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Estimation of population parameters using the generalized moment estimators under probability 
proportional to size sampling scheme requires that the specification parameter, k defining these 
moments differs from one population to the other due to varying statistical properties of the study and 
measure of size variables. In this study, the approximate value of the specification parameter that 
minimizes the anticipated mean squared error is derived and is recommended for use in determining 
the best estimator for target populations in probability proportional to size (PPS) sampling especially, 
when the correlation between the study and auxiliary (measure of size) variables is being exploited. 
Empirical results also confirm that the specification parameter is a useful guide in defining appropriate 
estimator in PPS multi-character surveys. 
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INTRODUCTION 
 
Survey statisticians have found probability proportional to 
size (PPS) sampling scheme useful for selecting units 
from the population as well as estimating parameters of 
interest especially when it is clear that the survey is large 
in size and involves multiple characteristics. Studies on 
inferences in finite population sampling including the 
works of Godambe (1955), Basu (1971), and Chaudhuri 
(2010) have postulated the non-existence of an unbiased 
estimator of population characteristics with the uniformly 
least value of its variance. With this development, lots of 
alternative estimators have been suggested in PPS 
sampling scheme following the pioneering work by 
Hansen and Hurwitz (1943). Rao (1966) suggested an 
alternative estimator in PPS sampling by assuming that 
the correlation between study variables and measure of 
size variable is zero. Pathak (1966) proved this theory 
correct while Bansal and Singh (1985) argued that 
population correlation can never be zero and provided a 
non-linear  transformation  in  the  selection  probabilities.  

Amahia et al. (1989) developed a transformation that is 
linear in pi and possesses the properties of arithmetic 
mean. This development brought about numerous 
contributions including the works of Grewal et al. (1997) and 
Ekaette (2008) involving the linear transformations of the 

selection probabilities and, Singh et al. (2004) involving non-
linear transformation. Recently, Ikughur and Amahia 
(2011) developed a generalized transformation for a 
class of alternative linear estimators in PPS sampling 
scheme within which optimum estimator for any target 
population is located. An interesting feature of these 
estimators is that it is defined by the k

th
 moment in 

correlation coefficient as are related with the statistical 
properties of target population namely, coefficients of 
variation, determination, skewness and kurtosis. 

In this study, the estimators defined by moments in the 
linear regression model is considered in order to 
determine the approximate values of k that minimizes the 
variance of the estimator for  target populations. 
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METHODOLOGY 
 

Consider the homogenous linear estimator (HLE) of the form 
 

  , i= 1,2,3, …, N                            (1) 

 
Where  and bsi are weights not depending on yi’s but 

on the sample design. Let  be the estimators of the population 

total defined by the generalized transformation g under the c
th
 

moments, then under probability proportional to size with 
replacement (PPSWR) sampling, bsi = 1/(npi,g*) so that our 

estimator of population total becomes: 

 
                                                                  (2) 

 
Where 

 

, with g(k ) =ρ
k
, k = 1,2,3,4            (3) 

 
0<ρ<1, k>0 so that Equation (2) is the generalized PPS estimators. 

Ikughur and Amahia (2011) have defined  as the generalized 

transformation for selection probabilities that provide the 
specification parameter k, which is also a pivot element in defining 

estimators in the linear class. To demonstrate this fact, the 
generalized estimator can be classified into special cases as 
follows:  

 

(i) When ρ = 0, , which is the 

Rao’(1966) estimator with  irrespective of k; 

(ii) When ρ = 1, ,  which is the 

Hansen-Hurwitz estimator with ; 

(iii) When 0 < ρ < 1,  the moment 

estimators are defined. Specifically, when k =1, Amahia et al. 
(1985) the estimators is realized; 
(iv) In (iii), when Ikughur and Amahia (2011) have postulated the 
occurrence of the values of k = 1, 2, 3 and 4 when 0 < ρ < 25, 25 < 
ρ < 0.5, 0.5 < ρ < 0.75 and 0.75 < ρ < 1 respectively. 

 
 
Moment in correlation coefficient 
 

Dodge and Rousson (2000, 2001) showed that, in the context of 

linear models, the response variable will always have less skew 
than the explanatory variable and this also applies to the kurtosis of 
the two variables. Thus, under standard assumptions for linear 
models, the response variable is a linear combination of an 
explanatory variable that need not be normally distributed and a 
normally distributed error. If the explanatory variable has a non-
normal distribution, and the error term is normally distributed, then 
the response variable is a linear convolution of these two 

distributions that must have a distribution closer to normality than 
the explanatory variable. We draw inspiration from the works of 
Dodge  and  Rousson  (2000,  2001)  and  other  workers  such   as  
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Rovine and von Eye (1997), Rodgers and Nicewander (1988) 
among others that have established theoretical relationship 
between correlation coefficient and other statistical properties that 
are related by the linear model to make the proposition below. 

 
 
Proposition 1  

 
Consider the linear model  
 
y = βx + ε                  (4) 
 
Where y is the response variable, x is the explanatory variable, β is 

the slope parameter and ε is the error term, then, the expected 
value of the c

th
 standardized moment  of the study variable is given 

by 

 

                              (5) 

 
Proof 

 
From Equation (4), we have 
 

              (6) 

 
Standardizing Equation (6), we obtain 
 

    

  

   

 
The k

th
 moment of the standardized variable y is: 

 

  

  
whose expectation is 

 

  

 

where  is the ratio of the standard deviation of the 

error term to the standard deviation of y. 
Expression (5) is the generalized expression for expectation of the 
k

th
 standardized moment. Specifically, when k = 1, we have 

 

                   (7) 

 
Where  

, and  

respectively, so that: 
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 = 0                      (8) 

 
When k = 2, then 

 

                 (9) 

 

But  .  

 
Therefore,  

 

               (10) 

 
Under linear framework,   always. At this point, two 

scenarios can be identified, namely: 
 

(i) When is negligible. Here,  

(ii) When  is a quantity in [0,1] and .  

when k = 3, then 
 

   (11) 

 

So that 
 

               (12) 

 

where  are the 

skewness coefficients of y, x and ε respectively. If  and hence 

 are negligible, then 

 

 ,               (13) 

 

satisfying . 

 
 
Remark 1  
 
Expression (13) expresses the third power of correlation coefficient 
as the ratio of the skewness coefficient of y and x. For k = 4,  
 

     (14) 

 
So that 

 

;               (15) 

 
Expression (15) represents the forth power of correlation coefficient 

as the ratio of the kurtosis of the response variable and the kurtosis 
of the explanatory variable. This can be interpreted as the 
percentage of kurtosis which is presented by linear model.  

 
 
 
 

Certainly,  is expected to hold true. Similarly, under 

Equation (4)  

 
  

 
So that  

 

              (16) 

 
By this proposition, moments in correlation coefficient have been 
linked with statistical properties namely, coefficients of variation, 
determination, skewness and kurtosis of target populations as 
follows: 

 

(i) ;  with  

(ii) ; does not tend to zero. 

(iii)  <1;   and 

(iv)  <1; . 

 

However, an alternative approach to the determination of the 
specification parameter is sought at this point. To achieve this 

objective, the expected variance formula for which an approximate 
expression is realized under the super-population model is utilized. 

 
 
Super-population model inference 

 
Stochastic model for Y is called super-population model (Deming 
and Stephan, 1941; Korn and Graubard, 1998) and have been used 
extensively to evaluate design and estimators (Cochran, 1946; 
Cassel et al., 1997) among others. Here, we consider the super-
population model defined by 

 

                                 (17) 

 

With  

 
Under the PPS sampling design, the mean square error (MSE) is 
defined as: 

  

        (18) 

 
whose bias is 

 
                            (19) 

 
 
Theorem 1 

 
The expected MSE of the proposed estimator under super-
population model is:  



 

 
 
 
 

                                           (20) 

 

 
Proof  

 
It follows by substituting Equations (18) and (19) in the expression 
of MSE defined by 

 

 

 

Considering the design based MSE above, the expected variance 
of the conventional estimator is 
 

  

                                          (21) 

 
Similarly the expected variance of the generalized estimator is 
 

  

          (22) 

 
Now, comparing the two variances, we have 

 so that 

 

  

            (23) 

 

Now, let  

             (24) 

 

Satisfying  n = aC+β
2
D              (25) 

 
empirically, when ρ=0,  D = Var(pi/pi*) > 0            (26) 
 
 and as ρ > 0, D = Var(pi/pi*) → 0                             (27) 
 
In most real life scenario, ρ≠0 always, we consider Equation (27) as 
most ideal for surveys and hence, inference based on aC will be 
sufficient. 

Now, let  

 

            (28) 

 
Where  
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               (29) 

 
And 
 

               (30) 

 
Then, we can as well observe that 
 

 

 
or  
 

 

 

negligible as  

 
 
Proof 
 
Considering the anticipated bias from the model,  
 

  

=   

when   then  = 0 and 

 

when   then  < 1 and hence, 

especially when  

Also, when   then  < 1 and 

 especially when . Since 

  when   which is a necessary condition for 

unbiasness, we can conveniently state that in the case of a biased 

estimator the condition becomes 0<  < . 

Alternatively, by Cauchy-Schwarz inequalities,  

  

 

But  so that 

 always. 

Therefore,      
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Table 1. Specification parameters k for alternative linear estimators for four study populations at varying g.  
 

Population 
g = 0  g = 1  g = 2 

Min pi Max pi  Min pi Max pi  Min pi Max pi 

I 0 2  0 2  0 1 

II 0 2  0 4  0 2 

III 0 3  0 3  0 2 

V 0 13(4)  0 6(4)  0 8(4) 
 

*Values in parenthesis are ceiling values that are used instead of the original values. 
 
 
 
Thus, under super-population model, the expected bias per unit is 
very negligible especially when  as such, inference based on 

the expected variance would be sufficient. 

 
 
Determination of approximate values of k 
 

Studies have shown that the value of g useful in estimation range 

 
 
Theorem 2  

 
Under super-population model, the expected bias per unit is very 
between 0 and 2 inclusive. Amahia (1987) have shown that the 
value of g is given by 

 

                            (31) 

 
Now, from Equation (31) we define 

 

  

 

Such that    

  

 

  

 

 
 

  

 

  

 
Therefore,  
 

                (32) 

 
Where 

    

 

  

 
And 

 

  

 
Under the k

th
 standardized moment of the study variable utilized in 

this study,  the limiting  value of k, the specification parameter is 4. 
Thus, there are N values of k thereby giving rise to a range of 
values of k.  
 
 

Empirical illustration 
 

For illustration, four study populations namely, 
populations I, II, III and IV with ρ = 0.162, ρ = 0.395, ρ = 
0.51 and ρ = 0.91, respectively describing four moment 
conditions of “weak correlation”, “moderate correlation”, “ 
high correlation”  and  “very high correlation” are used in 
the Expression (29) to obtain the approximate values of 
k. The results are shown on Table 1. Since the 
distributions consist of N values of pi, N values of the 
specification parameters k required. For convenience, our 
interest is reduced to obtaining the lower and upper 
values of k determined by Min pi and Max pi. From Table 
1, it is clear that the true value of k is  [0,2], [0,2], [0,3] 
and [0,13] for populations I, II, III and IV respectively 
when g=0. However, when g =1, c is a value in [0,2], 
[0,4], [0,3] and [0,6] for Populations I, II, III and IV, 
respectively. When g=2, c is a value in [0,1], [0,2], [0,2] 
and [0,8] for populations I, II, III and IV respectively. If the 
integer values are considered (since we are considering 
the integer moments only) noting that k ≠ 0, then the 
values of k determined by Max pi will be sufficient. Again, 
if the ceiling values of k is 4 (as described by the 
coefficient of kurtosis), then we assume that k = 4 is 
adequate when the estimated value of k is greater than 4. 

 
 
Conclusion 
 

In  view  of the non-existence of a uniformly most efficient  



 

 
 
 
 
estimator theory, this study brings a new dimension in 
defining a linear estimator in PPS sampling design. The 
estimators in this class are only specified when the 
statistical properties of the study populations in 
relationship with correlation coefficients are assumed 
known. The prior knowledge of selection probabilities is 
also assumed which helps the survey statistician to have 
a prior knowledge of the range value of the specification 
parameter before embarking on estimation of population 
characteristics. Specifically, the values of k = 1, 2, 2 and 
4 are adequate to define estimators in Equation (2) for 
Populations I, II, III and IV, respectively. 
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