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In this research, a mathematical model for error propagations in many variables functions had been 
developed. The development employs both Taylor theorem and binomial coefficient of expansion. 
Verification of the models were done through computer simulation by comparing the results of the 
model with the actual difference between the result given by the function in question, when comp-uted 
with ‘error variable’ and the same function when computed with ‘error free variable’.  The results given 
by the model proposed, gave good results for error propagation that were not  signi-ficantly different 
from that obtained from the actual difference between the results of the error variable functions and 
‘error free variable’ functions. 
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INTRODUCTION 
 
Mathematical functions denoted by g = f(x, y …z) are said 
to be many variables. Although, most time, engineers re-
sort to representing real life situations using single varia-
ble functions because many variables functions are either 
too difficult to model or too difficult to handle, yet, situa-
tions do arise when engineers must call a spade , by 
modeling real life situations using many variables func-
tions  (Bajpai et al., 1973;Fasogbon, 2001). As stated 
above, many variables functions are characterized by 
many variables, but it is either the variables in question 
are related or not. Although in some cases, the variables 
are unrelated, notwithstanding, more often than not, 
some relationships between the variables must be satis-
fied (Fasogbon, 2001; Kostelich and Armbruster, 1996; 
Yunfeng, 2008). Just as in the case of single variable 
functions, there are at least three sources of error in 
many variables functions, namely: 
 
(i) Error in measuring initial conditions or initial error in 
the variable which characterizes any given mathematical 
function. 
(ii) Error in the parameters (constants) in the function 
(iii) An incorrect model of the underlying process. 
  
It is always very difficult if not impossible to measure 
accurately the initial condition, this is because it is either 
the   measuring  equipments  are  malfunctioning,  human 

mistake are in introduced or any other factors respon-
sible. Most of the constants, parameters or the mathe-
matical function depends upon are usually as a results of 
experimental analysis, and if the constants are not 
discrete, error is bound to set in, in the model.  If the 
mathematical function describing an underlying process 
is not accurate, it shall be very difficult if not impossible to 
represent real life situation, even when errors from other 
sources are not present. Although error that propagates 
in mathematical functions serves as one of the factors 
militating against our ability to obtain exact results, it 
turns out that this factor plays a major role in our inability 
to predict far a head some engineering systems, even 
though the characteristic mathematical functions are 
highly determined.  In fact, in large computations, the 
situation may go worse, such that our final result be-
comes invalid, if at any point, the results in error happen 
to serve as input values in our subsequent calculations.  
Incidentally, more and more decisions in the development 
of science and technology are based on large scale 
computations and simulations (Kostelich and Armbruster, 
1996; Hatim et al., 2004). Therefore, in order to gain a 
better understanding in to error propagation in many varia-
bles functions, this study is aimed at developing mathe-
matical models as well as simulates the responses of the 
models (mathematical functions) to initial error in the varia-
bles which typify the functions.  



 
 
 
 
Models developments 
 
To start with, suppose we have two variables function f 
(x, y) which is continuous and partially differentiable (and 
the partial derivatives are continuous that is fxy = fyx) 
within the x and y range of interest, full Taylor expansion 
about the point(x=xo, y=yo), is given by: 
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Expanding the function, we have: 
 

f(x,y)=f(xo ,yo) + 
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Where oxxx −=∆  and oyyy −=∆  , and all the 

derivatives are to be evaluated at (x o  , y o ). 
 
 
First consideration 
 
Suppose there are small errors '' xδ  in the variable ‘x’ 
and '' yδ  in the variable ‘y’ and we seek to investigate 
how these errors propagate in the function f(x, y), by 
analogy, it can be seen that: 
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Expanding the function, neglecting the terms containing 
the terms error of second order, and rearranging the 
terms, we have: 
 

f(x xδ
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(2) 
 
Close examination shows that expression (1) and (2) can 
be put in a compact notation forms with x 1 =x and x 2 =y, 
thus we have: 
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Expanding expression (4), we have: 
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If we define ‘E(x, y)’ as the propagated error in the 

function f(x, y) by small errors ‘ xδ
−
+

’in ‘x’ ,  ‘ yδ
−
+

’ in  ‘y’, 

we have : 
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(6) 
 
Comparing expression (3), (5) and (6), we have: 
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Putting E(x, y) in a single compact notation, we have: 
 
E(x, y) = 
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It should be noted that for all ix∆  to 
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Second consideration 
 
Suppose there is no error in one of the variables, or there 
is error '' yδ  in ‘y’ but ‘ .0'' =xδ  
Subtracting expression (i) from (ii), we have: 
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Putting .0'' =xδ , we have: 
 

   E(x, y) = )( y
y
f δ±

∂
∂

+ [
!2

1
)(2

2

yx
yx

f

δ±∆
∂∂

∂
+ 

)(2 2

2

yy
y

f

δ±∆
∂
∂ ] 

   
If we go further, we have: 
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Putting E(x, y) in a single compact notation, we have: 
 
E(x, y) = 
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It should be noted that for all 1i  to ni , the following exist: 
If n=0, the whole expression (8) equals zero 
If n= 1, 11 =�= iii  

 
 
 
 
If n 1,2 111 =�=≥ iii  to 2, 1=ni to 1 
 
 
Generalization 
 
If we define ‘L’ as the number of variables which contain 
error, and ‘M’ as the number of variables a function de-
pends upon, where L  � M, it is found that for many 
variables function f( mxxx ................, 21  )  containing 

errors ( Lxxx δδδ ..........., 21 )  in variables ( mxxx ..........., 21 )  
respectively, the propagated error E(X)  
 

 (Where X =  mxxx ............, 21  ) is given by: 
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Performance evaluation of the model 
 
We’re now ready to test the performance of the model, 
but we need real numbers to use in the equations, 
presented here are one set of numbers (and the ones 
used to develop the results in the next section). You may 
choose any other set or relevant numbers you prefer. 
 
Parameters used: 
 
n=15; 

Function, f = cos(x )2 xyy −−∗  
x value = 3; 
y value = 2; 
b value = 0; 
a value = 0; 

yδ  = 0.000; 

xδ  = 0.005; 
 
 
RESULTS AND DISCUSSION 
 
From Table 1, when n=0, the actual difference between 

)( xxf δ±  and f(x) that is [ )( xxf δ± -f(x)] = -2.2222e-5 
while proposed model E(x) = 0.0 subsequently the 
difference between [ )( xxf δ±  and E(x) = -2.2222e-5. 

When n= 1, [ ( )±f x xδ -f(x)] = -8.7847e-6, E(x) = 
2.2211e-5 and their difference = 1.3426e-5.When n= 2, 
[ ( )±f x xδ -f(x)] = -7.7847e-6, E(x) = -8.7719e-6 and 

their difference = 9.8712e-7. When n= 3, [ ( )±f x xδ -
f(x)] = -7.9863e-6, E(x) = -7.7724e-6 and their difference  
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Table 1. Comparison of results given by the developed model and the actual differences between the functions. 
 

n f(x) f(x +δδδδx) f(x+ δδδδx  ) - f(x) E(x) {f(x+δδδδx) - f(x)}-E(x) 
0 -0.08957 -0.089592 -0.000022222 0 -0.000022222 

1 -0.10291 -0.10292 -8.7847E-06 -0.000022211 0.000013426 

2 -0.098879 -0.098887 -7.7847E-06 -8.7719E-06 9.8712E-07 

3 -0.098679 -0.098687 -7.9863E-06 -7.7724E-06 -2.1392E-07 

4 -0.098709 -0.098717 -7.9938E-06 -0.000007974 -1.9835E-08 

5 -0.09871 -0.098718 -7.9929E-06 -7.9815E-06 -1.1432E-08 

6 -0.09871 -0.098718 -7.9929E-06 -7.9806E-06 -1.2317E-08 

7 -0.09871 -0.098718 -7.9929E-06 -7.9805E-06 -1.2341E-08 

8 -0.09871 -0.098718 -7.9929E-06 -7.9805E-06 -1.2339E-08 

9 -0.09871 -0.098718 -7.9929E-06 -7.9805E-06 -1.2339E-08 

10 -0.09871 -0.098718 -7.9929E-06 -7.9805E-06 -1.2339E-08 

11 -0.09871 -0.098718 -7.9929E-06 -7.9805E-06 -1.2339E-08 

12 -0.09871 -0.098718 -7.9929E-06 -7.9805E-06 -1.2339E-08 

13 -0.09871 -0.098718 -7.9929E-06 -7.9805E-06 -1.2339E-08 

14 -0.09871 -0.098718 -7.9929E-06 -7.9805E-06 -1.2339E-08 

15 -0.09871 -0.098718 -7.9929E-06 -7.9805E-06 -1.2339E-08 

16 -0.09871 -0.098718 -7.9929E-06 -7.9805E-06 -1.2339E-08 

17 -0.09871 -0.098718 -7.9929E-06 -7.9805E-06 -1.2339E-08 

18 -0.09871 -0.098718 -7.9929E-06 -7.9805E-06 -1.2339E-08 

19 -0.09871 -0.098718 -7.9929E-06 -7.9805E-06 -1.2339E-08 

20 -0.09871 -0.098718 -7.9929E-06 -7.9805E-06 -1.2339E-08 

 
 
 
= -2.1392e-7. When n= 4, [ ( )±f x xδ -f(x)] = -7.9938e-
6,- E(x) = -7.974e-6 and their difference = -1.9835e-8. 
When n= 5, [ ( )±f x xδ -f(x)] = -7.9929e-6, E(x) = -
7.9805e-6 and their difference = -1.1432e-8. When n= 6, 
[ ( )±f x xδ -f(x)] = -7.9929e-6, E(x) = -7.9806e-6 and 
their difference = -1.2317e-8. This continues until when 
n= 8, where the values of [ ( )±f x xδ -f(x)], E(x) and their 
difference stabilize (up to n= 21) and equal to -7.9929e-6,  
-7.9805e-6 and -1.2339e-8 respectively. In a nut shell, we 
are unable to see any significant difference between the 
results given by the model and the actual difference 
between the functions. It must be stretched out that the 
choice of trigonometric function for performance evalua-
tion is arbitrary and no special reason was attached for 
choosing it.  

Finally, it can be noticed that out of the three sources of 
error possible in many variables function, only initial error 
in the variable(s) which characterize(s) the given mathe-
matical function was investigated. In order words, the two 
other sources of error that is error in the parameter 
(constants) in the function and an incorrect model of the 
underlying process are treated as absent. In subsequent 
research, search light will be beamed unto them.  

Conclusion 
 

Considering the absolute values of the differences bet-
ween [ ( )±f x xδ -f(x)] and E(x) which have the high-est 
value of 0.000022222 and lowest value of 0.000007993, 
thus, it can be seen that the results given by the deve-
loped model is in good agreement with the results   given 
by the actual difference between the functions f(x) 
and ( )±f x xδ , and as such the model can be used to 
predict the behaviour of any error introduced into any 
such function. 
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