academicJournals

Vol. 10(5), pp. 32-37, November 2017 DOI: 10.5897/AJMCSR2015.0625 Article Number: 7B9E0E966705 ISSN 2006-9731 Copyright ©2017 Author(s) retain the copyright of this article http://www.academicjournals.org/AJMCSR

African Journal of Mathematics and Computer Science Research

Review

Adams completion and symmetric algebra

M. Routaray* and A. Behera

Department of Mathematics, National Institute of Technology ROURKELA - 769008 India.

Received 2 August, 2015; Accepted 22 September, 2015

Deleanu, Frei and Hilton have developed the notion of generalized Adams completion in a categorical context. In this paper, the symmetric algebra of a given algebra is shown to be the Adams completion of the algebra by considering a suitable set of morphisms in a suitable category.

Key words: Category of fraction, calculus of left fraction, symmetric algebra, tensor algebra, Adams completion.

INTRODUCTION

The notion of generalized completion (Adams completion) arose from a categorical completion process suggested by Adams (1973, 1975). Originally this was considered for admissible categories and generalized homology (or cohomology) theories. Subsequently, this notion has been considered in a more general framework by Deleanu et al. (1974) where an arbitrary category and an arbitrary set of morphisms of the category are considered; moreover they have also suggested the dual notion, namely the completion (Adams completion) of an object in a category.

The notion of Let \mathcal{C} be an arbitrary category and S a set of morphisms of \mathcal{C} . Let $\mathcal{C}[S^{-1}]$ denote the category of fractions of \mathcal{C} with respect S and $F: \mathcal{C} \to \mathcal{C}[S^{-1}]$ be the canonical function. Let S denote the category of sets and functions. Then for a given object Y of \mathcal{C} ,

defines a covariant function. If this function is representable by an object Y_S of \mathcal{C} , that is, $\mathcal{C}[S^{-1}](Y,-) \cong \mathcal{C}(Y_S,-)$. then Y_S is called the (generalized) Adams completion of Y with respect to the set of morphisms S or simply the *S*-cocompletion of Y. We shall often refer to Y_S as the completion of Y (Deleanu et al., 1974). Given a set S of morphisms of \mathcal{C} , the saturation \overline{S} of S is defined as the set of all morphisms u in \mathcal{C} such that F(u) is an isomorphism in $\mathcal{C}[S^{-1}]$. S is said to be saturated if $S = \overline{S}$ (Deleanu et al., 1974).

Theorem 1

 $C[S^{-1}](Y, -) : C \rightarrow S$

Behera and Nanda (1987) Let \mathcal{C} be a complete small \mathcal{U} category (\mathcal{U} is a fixed Grothendeick universe) and S a set of morphisms of \mathcal{C} that admits a calculus of left

*Corresponding author. E-mail: mitaray8@gmail.com.

AMS Subject Classification: 15A72, 55P60.

Author(s) agree that this article remain permanently open access under the terms of the <u>Creative Commons Attribution</u> <u>License 4.0 International License</u> fractions. Suppose that the following compatibility condition with co-product is satisfied. If each $s_i: X_i \rightarrow Y_i, i \in I$, is an element is of \mathcal{U} , then

$$\coprod_{i\in I} s_i: \ \ \coprod_{i\in I} X_i \to \coprod_{i\in I} Y_i$$

is an element of S. Then every object X of C has an Adams completion X_S with respect to the set of morphisms S.

Theorem 2

Let S be a set of morphisms of C admitting a calculus of left fractions. Then an object Y_S of C is the Scompletion of the object Y with respect to S if and only if there exists a morphism $e: Y \to Y_S$ in \overline{S} which is couniversal with respect to morphisms of S: given a morphism $s: Y \to Z$ in S there exists a unique morphism $t: Z \to Y_S$ in \overline{S} such that ts = e. In other words, the following diagram is commutative (Deleanu et al., 1974):

 $\begin{array}{ccc} Y \xrightarrow{\bullet} & Y_S \\ s \downarrow & \nearrow t \\ Z \end{array}$

Theorem 3

Let *S* be a set of morphisms in a category *C* admitting a calculus of left fractions. Let $e: Y \to Y_S$ be the canonical morphism as defined in Theorem 2, where Y_S is the *S*-completion of *Y*. Furthermore, let *S*₁ and *S*₂ be sets of morphisms in the category *C* which have the following properties (Behera and Nanda, 1987b):

 S_1 and S_2 are closed under composition, $fg \in S_1$ implies that $g \in S_1$, $fg \in S_2$ implies that $f \in S_2$, $S = S_1 \cap S_2$. Then $e \in S$.

Symmetric algebra

Let *K* be a commutative ring. Let *M* be a *K*-module and T(M) be the *tensor algebra* of *M* over *K*. T(M)is a graded *K*-algebra with the graded piece of degree $n \ge 0$ being the additive subgroup $M^{\otimes n}$, which we denote by $T^n(M)$. The map $M^{\otimes n} \to T^n(M)$ defined by $m_1 \otimes \cdots \otimes m_n \to (0, \cdots \otimes m_1 \otimes \cdots \otimes m_n, 0, \cdots)$ is a morphism of *K*-modules, which gives an isomorphism of *K*-modules of *M* with its image $T^n(M)$ (Murfet, 2006). Let $A^n(M)$ denote the *n*-th symmetric algebra (Grinberg, 2013). The map $\rho_n: M^{\otimes n} \to A^n(M)$ is a subjective *K*-module homomorphism. We prove the following for our need.

Theorem 4

Let *K* be a commutative ring with unit 1. Let $f: M^{\otimes n} \to N^{\otimes n}$ be *K*-module isomorphism. Then *f* has the following property: given a module isomorphism $g: M^{\otimes n} \to T^n(M)$, there exists a unique module isomorphism $\theta: N^{\otimes n} \to T^n(M)$ such that $g = \theta f$, that is, the following diagram is commutative :

$$M^{\otimes n} \xrightarrow{f} N^{\otimes n}$$

 $g \downarrow \checkmark \theta$
 $T^n(M)$

Proof 1

For
$$n_1 \otimes n_2 \otimes \cdots \otimes n_n \in N^{\otimes n}$$
, define
 $\theta: N^{\otimes n} \to T^n(M)$
by the rule
 $\theta(n_1 \otimes n_2 \otimes \cdots \otimes n_n) = gf^{-1}(n_1 \otimes n_2 \otimes \cdots \otimes n_n).$

Clearly $\boldsymbol{\theta}$ is well-defined, homomorphism, one-one and onto. We have

 $\begin{array}{l} (m_1 \otimes m_2 \otimes \cdots \otimes m_n) \\ = & \theta \big(f (m_1 \otimes m_2 \otimes \cdots \otimes m_n) \big) \\ = & g f^{-1} (f (m_1 \otimes m_2 \otimes \cdots \otimes m_n)) \\ = & g (m_1 \otimes m_2 \otimes \cdots \otimes m_n), \end{array}$

showing $g = \theta f$. For showing the uniqueness of θ let there exist another $\theta': N^{\otimes n} \to T^n(M)$ such that $g = \theta' f$. Then

$$\begin{array}{l} \theta(n_1 \otimes n_2 \otimes \cdots \otimes n_n) \\ = & gf^{-1}(n_1 \otimes n_2 \otimes \cdots \otimes n_n) \\ = & \theta'ff^{-1}(n_1 \otimes n_2 \otimes \cdots \otimes n_n) \\ = & \theta'(n_1 \otimes n_2 \otimes \cdots \otimes n_n). \end{array}$$

This completes the proof.

Theorem 5

Let *K* be a commutative ring with unit 1. Let $M^{\bigotimes n}$ and $N^{\bigotimes n}$ be free *K*-modules and let $f: M^{\bigotimes n} \to N^{\bigotimes n}$ be a free *K*-module subjective homomorphism. Then *f* has the following property: given a free *K*-module subjective homomorphism $\rho_M: M^{\bigotimes n} \to A^n(M)$, there exists a unique free *K*-module subjective homomorphism $\varphi: N^{\bigotimes n} \to A^n(M)$ such that $\rho_M = \varphi f$, that is, the following diagram is commutative:

$$\begin{array}{ccc} M^{\otimes n} & \stackrel{f}{\to} & N^{\otimes n} \\ \\ \rho_M \downarrow & \swarrow \varphi \end{array}$$

Proof 2

 $A^n(M)$

Theorem 4, there exists a unique *K*-module isomorphism $\psi : N^{\otimes n} \to T^n(M)$ such that $\psi f = g$:

$$\begin{array}{cccc} M^{\otimes n} & \stackrel{f}{\to} & N^{\otimes n} \\ g \downarrow & \checkmark \psi \end{array}$$

 $T^n(M)$

Where $g: M^{\otimes n} \to T^n(M)$ is a *K*-module isomorphism. Consider the diagram

 $M^{\otimes n} \xrightarrow{f} N^{\otimes n}$

 $g\downarrow \checkmark \psi \downarrow \varphi$

 $T^n(M) \xrightarrow{h} A^n(M)$

Let $h = \rho_M g^{-1}$. For each $n \in N^{\otimes n}$, define $\varphi : N^{\otimes n} \to A^n(M)$ by the rule $\varphi(n) = h\psi(n)$. Then for each $m \in M^{\otimes n}$ we have

$$\varphi f(m) = h \psi (f(m)) = \rho_M g^{-1} \psi (f(m)) = \rho_M f^{-1} \psi^{-1} \psi (f(m)) = \rho_M f^{-1} (f(m)) = \rho_M (m)$$

Showing $\varphi f = \rho_M$. Clearly φ is subjective. For the uniqueness suppose there exists another $\varphi': N^{\otimes n} \to A^n(M)$ such that $\rho_M = \varphi' f$. For any each $n \in N^{\otimes n}$ let $n = f(m), m \in M^{\otimes n}$; thus $\varphi(n) = \varphi f(m) = \rho_M(m) = \varphi' f(m) = \varphi'(n)$, showing $\varphi = \varphi'$. This completes the proof.

The category \mathcal{M}

Let \mathcal{U} be a fixed Grothendieck universe (Schubert, 1972). Let \mathcal{M} denote the category of all free K-modules and free module homomorphisms where K is a commutative ring with unit 1. We assume that the underlying sets of the elements of \mathcal{M} are elements of \mathcal{U} . Let S_n denote the set of all free K-module homomorphisms $f: M^{\otimes n} \to N^{\otimes n}$ such that f is subjective.

Proposition

Let $\{s_i : X_i^{\otimes n} \to Y_i^{\otimes n}, i \in I\}$ be a subset of S_n ; where the index set I is an element of \mathcal{U} , then

$$\bigvee_{i \in I} s_i : \bigvee_{i \in I} X_i^{\otimes n} \to \bigvee_{i \in I} Y_i^{\otimes n}$$

is an element of S_n .

Proof 3

The proof is trivial.

We will show that the set S_n of free *K*-module homorphisms of the category \mathcal{M} of free *K*-modules and free *K*-modules homomorphisms admits a calculus of left fraction.

Proposition

 S_n admits a calculus of left fractions.

Proof 4

Since S_n consists of all subjective K-module homomorphisms in \mathcal{M} ; clearly S_n is a closed family of morphisms of the category \mathcal{M} . We shall verify conditions (i) and (ii) of Theorem 1.3 ([6], p. 67). Let $M^{\otimes n}$ $N^{\otimes n}$ and $P^{\otimes n}$ be in \mathcal{M} . Let $u: M^{\otimes n} \to N^{\otimes n}$ $v: N^{\otimes n} \longrightarrow P^{\otimes n}$ be two free K-module and homomorphisms of the category \mathcal{M} . We show that if $vu \in S_n$ and $u \in S_n$ then $v \in S_n$. Since $vu \in S_n$ and $u \in S_n$ we have $vu(M^{\otimes n}) = P^{\otimes n}$ and $u(M^{\otimes n}) = N^{\otimes n}$. Then $v(N^{\otimes n}) = v(u(M^{\otimes n})) = P^{\otimes n}$. So v is surjective. Hence condition (i) of Theorem 2 (Deleanu et al., 1974) holds. In order to prove condition (ii) of Theorem 2 (Deleanu et al., 1974) consider the diagram

 $A^{\otimes n} \xrightarrow{f} B^{\otimes n}$ $s \downarrow$

 $C^{\otimes n}$

in \mathcal{M} with $s \in S_n$. We assert that the above diagram can be embedded to a weak push-out diagram

 $A^{\otimes n} \xrightarrow{f} B^{\otimes n}$ $s \downarrow \qquad \qquad \downarrow t$ $C^{\otimes n} \xrightarrow{g} D^{\otimes n}$

in \mathcal{M} with $t \in S_n$. Let $D^{\otimes n} = (B^{\otimes n} \oplus C^{\otimes n})/N^{\otimes n}$

Where $N^{\otimes n}$ is a sub-module of $B^{\otimes n} \bigoplus C^{\otimes n}$ generated by

 $\begin{array}{l} \{(f(a_1 \otimes a_2 \otimes \cdots \otimes a_n), -s(a_1 \otimes a_2 \otimes \cdots \otimes a_n)): a_1 \otimes a_2 \otimes \cdots \otimes a_n \in A^{\otimes n}\} \\ \text{Define } t: B^{\otimes n} \longrightarrow D^{\otimes n} \text{ by the rule} \\ t(b_1 \otimes b_2 \otimes \cdots \otimes b_n) = (b_1 \otimes b_2 \otimes \cdots \otimes b_n, 0) + N \\ \text{and } g: C^{\otimes n} \longrightarrow D^{\otimes n} \text{ by the rule} \\ g(c_1 \otimes c_2 \otimes \cdots \otimes c_n) = (0, c_1 \otimes c_2 \otimes \cdots \otimes c_n) + N \end{array}$

Clearly, the two maps are well defined and homomorphisms. For any

 $\begin{array}{l} a_1 \otimes a_2 \otimes \cdots \otimes a_n \in A^{\otimes n}, \text{ we have} \\ tf(a_1 \otimes a_2 \otimes \cdots \otimes a_n) \\ = (f(a_1 \otimes a_2 \otimes \cdots \otimes a_n), 0) \\ = (0, s(c_1 \otimes c_2 \otimes \cdots \otimes c_n)) \\ = gs(a_1 \otimes a_2 \otimes \cdots \otimes a_n); \end{array}$

Thus tf = gs. Hence the diagram is commutative. In order to show t is subjective, take an element $d_1 \otimes d_2 \otimes \cdots \otimes d_n + N \in D^{\otimes n}$,

where $d_1 \otimes d_2 \otimes \cdots \otimes d_n = (b_1 \otimes b_2 \otimes \cdots \otimes b_n, c_1 \otimes c_2 \otimes \cdots \otimes c_n)$. Then

$$\begin{array}{l} d_1 \otimes d_2 \otimes \cdots \otimes d_n + N \\ = & (b_1 \otimes b_2 \otimes \cdots \otimes b_n, c_1 \otimes c_2 \otimes \cdots \otimes c_n + N \\ = & \\ (b_1 \otimes b_2 \otimes \cdots \otimes b_n, 0) + (0, c_1 \otimes c_2 \otimes \cdots \otimes c_n) + N \\ = & t(b_1 \otimes b_2 \otimes \cdots \otimes b_n) + g(c_1 \otimes c_2 \otimes \cdots \otimes c_n) \\ = & \\ t(b_1 \otimes b_2 \otimes \cdots \otimes b_n) + g(s(a_1 \otimes a_2 \otimes \cdots \otimes a_n)) \\ = & \\ t(b_1 \otimes b_2 \otimes \cdots \otimes b_n) + tf(a_1 \otimes a_2 \otimes \cdots \otimes a_n) \\ = & \\ t((b_1 \otimes b_2 \otimes \cdots \otimes b_n) + f(a_1 \otimes a_2 \otimes \cdots \otimes a_n)) \end{array}$$

Thus t is an epimorphism. So $t \in S_n$. Next let $u: B^{\bigotimes n} \to X^{\bigotimes n}$ and $v: C^{\bigotimes n} \to X^{\bigotimes n}$ be in category \mathcal{M} such that uf = vs. Consider the following diagram

$$\begin{array}{cccc} A^{\otimes n} & \stackrel{f}{\rightarrow} & B^{\otimes n} \\ s \downarrow & & \downarrow t \\ C^{\otimes n} & \stackrel{f}{\rightarrow} & D^{\otimes n} \\ & & \theta \searrow \\ & & \theta \searrow \\ & & v \searrow \end{array}$$

Define $\theta: D^{\otimes n} \to X^{\otimes n}$ by the rule

$$\theta \big((d_1 \otimes d_2 \otimes \cdots \otimes d_n) + N \big) = u(b_1 \otimes b_2 \otimes \cdots \otimes b_n) + v(c_1 \otimes c_2 \otimes \cdots \otimes c_n)$$

Where $d_1 \otimes d_2 \otimes \cdots \otimes d_n = ((b_1 \otimes b_2 \otimes \cdots \otimes b_n), (c_1 \otimes c_2 \otimes \cdots \otimes c_n)).$

It is easy to show that θ is well defined and also a homomorphism. Next we show the two triangles are commutative. For any $b_1 \otimes b_2 \otimes \cdots \otimes b_n \in B^{\otimes n}$, we have

$$\begin{aligned} \theta t(b_1 \otimes b_2 \otimes \cdots \otimes b_n) \\ &= \theta ((b_1 \otimes b_2 \otimes \cdots \otimes b_n), 0) + N \\ &= u(b_1 \otimes b_2 \otimes \cdots \otimes b_n) \end{aligned}$$

and for any $c_1 \otimes c_2 \otimes \cdots \otimes c_n \in C^{\otimes n}$, we have

$$\begin{array}{l} \theta g(c_1 \otimes c_2 \otimes \cdots \otimes c_n) \\ = & \theta \big(0, (c_1 \otimes c_2 \otimes \cdots \otimes c_n) \big) + N \\ = & v(c_1 \otimes c_2 \otimes \cdots \otimes c_n). \end{array}$$

So $\theta t = u$ and $\theta g = v$. Clearly θ is unique. This completes the proof. The following result is a well-known.

Theorem 6

The category \mathcal{M} is complete. From Theorems 6, 7 and 8 we see that all the conditions of the Theorem 1 (Deleanu, 1975) are satisfied. So from the Theorem 1 (Deleanu et al., 1974) hence we have the following result.

Theorem 7

Every object $M^{\otimes n}$ of the category \mathcal{M} has an Adams completion M_{S_n} with respect to the set of morphisms S_n . Furthermore, there exists a morphism $e: M^{\otimes n} \to M_{S_n}$ in \bar{S}_n which is couniversal with respect to the morphisms in S_n : given a morphism $s: M^{\otimes n} \to N^{\otimes n}$ in S_n there exists a unique morphism $t: N^{\otimes n} \to M_{S_n}$ in \bar{S}_n that ts = e. In other words the following diagram is commutative:

 $M^{\otimes n} \xrightarrow{e} M_{S_n}$ $s \downarrow \land t$

3¥ /

 $N^{\otimes n}$

Theorem 8

The free K-module homomorphism $e: M^{\bigotimes n} \to M_{S_n}$ is in S_n .

Proof 5

Let $S_n^1 = \{f : M^{\otimes n} \to N^{\otimes n} \text{ in } \mathcal{M} \mid f \text{ is a subjective free } K\text{-module homomorphism}\}$

and

 $S_n^2 = \{f : M^{\otimes n} \to N^{\otimes n} \text{ in } \mathcal{M} \mid f \text{ is a free } K \text{-module homomorphism } \}.$

Clearly,

(a) $S_n = S_n^1 \cap S_n^2$ and (b) S_n^1 and S_n^2 satisfy all the conditions of Theorem 3.

Hence $e_n \in S_n$. This completes the proof.

Result

We show that the *n*th term of symmetric algebra $A^n(M)$ of a free *K*-module *M*, is precisely the Adams completion M_{S_m} of $M^{\otimes n}$.

Theorem 9

$$A^n(M) \cong M_{S_n}$$

Proof 6

Consider the following diagram:

$$M^{\otimes n} \xrightarrow{e} M_{S_n}$$

$$\rho_M \downarrow \qquad \checkmark \varphi$$

 $A^n(M)$

By Theorem 5, there exists a unique morphism $\varphi: M_{S_n} \to A^n(M)$ in S_n such that $\varphi e = \rho_M$.

Next consider the following diagram:

 $M^{\otimes n} \xrightarrow{s} M_{S_n}$

$$\rho_M \downarrow \land \psi$$

$$A^n(M)$$

By Theorem 7, there exists a unique morphism $\psi: A^n(M) \to M_{S_n}$ in S_n such that $\psi \rho_M = e$. Consider the following diagram:

$$M^{\otimes n} \xrightarrow{s} M_{S_n}$$

 $\nearrow \psi$

$$e \downarrow A^n(M)$$

 $\nearrow \varphi \nearrow 1_{MS_n}$

 M_{S_n}

We have $\psi \varphi e = \psi \rho_M = e$. By the uniqueness condition of the co-universal property of e, we conclude that $\psi \varphi = \mathbf{1}_{M_{S_m}}$. Next consider the following diagram:

$$A^n(M$$

We have $\varphi \psi \rho_M = \varphi e = \rho_M$. By the uniqueness condition of the property of ρ_M , we conclude that $\varphi \psi = 1_{A^n(M)}$. Thus $A^n(M) \cong M_{S_n}$. This completes the proof.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.

REFERENCES

- Adams JF (1973). Idempotent functors in homotopy theory, Manifolds, Conf. Univ. of Tokyo Press, Tokyo.
- Adams JF (1975). Localization and completion, Lecture Notes in Mathematics, Univ. of Chicago.
- Behera A, Nanda S (1987). Mod- Postnikov approximation of a 1connected space, Canad. J. Math. 39(3):527-543.
- Deleanu A, Frei A, Hilton P (1974). Generalized Adams completions, Cahiers de et Geom. Diff. 15(1):61-82.
- Deleanu A (1975). Existence of the Adams completion for objects of complete categories. J. Pure Appl. Algebra. 6(1):31-9.
- Grinberg D (2013). A few classical results on tensor, symmetric and exterior powers. http://web.mit.edu/~darij/www/algebra/tensorext.pdf
- Murfet D (2006). Tensor, Exterior and symmetric algebra. http://therisingsea.org/notes/TensorExteriorSymmetric.pdf
- Schubert H (1972). Categories, Springer Verlag, New York.