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This paper considers the estimation of extreme quantile autoregression function by using a parametric 
model. We combine direct estimation of quantiles in the middle region with that of extreme parts using 
the model and results from extreme value theory (EVT). The volatility used to scale the residuals is 
estimated indirectly, without estimating conditional mean, using the conditional quantile (CQ) range. 
The estimators are found to be consistent. A small simulation study carried out shows that the 
estimator of the volatility function converges to the true function over a range of distributional errors. 
Finally, the T-periods ahead extreme quantile autoregression function is given. 
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INTRODUCTION 
 
Many financial institutions have switched from risk 
management based on accrual accounting to 
management based on daily marking to market. This has 
seen an increase in the volatility of the apparent value of 
overall positions held by financial institutions, which now 
reflects the volatility of the underlying markets and 
effectiveness of hedging strategies. Theoretically, one 
can measure financial risks by using measures such as 
standard deviation, quantile, interquantile range or 
expected shortfall. The quantile based Value-at-Risk 
(VaR) has become a basic tool employed by financial 
institutions and their regulators to assess riskiness of 
trading activities. Based on negative returns, VaR is 
defined as quantile of returns at high or extreme 
probability level. Specifically, VaR is defined so that the 
probability that a portfolio will loss more than its quantile 
over a particular time horizon is equal toϕ , for 1ϕ →  
specified. Because of the conceptual simplicity, quantile 
models have been adopted for regularity purposes. In 
particular, the 1996 market risk amendments, which allow  
 
 
 
 
Abbreviations: VaR, Value-at-risk; EVT, extreme value theory; 
CQ, conditional quantile; QAR, quantile autoregressive; 
QARCH, quantile autoregressive conditional heteroscedastic.  

ten-day 1% VaR to be measured as a multiple of one 
day, have been adopted for regulatory purposes. The 
Basel Accord (1996) stipulates that Banks and Broker 
dealer’s minimum capital requirements for market risk 
should be set based on the ten-day 1% VaR for the 
trading portfolios. Detail analysis and application of the 
quantiles to risk measurement can be found in among 
others, Morgan (1996), Duffie and Pan (1997), Jorion 
(1997), Dowd (1998) and stulz (1998).  Although the 
quantile risk measures do not satisfy the sub-additivity 
condition of a good risk measure, like expected shortfall, 
the later depends on the accuracy of the quantile 
estimator for its accuracy, see Mwita (2003), McNeil and 
Frey (2000), among others. 

The extreme quantiles correspond to extreme pro-
bability levels. These quantiles can be estimated by using 
results from EVT, Embrechts et al. (1997), for surveys of 
Mathematical Theory of EVT and applications to both 
financial and insurance risk management. EVT can be 
used to characterise the behaviour of extreme returns or 
the returns distribution without tying the analysis down to 
a single parametric family fitted to a whole distribution. 
However, because of the presence of volatility in the 
financial data, it is inappropriate to apply the results 
directly. Furthermore, Danielson and de Vries (1998) 
have shown that these results do not work well in pro-
babilities as low as 0.95. Few attempts have  been  made 



 
 
 
 
to develop extensions of extreme value statistical 
methodology to take account of the volatility. Among 
others, McNeil and Frey (2000) and Barone-Adesi et al.  
(1998) have taken an approach built around the 
Generalized Autoregressive Conditional Heteroscedastic 
(GARCH) with heavy tailed innovation estimated using 
EVT results. Mwita (2003) proposed a class of 
nonparametric time series models, called quantile 
autoregressive - quantile autoregressive conditional 
heteroscedastic (QAR-QARCH) and used it to estimate 
conditional extreme quantiles.  In that work, the QAR fun-
ction at relatively high probability level, sayθ , constituted 
a threshold beyond which scaled iid  residuals are 
assumed to follow heavy tailed distribution. The QARCH 
function was used to scale and transform the dependent 
excesses to iid  excesses beyond the threshold. The 
asymptotic properties of the nonparametric estimators of 
the QAR and QARCH functions can be found in Mwita 
(2003) and Mwita and Otiena (2005). In this paper, we 
follow similar concepts as in Mwita (2003), but instead of 
assuming the conditional scale function to be in the form 
of quantile autoregressive function, we assume the 
conditional scale is the conditional standard deviation. 
However, we do not make assumptions on the finiteness 
of the first moment, as in the case of Engle (1982). The 
volatility was estimated using the interquantile auto-
regressive function.  
 
 
THE MODEL AND ESTIMATORS 
 
Let { , } P

t tY X ∈ ×
�

R R  such that t tY ∈ F  and 1t tX −∈
�

F  
are measurable. A good example of such time series is 
the autoregressive series, where tY  depends on its own 

past 1 2, , , , , ,t tY Y− − . We will assume that { , }t tY X
�

 are from 

a conditional distribution ( )
tX tF Y

�

 that is at point ( , )y x
� , 

( | ) ( ) ( | )x t tF y x F y P Y y X x= = ≤ =
� �� �

. Let (0,1)θ ∈ .  

Then conditional thθ quantile function of tY  given tX
�

,   
called quantile autoregression function (QARF), is 
defined as the inverse function, that is 
 

( , ) inf{ | ( | ) }x y F y xθµ β θ= ∈ ≥
� �

R  
 
Where ( | )F y x

�
 is assumed to have a continuous 

conditional density ( | )f y x
�

. We introduce and define a 
quantile autoregression-autoregression conditional 
heteroscedastic (QAR-ARCH) process as; 
 

( , ) ( , )t t t tY X X Zθµ β σ α= +
� �

                                     (1) 
 
Where; 

Mwita             61 
 
 
 

( , )tX θµ β
�

Is a thθ -quantile autoregression (QAR) 

function of tY  given tX
� . ( , )tXσ α

�
Is a volatility or ARCH 

function of tY  given tX
�

. tZ are the iid random variables 

with zeroθ -quantile and a unit scale. θβ  and α  are 
vectors of parameters defined in (3). 

In particular, tZ  are iid  with zero quantile and unit 
standard deviation. A specific form of model (1) is an AR-
ARCH process of the form 
 

( , ) ( , )t t t tY X X eµ β σ α= +
� �

                                 (2) 
 
Where ( , )tXµ β

�
 is the conditional mean (e.g. AR part) 

and te  is iid  with mean zero and standard deviation of 

1. Simple manipulation of (2) gives e
t tZ e qθ= −  with the 

above properties, where eqθ  is the quantile of{ }te . In (2), 

it is assumed that  { }te  is symmetric and 0eqθ = . Model 
(1) generalizes (2) because no assumptions are made on 
the first moment and the type of distribution. Using similar 
notations as in Koenker and Basset (1978) and Engle 
(1982), we define parametrically a QAR (p)-ARCH (q) 
process as 
 

2 2 2
0, 1, 1 2, 2 , 0 1 1 2 2... ...t t t P t P t t q t q tY Y Y Y Y Y Y Zθ θ θ θβ β β β α α α α− − − − − −= + + + + + + + + +           

    2' 't t tX X Zθβ α= +
� �

                                              (3) 

 
Where: 
 

0, 1, 2, , 1 2 0 1 2( , , )', (1, , ,..., )', ( , , ,..., )'P t t t t P qX Y Y Yθ θ θ θ θβ β β β β α α α α α− − −= = =
�

and 2 2 2 2
1 2(1, , ,..., ) 't t t t qX Y Y Y− − −=

�
. Stationarity condition for 

QAR (p) in (3) is given as  
 

,
1

1
P

i
i

θβ
=

<�                                                         (4) 

 
Note that since we are using interquantile autoregression 
range to determine the standard deviation, then the 
stationarity condition will also depend on (4). The 
parametric vector θβ  is the solution to the following 
minimization problem, assuming integrability and the 
uniqueness of the solution, 
 

[ ]arg m in ( ' )t tE Y Xθ θ

β

β ρ β= −
�� � �� �

                                  5) 

 

Where,  for x∈R , { }( )0( ) xx x Iθρ θ ≤= − ,  is  called  the 
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check function. The sample version of , based on a 
random sample 1 1 2 2{( , ), ( , ),..., ( , )}n nX Y X Y X Y  of 

{ , }t tX Y
�

 is given by, 

 

1

1ˆ arg min ( ' )
n

t t
t

Y X
nθ θ

β

β ρ β
=

= −��� � �� �
                              (6) 

 
The estimator for ( , )tX θµ β

�
then becomes 

 
ˆ ˆ( , ) 't tX Xθ θµ β β=

� �
                                                     (7) 

 
We define the Interquantile Autoregressive Range at θ  
denoted by IQARθ  as 

1( , ) ( , )t tIQAR X Xθ θ θµ β µ β −= −
� �

. Using model (2), we 
have the conditional standard deviation or volatility in this 

case as 
1

( , )t e e

IQAR
X

q q
θ

θ θ

σ α
−

=
−

 and corresponding 

estimator of the range 

is 1
ˆ ˆ ˆ( , ) ( , )t tIQAR X Xθ θ θµ β µ β −= −

� �
. Once the 

distribution of { te } is approximated, eqθ  and  1
eq θ−  can be 

obtained.  Note that although the volatility is specified as 
dependent onα , the method of interquantile 
autoregression range only depends θβ . The consistency 

and asymptotic normally of ˆ ( , )tXσ α will follow that 

of ˆ( , )tX θµ β
�

. We therefore only give the asymptotic 

properties of ˆ( , )tX θµ β .    
 
 

Asymptotic properties of the estimator,  ˆ( , )tX θµ β  
 
Consider again process (1). The following assumptions 

are important to guarantee the consistency of ˆ( , )tX θµ β . 
 
(A1) ( , , )F PF is a complete probability space and 

{ , }, 1, 2,...,t tZ X t =  are random vectors on this space. 
 
(A2) The function ( , ) : tk

tX Bθµ β × →
�

R R  is such that 

for each θβ  in B , a compact subset of pℜ , ( , )tX θµ β
�

 is 

measurable with respect to the Borel set PB  
and ( , )tXµ ⋅

�
 is continuous in B , a.s- , 1, 2,...P t =  for a 

given choice of explanatory variables{ }tX . 

 
 
 
 
(A3) (a) ([ ( ' )])t tE Y Xθ θρ β−

�
exists and is finite for each 

θβ  in B . 

(b) ([ ( ' )])t tE Y Xθ θρ β−
�

is continuous in θβ . 

(c)  {[ ( ' )]}t tY Xθ θρ β−
�

 obeys the strong (weak) law of 
large numbers. 
 
For example, we could assume the { , }t tZ X  are α -

mixing. That is ( )mα satisfies ( ) 0nα →  as n → ∞ . 
(Andrews, 1988; White and Domowitz, 1984). 
 
(A4)  1{ {[ ( ' )]}}t tn E Y Xθ θρ β− −

�
 has identifiably unique 

maximizers. 
 
 
Theorem 1 (Consistency) 
 

In process (1), under assumptions (A1)-(A4), θ̂ θβ β→  

as n → ∞ , 0.a s P− , where θ̂β is given by (6). The proof 
is similar to the one in White (1994 p. 75), by using the 
check function defined above. To prove the asymptotic 

normality of θ̂β  , we introduce some extra notation. Let 

tv  be a ( 1)r ×  vector of variables that determine the 

shape of the conditional distribution of t t tZε σ= . 

Associated with  tv   is a set of parametersφ .  Denote the 

density of tε , conditional on all the past information, 

as ( , , )t th vε φ ,ε ∈ℜ . Here, tv  includes conditional 

variance andφ , the vector of parameters that define a 

volatility model. Whenever the dependence on  tv  and φ  
is not relevant, we will denote the conditional density of 

tε  simply by ( )th ε .  Let ( , , )tu sθφ β   be an unconditional 

density of ( , , )t t t ts X vε= . Finally, define the 

operators / β∇ ≡ ∂ ∂ , /i iβ∇ ≡ ∂ ∂ , where iβ  is the ith 

element of β , and ( ) ( , )i t i tXµ β µ β∇ ≡ ∇
�

 and  

( ) ( , )t tXµ β µ β∇ ≡ ∇
�

. The following assumptions are 
important for asymptotic normality. 
 
(B1) � ( )i t θ

µ β∇  is A-smooth with variables itA  and 

functions , 1,2,...,i i pκ = . In addition, 

max ( )i i d dκ ≤  for small enough. 
 
(B2)  (i) ( )th ε  is Lipschitz continuous in ε  uniformly in t . 

(ii) For each t  and ( , ), ( ; , )tv h vε ε φ  is continuous inφ . 



 
 
 
 
(B3)  For each t  , ( , , )ts u sθφ β  is continuous in ( , )θφ β . 

 
(B4)  { , }t tXε  are α -mixing, with parameter ( )nα , and 

there exist ∆ < ∞ and  2r >  such that ( )n nωα ≤ ∆  for 

some 2 /( 2)r rω < − − . 

 
(B5) For some 2, ( )i tr µ β> ∇ is uniformly r-dominated 

by functions 1ta . 

 
(B6) For all t  and i , 1| sup |ritE Aβ ∆ < ∞ . There exist a 

measurable functions 2ta  such that 2| |t tu a≤ and for all t , 

2ta dv < ∞�  and 3
1 2t ta a dv < ∞� . 

 
(B7) There exists a matrix A such that 

1

1

[ ( ) ' ( )]
a n

t t
t a

n E Aθ θµ β µ β
+

−

= +

∇ ∇ →�
 

as n → ∞ , 

uniformly in a . 
 
 
Theorem 2 (Asymptotic normality) 
 
In process (1), if (B1)-(B7) hold and if the estimator is 
consistent, then; 

 
1
2 ˆ( ) (0,1)

(1 )
d

n n

n
A D Nθ θβ β

θ θ
−

− →
−

 

 
Where: 
 

1 1[ ( ) ' ( )], [ (0) ( ) ' ( )]n t t n t t tA n E D n E hθ θ θ θµ β µ β µ β µ β− −= ∇ ∇ = ∇ ∇� �  

and θ̂β  is given by (6) and Theorem 1. 

 
 
Proof 
 
The proof is obtained by substituting 

{ 0}( ) 2[1/ 2 ]xsign x I ≤= −  with the function, { 0}[ ]xIθ ≤−  

in theorem 3 of Weiss (1991). 
Note that the continuity of ( , )tXµ β

�
 in β  can be 

approximated arbitrarily well by continuous and 
differentiable functions.  Since taking these 
approximations does not affect the nature of the model, 
we can treat it as if it satisfies all the necessary 
assumptions to give consistency and asymptotic 
normality results. 
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Extreme quantile and t-periods ahead extreme 
quantile autoregression functions 
 
Application of quantiles to measure financial risks is 
normally done in high levels of probability or beyond the 
maximum observation. The quantiles, which are located 
among the largest observations or even beyond the data 
maximum, are called extreme quantiles (Mwita, 2003). To 
estimate extreme quantiles, results from extreme value 
theory (Embrecht et al., 1997) may be used. We take the 
QAR at relatively high probability level, sayθ , as an initial 
as well as the beginning of the right-hand tail of a heavy 
tailed distribution. This is then combined with quantiles 
obtained using Gnedenko’s result (Gnedenk, 1943) and a 
Hill’s estimator (Hill, 1975) of the tail index to arrive at an 
approximate extreme QAR function at high probability 
levels, say ϕ θ> . 

The limiting distributions of the sample maxima are 
given by the following theorem due to Fisher and Tippet 
(1928).  
 
 
Theorem 3 
 
Suppose 1 2, ,..., ne e e is a sequence of iid random 

variables from unknown distribution F  and 

1 2max( , ,..., )n nM e e e=  denotes the maximum of the 
first n observations. If a sequence of real numbers 

0na >  and nb ∈ R  can be found such that the sequence 

of normalized maxima, n n

n

M b
a
−

, converges in 

distribution  for   some non-degenerate distribution fun-
ction H , then H  belongs to one of the three distribution 
types: 
 

{ }

1

exp (1 ) , 0
( )

exp exp( ) , 0

e
H e

e

ξ

ξ

ξ ξ

ξ

−� � �� �− + ≠� � ��= � � �� 	
� − − =��

 

 
Where  e  is such that 1 0,eξ+ >  and ξ  is the shape 

parameter. A random variable te  is said to belong to the 
Maximum Domain of Attraction (MDA) of the extreme 
value distribution H  if and only if the Fisher-Tippet 
theorem hold for{ }te . 

Consider the random variable  { }te  in (1) and (2). To 

derive an estimate of an extreme quantile eqϕ  for 1ϕ ≈ , 

we take a relatively  high quantile of { }te  at θ , denoted 

as eqθ , where θ ϕ<  is large but not so close to 1 as ϕ .   
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The probability  ϕ  is so large that we have none or only 

a few data in our sample beyond  eqϕ  . The quantile   eqθ  

is assumed to be the threshold above which a Pareto like 

tail holds. In other words  eqϕ  is the quantile 

of t te e zθ= + . The following proposition gives the 

extreme quantile, eqϕ . 

 
 
Proposition 1 
 
Let the iid variable { }te  be in the maximum domain of 

attraction of , 0Hξ ξ > .  Suppose  θ  is a high probability 

corresponding to the quantile eqθ  above which a Pareto 

like tail holds, then the extreme conditional quantile of te  
is given as 

 

1
1

e eq q
ξ

ϕ θ
ϕ
θ

−−
 �≈ � −� �
, for large θ  andϕ θ> . 

 
 
Proof   
 

The quantiles eqθ  and eqϕ   correspond, respectively, to 

the excess probabilities ( ) 1eF qθ θ= −  and 

( ) 1eF qϕ ϕ= − . Then using Gnedenko’s result, 
1

( ) ( ), 0F e e L e eξ
−

= > , the excess probabilities satisfy 
 

1

( ) ( ) ( )e e eF q q L qξ
θ θ θ

−
=                                                   (8) 

 
and 
 

1

( ) ( ) ( ), eF e e L e e qξ
θ

−
= >                                              (9) 

 
Dividing (9) by (8) and noting that for largeθ , 

( ) / ( ) 1eL e L qθ ≈ , we obtain 

 

1 ( )
1

eF e
e q

ξ

θθ

−−
 �≈ � −� �
, for largeθ .                                (10) 

 
Setting ( )F e ϕ θ= > , the ϕ -quantile is obtained as the 
inverse; 

 

 

 

 
1
1

e eq q
ξ

ϕ θ
ϕ
θ

−−
 �≈ � −� �
, for large θ  and ϕ θ> .              (11) 

  
The estimator of (11) is  

 
ˆ

1ˆ
1

e eq q
ξ

ϕ θ
ϕ
θ

−−
 �≈ � −� �
, assuming the distribution of  te  is a 

known heavy tailed. 
 

Note that ξ̂  is the Hill’s estimator of the shape 
parameter, obtained as 

 

{ }
1

1ˆ log e
t

n
t
e e q

t

e
I

N q θ
θ θ

ξ
>

=


 �
= � 

� �
�                                               (12) 

 
With  Nθ  being the number of exceedances. The 
obtained estimator was consistent (Hill, 1975). 
Proposition 2 extends the estimation of extreme quantiles 
in the iid  case to dependent case, by augmenting the 
QAR with Gnedenko’s result and the Hill’s estimator of 
the shape parameter in (12).  
 
 
Proposition 2 
 
Assume the random variable , 1, 2,...tY t =  in process (1) 

and the iid  error { }te with ( , 0)F MDA Hξ ξ∈ > . The 

extreme QAR, atθ , is given by 

 

1
( , ) ( , ) ( , ) 1

1
e

t t tX X X q
ξ

ϕ θ θ θ θ
ϕµ β µ β σ α
θ

−
 �−
 �= + −� � � −� �� �� � �

 
 
Proof of proposition 2 
 

From (1), we have
( , )

( , )
et t

t t
t

Y X
Z e q

X
θ

θ
µ β

σ α
− = = −�

�

, with 

( , )tXθ θµ β
�

being the threshold above which the scaled 

variable tZ is assumed to follow a GPD.  Now, { }te  is 

iid  and eqθ  is the threshold.  The quantile of the excess 

variable tZ  is 
   

( , ) ( , )

( , )
t t z e e

t

X X
q q q

X
ϕ θ θ

ϕ ϕ θ

µ β µ β
σ α

−
= = −� �

�

 ,    with ϕ θ>  



 
 
 
 

Using equation (11), we get  

 
( , ) ( , ) 1

( , ) 1
t t e e

t

X X
q q

X

ξ
ϕ θ θ

θ θ

µ β µ β ϕ
σ α θ

−− −
 �≈ −� −� �
� �

�

 

 
and 
  

 
1

( , ) ( , ) ( , ) 1
1

e
t t tX X X q

ξ

ϕ θ θ θ
ϕµ β µ β σ α
θ

−
 �−
 �= + −� � � −� �� �� � �
.                                                        

(13) 
 
The estimator of ( , )tXϕ θµ β

�
 is clearly given as 

 
ˆ

1ˆ ˆˆ ˆ( , ) ( , ) ( , ) 1
1

e
t t tX X X q

ξ

ϕ θ θ θ θ
ϕµ β µ β σ α
θ

−
 �−
 �� = + −� � −� �� �
� � �

                                                         

(14)                                                                      
 
The method of obtaining a T-step period prediction can 
be based on the work in Feller (1971, VIII.8), where it is 
shown that the tail risk for fat tailed distributions is, to a 
first order approximation, linearly additive. Therefore, 
assuming eqθ  is the threshold above which a Pareto like 
tail holds, and using (10), the one period prediction based 
on iid  random variable { }tZ  is  

 
1 1

1

( , ) ( , )

( , )
t t z

t

X X
q

X
ϕ θ θ

ϕ

µ β µ β
σ α

+ +

+

−
≈� �

�

 

 
The T-period ahead based on unconditional random 
variable e

t tZ e qθ= −  is clearly seen as 

 
1 1

1

( , ) ( , )

( , )

T
t t z

t

X X
T q

X
ϕ θ θ ξ

ϕ

µ β µ β
σ α

+ +

+

−
≈� �

�

 

 
Rearranging, we obtain an estimator of T-period ahead 
extreme quantile autoregression function as  
 

1 1 1
ˆ ˆˆ ˆ( , ) ( , ) ( , )T z

t t tX X T X qξ
ϕ θ θ θ ϕµ β µ β σ α+ + +≈ +

� � �
,                                                                   

(15) 
 
Where the components 1 1

ˆ ˆ( , ), ( , )t tX Xθµ β σ α+ +
� �

and ξ̂  
are consistent estimators given above. 
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SIMULATION STUDY 
 
To further reinforce the mathematical results obtained, 
we used numerical method to investigate properties of 
the volatility estimator using model (1). We simulated 
samples of sizes 500, 800 and 1000 from a specific AR 
(1)-ARCH (1) process 
 

2
1 10.00022 0.9 0.07 0.9t t t tY Y Y e− −= + + + ,                                        

(16)                                              
 

Under different distribution of the error te , that is 
Standard Normal, Student - t (4), Cauchy and Gamma (2, 
2). For all the samples, we estimated the interquantile 
autoregression range (IQAR) function when 

0.1θ = and 0.9 . The computed volatility, ˆ ( , )tXσ α , was 
compared with the true volatility. 

To illustrate, take for example one sample with 
standard normal errors, but without replication. The 
points in Figure 1 indicates the AR (1) - ARCH (1) 
process, whereas the dotted lines are the QAR function 
estimates at 0.9 and 0.1. The points in Figure 2 depict the 
true volatility and the superimposed dotted line is the 
estimated. The structure of the estimated volatility 
function seems to follow same pattern as the true one. 
Figure 3 shows the AR (1) - ARCH (1) process (points) 
with the superimposed QAR (dotted line) at 0.99ϕ =  

obtained using (14). The threshold was taken as 0.9θ = . 
Using all replications, the properties/performance of the 
estimator of the volatility was assessed by its Average 
Mean Absolute Proportionate Error (AMAPE),

 ( ) ( )

( )
1 1

ˆ ( , ) ( , )1 1ˆ( ( , ) , 500,800,1000
100 ( , )

j jn n j j
i i

t jj
j ij i

X X
AMAPE X n

n X
σ α σ ασ α

σ α= =

� �−= =� �
� �� �
� �  

The results are shown in Table 1. The AMAPE 
decreases with the increase in sample size. This confirms 
the theoretical results on convergence obtained in section 
3. It is therefore expected that 
as ˆ, ( , ) ( , )t tn X Xσ α σ α→ ∞ → .  

 
 
Conclusion 
 
We have introduced a class of parametric models, called 
QAR-ARCH, and used it to estimate the volatility under 
specified distribution of the data, and extreme quantile 
autoregression function. Both mathematical and 
numerical simulations have confirmed that the estimator 
of the volatility obtained using the interquantile 
autoregression range is consistent. The simulation study 
indicates that further investigation could be carried out to 
determine, among others, rate of convergence of the 
volatility estimator. 
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Figure 1. AR (1)-ARCH (1) process (points) with estimated QAR functions at 

0.1θ =  and 0.9 (dotted line) superimposed. 
 
 
 

 
 
Figure 2. True volatility (points) with estimated volatility (dotted lines) 
superimposed. 

 
 
 

 
 
Figure 3. AR (1)-ARCH (1) process (points) with estimated QAR 
function at 0.99ϕ = (dotted line) superimposed. 
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Table 1. Average mean absolute proportionate error with increasing sample sizes under 
different distribution errors. 
 

              Sample size 
Error 

500 800 1000 

Normal (0,1) 0.247 0.228 0.148 
Student-t(4) 0.298 0.245 0.180 
Cauchy 0.732 0.690 0.440 
Gamma 0.645 0.634 0.473 
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