066 >1044 6.7 

1.0 - >898 >892 7.7 
 

 = Steplength parameter;  =  number of function evaluation;  = error of function 

value approximation;  =  number of iteration. 
 
 
 
we experiment with four nonlinear functions of many 
variables and it is discovered that one advantage of the 
BFGS over DFP update, for instance, is that a search  to 

choose , the step length parameter, is no longer 

always essential and it is  often  sufficient  to  let   

(Table 5). The DFP update, on the other hand, was first 
used in the analysis of convergence structure by 
Joreskog (1967) and has been employed successfully by 
him in a variety of situations but found that it requires a 
fairly complicated search on each interaction to choose  

 so as to minimize a discrepancy function.  The  BFGS  
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Table 6. Minimization of wood’s function using the symmetric-rank-one update (SR1). 
 

     

0 209 212 42 2.5 × 10
-17

 

10
-5

 151 152 42 4.3 × 10
-17

 

10
-3

 139 142 45 1.5 × 10
-17

 

10
-1

 95 96 41 8.8 × 10
-18 

0.5 160 161 75 8.7 × 10
-18

 

0.75 139 141 85 3.0 × 10
-20

 

0.9 180 181 98 5.4 × 10
-19

 

1.0 143 144 93 1.8 × 10
-18

 
 

 = Steplength parameter;  =  number of function evaluation;  = error of function value 

approximation;  =  number of iteration. 
 
 
 

Table 7. Minimization of powell’s quartic function (using the BFGS update). 
 

     

0 102 132 26 8.0 × 10
-14

 

10
-5

 78 106 26 7.7 × 10
-14

 

10
-3

 72 97 27 4.3 × 10
-15

 

10
-1

 45 51 22 7.7 × 10
-14

 

0.5 42 50 38 2.5 × 10
-14

 

0.75 39 46 43 1.5 × 10
-11

 

0.9 39 46 43 1.5 × 10
-11

 

1.0 38 41 37 1.3 × 10
-11

 
 

 = Steplength parameter;  =  number of function evaluation;  = error of function value 

approximation;  =  number of iteration. 
 
 
 

Table 8. Minimization of Powell’s quartic comparing the uses of the DFP, SR1, and BFGS updates, second order methods. 
 

 
       

BFGS SR1 DFP  BFGS SR1 DFP  BFGS SR1 DFP  BFGS SR1 DFP 

0 102 99 108  132 112 151  26 21 26  8.0 × 10
-13

  2.6 x 10
-13

  7.9 x 10
-14

 

10
-5

  78 75 81  106 85 119  26 21 26  7.7 × 10
-14

  2.6 x 10
-13

  8.5 x 10
-14

  

10
-3

 72 64 74  97 77 98  27 23 26  4.3 × 10
-15

  3.0 x 10
-13

  6.1 x 10
-15

  

10
-1

  45 36 45  51 52 53  22 24 18  7.7 × 10
-14

  3.8 x 10
-15

  1.5 x 10
-17

  

0.5 42 33 40  50 34 66  38 25 37  2.5  × 10
-14

  3.4 x 10
-10

  8.8 x 10
-11

  

0.75 39 38 38  46 39 99  43 33 84  1.5 × 10
-11

  1.9 x 10
-10

  8.9 x 10
-13

  

0.9 39 37 37  46 47 58  43 36 47  1.5 × 10
-11

  9.0 x 10
-11

  1.2 x 10
-12

  

1.0 38 46 194  41 56 214  37 44 200  1.3 × 10
-11

  1.3 x 10
-10

  4.0 x 10
-13

  

 
 
 
update has been the most commonly used secant update 
for many years. It makes a symmetric, rank-two change 

to the previous Hessian approximation  and if  is 

positive definite then  is positive definite. The BFGS 
has been shown to be q-superlinearly convergent 
provided that the initial Hessian approximation is 
sufficiently accurate. In this study, the inverse Hessian is 
initialized   by   Moor   Pencrose’s    generalized    inverse 

matrices which are not as accurate as required, yet the 
convergence is q-superlinear. Also for non quadratic 
functions, convergence of the SR1update is not as well 
understood as convergence of the BFGS method. 
 
 
Conclusion  
 
In this study we have attempted to investigate  theoretical  
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Table 9. Minimization of wood’s function comparing the uses of DFP, SR1 and the BFGS updates, second-order methods. 
 

 
       

DFP SR1 BFGS  DFP SR1 BFGS  DFP SR1 BFGS  DFP SR1 BFGS 

0 259 209 191  261 212 194  40 42 40  6.7 × 10-17 2.5 × 10-17 1.3 × 10-16 

10-5 210 151 142  213 152 144  40 42 40  1.5 × 10-16 4.3 × 10-17 1.6 × 10-16 

10-3 167 139 113  168 142 116  36 45 37  1.9 × 10-21 1.5 × 10-17 1.7 × 10-21 

10-1 172 95 85  173 96 86  48 41 38  3.2 × 10-19 8.8 × 10-18 3.8 × 10-20 

0.5 450 160 96  452 161 98  158 75 69  1.9 × 10-21 8.7 × 10-18 4.0 × 10-17 

0.75 - 139 93  >1086 141 95  >1032 85 73  3.2 3.0 × 10-20 5.4 × 10-17 

0.9 - 180 87  >1066 181 89  >1044 98 73  6.7 5.4 × 10-19 4.6 × 10-16 

1.0 - 143 97  >898 144 98  >892 93 75  7.7 1.8 × 10-18 9.0 × 10-15 

 
 
 

Table 10. Minimization of Rosenbrock’s banana- shaped valley function using  lagroqf q-n 

 

Iterative step Function value g
t
g X1 X2 Hessian 

0 24.2 7.76 × 10
3
 2.2 -0.44 Positive DEF 

1 6.05 × 10
-4

 1.94 × 10
3
 1.1 -2.2 Positive DEF 

4 9.65 × 10
-6

 3.03 × 10 1.37 × 10
-1

 -2.75 × 10
-2

 Positive DEF 

8 3.69 × 10
-6

 1.18 × 10 8.59 × 10
-1

 -1.72 × 10
-3

 Positive DEF 

12 1.44 × 10
-6

 4.63 × 10
-6

 5.37 × 10
-4

 -1.07 × 10
-1

 Positive DEF 

16 5.63 × 10
-9

 1.80 × 10
-6

 3.36 × 10
-5

 -6.71 × 10
-6

 Positive DEF 

20 2.20 × 10
-11

 7.06 × 10
-9

 2.09 × 10
-9

 -4.19 × 10
-7

 Positive DEF 

24 8.59 × 10
-16

 2.76 × 10
-11

 1.31 × 10
-7 

-2.62 × 10
-8

 Positive DEF 

28 3.35 × 10
-16

 1.07 × 10
-13

 8.19 × 10
-9

 -1.64 × 10
-9

 Positive DEF 

32 1.31 × 10
-18

 4.21 × 10
-16

 5.12 × 10
-12

 -1.02 × 10
-10

 Positive DEF 

36 5.12 × 10
-26

 1.64 × 10
-21

 3.20 × 10
-1

 -6.40 × 10
-12

 Positive DEF 

40 2.00 × 10
-23

 6.64 × 10
-21

 2.00 × 10
-12

 -4.00 × 10
-13

 Positive DEF 

44 7.82 × 10
-26

 2.50 × 10
-23

 1.25 × 10
-23

 -1.25 × 10
-14

 Positive  DEF 

48 3.05 × 10
-28

 9.97 × 10
-26

 7.82 × 10
-15

 1.56 × 10
-15

 Positive DEF 

51 44.77 × 10
-30

 1.53 × 10
-27

 9.76 ×10
-16

 1.95 × 10
-16

 Positive DEF 

52 0.0 0.0 0.0 0.0 Positive DEF 

 
 
 
Table 11. Minimization of a quadratic function. 
 

Iteration step X1 X2 X3 Function value NGRAD 
Positive 

definiteness 

0 0 0 0 1 3 Positive DEF 

1 -7.5 x 10
-1

 -5  × 10
-1

 1.9  × 10
-1

 1.56  × 10
-2

 7.5  × 10
-1

 Positive DEF 

2 -1.125 -7.5  × 10
-1

 9.4  × 10
-2

 -2.3  × 10
-1

 1.88  × 10
-1

 Positive DEF 

3 -1.3125 -8.75  × 10
-1

 1.41  × 10
-1

 -2.92  × 10
-1

 4.68  × 10
-2

 Positive DEF 

4 -1.40625 -9.37  × 10
-1

 -1.17  × 10
-1

 -3.07  × 10
-1

 1.17  × 10
-2

 Positive DEF 

5 -1.453125 -9.69  × 10
-1

 -1.29  × 10
-1

 -3.11  × 10
-1

 2.93  × 10
-3

 Positive DEF 

6 -1.47656 -9.84  × 10
-1

 -1.23  × 10
-1

 -3.12  × 10
-1

 7.32  × 10
-4

 Positive DEF 

7 -1.49828 -9.92  × 10
-1

 -1.25  × 10
-1

 -3.12  × 10
-1

 1.83  × 10
-4

 Positive DEF 

8 -1.49414 -9.96  × 10
-1

 -1.25  × 10
-1

 -3.12  × 10
-1

 4.58  × 10
-5

 Positive DEF 

9 -1.49707031 -9.98  × 10
-1

 -1.25  × 10
-1

 -3.12  × 10
-1

 1.14  × 10
-5

 Positive DEF 

10 -1.49853516 -9.99  × 10
-1

 -1.25  × 10
-1

 -3.12  × 10
-1

 2.86  × 10
-6

 Positive DEF 

11 -1.49926758 -9.99  × 10
-1

 -1.25  × 10
-1

 -3.12  × 10
-1

 7.15  × 10
-7 

Positive DEF 

12 -1.49963379 -9.99  × 10
-1

 -1.25  × 10
-1

 -3.12  × 10
-1

 1.79  × 10
-7

 Positive DEF 

13 -1.4998189 -9.99  × 10
-1

 -1.25  × 10
-1

 -3.12  × 10
-1

 4.47  × 10
-8

 Positive DEF 

14 -1.49990845 -9.99  × 10
-1

 -1.25  × 10
-1

 -3.12  × 10
-1

 1.12  × 10
-8

 Positive DEF 
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15 -1.49995422 -9.99  × 10
-1

 -1.25  × 10
-1

 -3.125  × 10
-1

 2.79  × 10
-9

 Positive DEF 

16 -1.49996567 -9.999  × 10
-1

 -1.25  × 10
-1

 -3.125  × 10
-1

 1.11  × 10
-9

 Positive DEF 

17 -1.499996568 -9.9999  × 10
-1

 -1.25  × 10
-1

 -3.125  × 10
-1

 1.105  × 10
-9

 Positive DEF 

 
 
 
and numerical aspect of quasi-Newton methods that are 
based on the BFGS formula for the Hessian 
approximation. We considered only four functions. The 
performance of BFGS formula make us feel that the 
superiority of SR1 over BFGS claimed by Khalfan et al. 
(1993) needed to be probed further, especially, when 
combined with line searches. Also further study on the 
use of trust region strategy and line search techniques 
need to be undertaken. The reader is referred to the work 
of Nocedal and Yuan (1998). 
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