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The present work is devoted to study the effect of rotation and gravity field in a homogeneous, isotropic 
elastic semi- infinite, which is at initial temperature, and subjected to heat source and load moving with 
finite velocity. In view of calculating general problems, a numerical solution technique is to be used. For 
this purpose, the normal mode analysis method is used. The results for the displacement, stress 
components and temperature distribution are illustrated graphically with some comparisons. The 
numerical results are given and presented graphically for two different theories, L-S theory and G-L 
theory. Influence of rotation and gravity on temperature, displacement and stresses components is 
observed through a numerical example. 
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INTRODUCTION 
 
The thermoelasticity theories, which admit a finite speed 
for thermal signals, have received a lot of attention for the 
past four decades in contrast to the conventional coupled 
thermoelasticity theory based on a parabolic heat 
equation (Biot, 1956). Lord and Shulman (1967) have 
developed a theory on the basis of a modified heat 
conduction law which involves heat-flux rate. Green and 
Lindsay (1972) have developed a theory by including 
temperature-rate among the constitutive variables. Effect 
of rotation and initial stress on generalized thermoelastic 
problem in an infinite circular cylinder are discussed by 
Abd-Alla and Bayones (2011). The problem of transient 
coupled thermoelasticity of an annular fin  was  discussed 

by Abed-Alla et al. (2012). Wave propagation in a 
generalized thermoelastic solid cylinder of arbitrary cross-
section was studied by Ponnusamy (2007). Rayleigh 
waves in generalized magneto-thermo-viscoelastic 
granular medium under the influence of rotation, gravity 
field, and initial stress was studied by Abd-Alla et al. 
(2011). There are some of the research that have studied 
effect of rotation, effect of rotation and initial stress on an 
infinite generalized magneto-thermoelastic diffusing body 
with a spherical cavity studied by Abd-Alla and Abo-
Dahab (2012). Effect of hydrostatic initial stress and 
rotation in Green-Naghdi (type III) thermoelastic half-
space with  two  temperatures  was  studied  by  Ailawalia   
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and Budhiraja (2010). An analytical solution for effect of 
rotation and magnetic field on the composite infinite 
cylinder in non-homogeneous viscoelastic media are 
discussed by Bayones and Hussien (2015a). The effect 
of magnetic field and non-homogeneity on the radial 
vibration in the hollow rotating elastic cylinder are 
discussed by Abd-Alla et al. (2013). Radial vibration of 
wave propagation in an elastic medium of a non- 
homogeneous isotropic material under the influence of 
rotation was studied by Abed-Alla and Yahya (2011). 
Abd-Alla and Bayones (2011) discussed the effect of 
rotation and initial stress on generalized thermoelastic 
problem in an infinite circular cylinder. Abd-Alla et al. 
(2011a) discussed the effect of the rotation on an infinite 
generalized magneto-thermoelastic diffusing body with a 
spherical cavity. Abd-Alla et al. (2011b) discussed the 
effect of the rotation and initial stress on generalized 
thermoelastic problem in an infinite circular cylinder. 
Effects of rotation and hydrostatic initial stress on 
propagation of Raylegh in waves in an elastic solid half-
space under the GN theory was studied by Bayones 
(2012). Effect of rotation and non-homogeneity on the 
radial vibration in the orthotropic hollow sphere was 
studied by Abd-Alla et al. (2012a). Abo-Dahab and Abd-
Alla (2014) discussed effects of voids and rotation on 
plane waves in generalized thermoelasticity. Bayones 
(2015) discussed the effect of rotation and initial 
magnetic field in fiber-reinforced anisotropic elastic 
media. Hussein et al. (2015) studied the effect of the 
rotation on a non-homogeneous infinite cylinder of 
orthotropic material with the external magnetic field. Also, 
there are many researchers interested in studying the 
effect of gravity field. Abd-Alla et al. (2011c) studied the 
propagation of Rayleigh wave in the generalized granular 
elastic medium in the presence of initial stress and 
gravity. Such a procedure should derive an appropriate 
explicit dispersion equation using the fundamental 
relations from Abd-Alla et al. (2013a) and simple 
algebraic mathematical tools. Abd-Alla et al. (2013b) 
discussed Influence of the rotation and gravity field on 
stonely waves in a non-homogeneous orthotropic elastic 
medium. Bayones and Hussien (2015b) discussed fibre-
reinforced generalized thermoelastic medium subjected 
to gravity field. Abd-Alla et al. (2015) discussed wave 
propagation in fibre-reinforced anisotropic thermoelastic 
medium subjected to gravity field. Abd-Alla et al. (2011d) 
discussed propagation of S-wave in a non-homogeneous 
anisotropic incompressible and initially stressed medium 
under influence of gravity field. 

 
 
FORMULATION OF THE PROBLEM 

 
We consider an infinite isotropic generalized 
thermoelastic medium with the dependence of modulus 
of elasticity and thermal conductivity on the reference 
temperature under the effect of rotation and  gravity  field.  
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The initial stress is given as Datta (1986) 
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where   is a function of depth. The equilibrium equations 

of the initial stress is in the form 
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The elastic medium is rotating uniformly with an angular 

velocity n  where n  is a unit vector representing 

the direction of the axis of rotation. The displacement 
equation of motion in the rotating frame has two 

additional term centripetal acceleration, viz;  u  

is the centripetal acceleration due to time varying motion 

only and u2  is the Cariole's acceleration, and 
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The equation of motion takes the form: 
 

  3,2,1,,)]2()([
,




jiuuuF
jjiij

   (1)  

 
The constitutive equation takes the form 
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The energy equation is given by: 
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where 10
,  are the two relaxation time, 1

,nn
 and 0

n  

the parameters helps to make the above mentioned 
fundamental equations possible for two different theories 
as: 
 
i) L-S theory due to internal heat source, when: 
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ii) G-L theory due to internal heat source, when: 
 

0,0,1
01101
 tnnn  

 

In the absence of body forces 
j

F , the dynamic equation 

of motion under magnetic field g and rotation in two-
dimensions (x,y) reduces to: 
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The stress–displacement relations with incremental 
isotropy are given by 
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T  is the initial temperature. 

Introducing following non-dimensional variables as 
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Introducing the non-dimension variables (7) into (3)-(5), 
we get 
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For ease work, we all put ii
xx   in above equations , 
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SOLUTION OF THE PROBLEM 

 
Using Helmholt's theorem (Morse and Feshbach, 1953), 

and introducing the potential  and   by the equation 
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From Equation 10, the displacement components vu,  

obtained as 
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Substituting from Equation 11 into Equations (9a-9d), we 
get 
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BOUNDARY CONDITIONS 
 

The    boundary     conditions   at   the   interface   0y   
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subjected to an arbitrary normal force 1
P  are: 

 

                                   (13) 
 

where 1
P  is the magnitude of mechanical force. 

 
 
Normal mode analysis 
 
We assume the solution of Equations (12a-12c) to take 
the form: 
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                                               (15)                        
 
where   is the complex time constant, and a  is the 

wave number in x- direction and 0
Q is the magnitude of 

the stable internal heat source. 
Using Equation 14 in (12a-12c), we obtain 
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Eliminating T  from Equations (16) and (17), we obtain 
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Equation 19 is an ordinary differential equation of the 
fourth degree,  its   roots   can   be   calculated   using    a  
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program, the solution of Equation 19 is given by: 
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In a similar way, we get 
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The solution of Equation 18 is given by: 
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Putting Equations (20-22) into (11) and (9d), we get the 
expressions of displacement, stress for isotropic 
thermoelastic medium as: 
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Invoking the boundary conditions (13) at the surface, we 
obtain a system of three equations, and applying the 
inverse of matrix method, we obtain the values of three 
constants: 
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From Equations (21) and (23-26), we can determine the 
heat conduction, displacement and stress components in 
two theory L-S theory and G-L theory.  
 
 
i) L-S theory due to internal heat source, when: 
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ii) G-L theory due to internal heat source, when: 
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iii) L-S theory due to internal heat source, when: 
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iv) G-L theory due to internal heat source, when: 
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SPECIAL CASES 
 
a) If neglected, the gravity field g=0 
 
i) L-S theory due to internal heat source, when: 
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ii) G-L theory due to internal heat source, when: 
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b) If neglected, the rotation 0  

 
i) L-S theory due to internal heat source, when: 
 

 
 
 
ii) G-L theory due to internal heat source, when: 
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NUMERICAL RESULTS AND DISCUSSION 
 
The material chosen for this purpose of stainless steel 
comprised the physical data given below (Abouelregal, 
2011) 
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The results are displayed in Figures 1 to 8. 

 
 
General cases 
 
Figure 1 shows the variations of the non-dimensional 

values of displacement vectors u, v, normal stress 
yy

 , 

xx
 , shear stress

xy
  and temperature T  with respect 

to axial y for moving heat source in L-S theory due to 
internal heat source. It is observed that the u, v are  
decreasing with increasing of the rotation, while the mean 

values of 
yy

 , 
xy

  and T increase with the increasing of 

rotation. 
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Figure 2 shows the variations of the non-dimensional 

values of displacement vectors u, v, normal stress 
yy

 , 

xx
 , shear stress

xy
  and temperature T  with respect 

to axial y for moving heat source in G-L theory due to 
internal heat source. It is observed that the u, v are 
decreasing with increasing of the rotation, while the mean 

values of 
yy

 , xx
 , 

xy
  and T are increased with the 

increasing of rotation. 
Figure 3 shows the variations of the non-dimensional 

values of displacement vectors u, v, normal stress 
yy

 , 

xx
 , shear stress

xy
  and temperature T  with respect 

to axial y for moving heat source in L-S theory due to 

internal heat source. It is observed that the u, v, xx
  and 

T are decreased with increasing of the rotation, while the 

mean values of 
yy

  and 
xy

  are increased with 

increasing of gravity field. 
Figure 4 shows the variations of the non-dimensional 

values of displacement vectors u, v, normal stress 
yy

 , 

xx
 , shear stress

xy
  and temperature T  with respect 

to axial y for moving heat source in G-L theory due to 

internal heat source. It is observed that the u, v, xx
  and 

T are decrease with increasing of the rotation, while the 

mean values of 
yy

  and 
xy

  are increased with 

increasing of gravity field. 
 
 

Special cases 
 

i) If neglected, the gravity field g=0, we have 
 
Figure 5 shows the variations of the non-dimensional 

values of displacement vectors u,v ., normal stress 
yy

 , 

xx
 , shear stress

xy
  and temperature T  with respect 

to axial y for moving heat source in L-S theory due to 

internal heat source. It is observed that the v , 
yy

  and 

xy
 are decreasing with increasing of the rotation, while 

the mean values of u, xx
 , and T are increased with the 

increasing of rotation. 
Figure 6 shows the variations of the non-dimensional 

values of displacement vectors u,v ., normal stress 
yy

 , 

xx
 ., shear stress

xy
  and temperature T  with respect 

to axial y for moving heat source in G-L theory due to  

internal heat source. It is observed that the 
yy

 , 
xy

  are 

decreased with increasing of the rotation, while the mean 

values of u, v , xx
  and  T increased  with  increasing  of  
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Figure 1. Variation of magnitude of 
xxxxxx

vu  ,,,,  and T  with varying values of 

rotation with respect to y
.
 

3.0 oooooooooooooo 4.0  -------------------------------- 5.0  

++++++++++++++++, .5.3.,8.,5
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rotation. 
 
 
ii) If neglected, the rotation 0 , we have 
 

Figure  7  shows  the  variations  of  the  non-dimensional 

values of displacement vectors u, v, normal stress 
yy

 , 

xx
 , shear stress

xy
  and temperature T  with respect 

to axial y for moving heat source in L-S theory due to 

internal heat source. It is observed that the u, v, xx
   and  
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Figure 2. Variation of magnitude of 
xxxxxx

vu  ,,,,  and T  with varying values of rotation with 

respect to y
. 

3.0 oooooooooooooo 4.0  -------------------------------- 5.0  ++++++++++++++++, 

.5.3.,8.,5
0
 g  

 
 
 

T are decreased with increasing of the rotation, while the 

mean values of 
yy

  and 
xy

  are increased with 

increasing of gravity field. 

Figure 8 shows the variations of the non-dimensional 
values of displacement vectors u, v, normal stress 

yy
 ,  

xx
 , shear stress

xy
  and temperature  T   with  respect  
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Figure 3. Variation of magnitude of 
xxxxxx

vu  ,,,,  and T  with varying values of gravity field with respect 

to y
.  
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Figure 4. Variation of magnitude of 
xxxxxx

vu  ,,,,  and T  with varying values of gravity field with respect to 

y
. 

3g oooooooooooooo, 4g  --------------------------------, 5g  ++++++++++++++++, 

4.0.,8.,5.0
0
 

. 
 
 
 

to axial y for moving heat source  in  G-L  theory   due   to internal heat source. It is observed that the u, v, 
xx

   and  
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Figure 5. Variation of magnitude of 
xxxxxx

vu  ,,,,  and T  with varying values of rotation with respect to y  

3.0 oooooooooooooo, 4.0  --------------------------------, 5.0  ++++++++++++++++, 

.5.3.,8.,0
0
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T are decreased with increasing of the rotation, while the mean  values   of   
yy


 
  and   

xy


 
  are   increased  with  
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Figure 6. Variation of magnitude of 
xxxxxx

vu  ,,,,  and T  with varying values of rotation with respect to 

y
.
 

3.0 oooooooooooooo, 4.0  --------------------------------, 5.0  ++++++++++++++++, 

.5.3.,8.,0
0
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increasing of gravity field. 
 
 
CONCLUDING REMARKS 
 
(1) The present work examined the potential procedure  

to study the internal heat source in temperature rate 
dependent thermoelastic medium in the presence of 
rotation and gravity. A correct procedure available in 
literature uses the Helmholt's theorem formalism, which is 
not transparent enough for any generalization, whereas, 
the procedure explained in  the  present  work  is  equally  
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Figure 7. Variation of magnitude of 
xxxxxx

vu  ,,,,  and T  with varying values of gravity field with respect 

to y
.
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0
 

 
 
 
 
applicable to study the effect of rotation (and/or gravity) 
on the displacement components, temperature and stress 
components   in   an  isotropic  generalized  thermoelastic 

medium. 
2) An important observation from the above numerical 
example is nearly 10% increase  in  the  non-dimensional  
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Figure 8. Variation of magnitude of 
xxxxxx

vu  ,,,,  and T  with varying values of gravity field with 

respect to y
.
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displacement components with the presence of rotation. 
Similarly, the enhancement in particle motion is another 
clear effect of rotation, for different values of y -axis. In 

fact, the numerical example considers only a particular 
elastic material with hypothetical rotation values. So, 
these results may not qualify for generalization. However, 
when supported with a real data, the mathematical model 
derived in this work may be used to compute the exact 
effects   of   rotation  on  temperature,  displacement  and 

stresses components. 
3) The rotation and gravity significantly influenced the 
variations of the temperature, displacement and stresses 
components. 
4) The present study provides a simple and correct 
alternative approach to all the researchers, who are 
made to believe that an isotropic body can be composed 
through the use of potential functions. It does not make 
any   difference,   whether   such  isotropy  is  inherent  or  
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induced by stress, reinforcement, lamination, 
piezoelasticity, etc. 
5) The present problem can also be studied in the 
absence of a heat source as well. 
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