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Packing or arrangement problems form an integral part in a man’s life and cannot be out rightly ignored. 
Items need to be well arranged and protected to survive the move unscathed. When it is done 
efficiently, at least to its optimal level, space is saved. A room may become spacious when furniture, 
bags and other household items are arranged very well. The end result is beauty and attractiveness. 
Radio stations, need to arrange different types of adverts in order to maximize air time. In this paper, the 
knapsack problem is employed in selecting adverts to be played on air from a pile of adverts, using the 
garden city radio, as case study. 
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INTRODUCTION 
 
A great variety of practical problems can be represented 
by a set of entities, each having an associated value, 
from which, one or more subsets has to be selected in 
such a way that the sum of the values of the selected 
entities is maximized, and some predefined conditions 
are respected. The most common condition is obtained 
by associating a size to each entity and establishing that 
the sum of the entity sizes in each subset does not 
exceed some prefixed bound. These problems are 
generally called knapsack problems, since they recall the 
situation of a hitch-hiker, having to fill up his knapsack by 
selecting from among various possible objects, those 
which will give him the maximum comfort. The entities will 
be called items and their numbers will be indicated by n. 
The value and size associated with the jth item will be 
called profit and weight, respectively, and denoted by pj 
and ( 1,..., )jw j n= . 

The majority of problems considered in this paper are 
single knapsack problems, where one container must be 
filled with an optimal subset of items.  The  capacity  of  
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such a container will be denoted by c. We shall also 
consider the more general case where m containers, of 
capacities ( 1,..., )jc i n= , are available (multiple 

knapsack problems). We shall suppose that profits, 
weights and capacities are positive integers.  

Knapsack problems have been intensively studied 
because they arise as sub problems in various integer 
programming problems and, may represent many 
practical situations. The most typical applications are in 
capital budgeting and industrial production. Various 
capital budgeting models have been studied by 
Weingartner (1963, 1968), Weingartner and Ness (1967), 
Cord (1964) and Kaplan (1966). Among industrial 
applications, the classical studies a Cargo Loading 
Problems (Bellman and Dreyfus, 1962) and on Cutting 
Stock Problems, Gilmore and Gomory (1963, 1965, 1966) 
is worth mentioning. More detailed reviews of applications 
can be found in Salkin (1975); Salkin and de Kluyver 
(1975) and Martello and Toth (1987). 
 
 
RELATED WORKS 
 
Pisinger (1999) presented an  algorithm  for  knapsack  



 
 
 
 
problem where the enumerated core size is minimal, and 
the computational effort for sorting and reduction is also 
limited according to hierarchy. The algorithm is based on 
a dynamic programming approach, where the core size is 
extended by need, and the sorting and reduction is 
performed in a similar "lazy" way. Computational 
experiments are presented for several commonly 

occurring types of data instances. Experience from these 
tests indicates that the presented approach outperforms 
any known algorithm for knapsack problem, having very 
stable solution times. 

Martello and Toth (1988) presented a new algorithm for 
the optimal solution of the 0 - 1 knapsack problems, 
which is particularly effective for large-size problems. The 
algorithm is based on determination of an appropriate 

small subset of items and the solution of the 
corresponding "core problem": from this, they derived a 
heuristic solution for the original problem which, with high 
probability, can be proved to be optimal. The algorithm 
incorporates a new method of computation of upper 
bounds and efficient implementations of reduction 
procedures. They also reported computational experi-
ments on small-size and large-size random problems, 
comparing the proposed code with all those available in 
the literature.  

Munapo (2008) presented an approach that enhances 
the performance of the branch and bound algorithm for 
the knapsack model. This is achieved by generating and 
adding new objective function and constraint to knapsack 
model, which is single constrained. The branch and 
bound algorithm is then applied and the total numbers of 
sub-problems are reduced. 

Majority of algorithms for solving knapsack problems 
typically use implicit enumeration approaches. Different 
bounds based on the remaining capacity of the knapsack 
and items not yet included at certain iteration have been 
proposed for use in these algorithms. Similar methods 
may be used for a nested knapsack problem as long as 
there is an established procedure for testing whether an 
item inserted into a knapsack at one stage can also be 
inserted at the following stages. Given n  different items 
and a knapsack of capacity, Cáceres and Nishibe (2005) 
algorithm solves the 0 - 1 knapsack problem using 

( )O nWp  local computation time with ( )O p  

communication rounds. Using dynamic programming, 
their algorithm solves locally pieces of the knapsack 
problem in each processor and uses a wave front 
approach in order to solve the whole problem. The 
algorithm was implemented in a Beowulf and the 
obtained times showed good speed-up and scalability. 

The binary knapsack problem is a combinatorial 
optimization problem in which a subset of a given set of 
elements needs to be chosen in order to maximize profit, 
given a budget constraint. Das (2003) used a stochastic 
version of the problem in which the budget is random. 
They proposed two different formulations of this problem, 
based on different  ways  of  handling infeasibility, and  
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propose an exact algorithm and a local search-based 
heuristic to solve the problems represented by these 
formulations. The results were presented from some 
computational experiments. 

The knapsack problem is believed to be one of the 
"easier" -hard problems. Not only can it be solved in 
pseudo-polynomial time, but also decades of algorithmic 
improvements have made it possible to solve nearly all 
standard instances from the literature. Pisinger (2005) 
gave an overview of all recent exact solution approaches, 
and to show that the knapsack problem is still hard to 
solve for these algorithms for a variety of new test 
problems. These problems are constructed either by 
using standard benchmark instances with larger 
coefficients, or by introducing new classes of instances 
for which most upper bounds perform badly. The first 
group of problems challenges the dynamic programming 
algorithms while the other groups of problems are 
focused towards branch-and-bound algorithms. 
Numerous computational experiments with all recent 
state-of-the-art codes are used to show that knapsack 
problem (KP) is still difficult to solve for a wide number of 
problems. One could say that the previous benchmark 
tests were limited to a few highly structured instances, 
which do not show the full characteristics of knapsack 
problems. 

The 0/1 knapsack problem is well-known and it appears 
in many real domains with practical importance. The 
problem is NP-complete. The multi-objective 0/1 
knapsack problem is a generalization of the 0/1 knapsack 
problem in which many knapsacks are considered. Many 
algorithms have been proposed in the past four decades 
for both single and multi-objective knapsack problem. A 
new evolutionary algorithm for solving multi-objective 0/1 
knapsack problem was proposed by Groan (2003). This 
algorithm used a �-dominance relation for direct 
comparison of two solutions. Some numerical experi-
ments are realized using the best and recent algorithms 
proposed for this problem. Experimental results show that 
the new proposed algorithm outperforms the existing 
evolutionary approaches for this problem. 

The knapsack problem is believed to be one of the 
"easier" NP-hard problems. Not only can it be solved in 
pseudo-polynomial time by the dynamic programming, 
but also decades of algorithmic improvements have 
made it possible to solve nearly all standard instances. 
The current most successful algorithm for the knapsack 
problem was presented by Martello, Pisinger and Toth. 
The algorithm can be seen as a combination of many 
different concepts and is hence called Combo but they 
noticed that it is difficult for Combo to solve some 
instances. Ken’ichi (2004) proposed a new genetic 
algorithm for knapsack problem. The algorithm can adjust 
solution spaces in consideration of the stability of each 
item which can obtain from the greedy algorithm. They 
applied the proposed method to those difficult instances, 
and test the effectiveness. 

Puchinger (2006) presented a newly  developed  core 
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concept for the multidimensional knapsack problem 
(MKP) which is an extension of the classical concept for 
the one-dimensional case. The core for the 
multidimensional problem is defined in dependence of a 
chosen efficiency function of the items, since no single 
obvious efficiency measure is available for MKP. An 
empirical study on the cores of widely-used benchmark 
instances is presented, as well as experiments with 
different approximate core sizes. Furthermore, they 
described a memetic algorithm and a relaxation guided 
variable neighborhood search for the MKP, which are 
applied to the original and to the core problems. The 
experimental results show that given a fixed run-time, the 
different meta-heuristics as well as a general purpose 
integer linear programming solver yield better solution 
when applied to approximate core problems of fixed size. 

Fontanari (1995) investigated the dependence of the 
multi-knapsack objective function on the knapsack 
capacities and on the number of capacity constraints P, in 
the case when all N objects are assigned the same profit 
value and the weights are uniformly distributed over the 
unit interval. A rigorous upper bound to the optimal profit 
is obtained, employing the annealed approximation and 
then, compared with the exact value obtained through the 
Lagrangian relaxation method. The analysis is restricted 
to the regime where N goes to infinity and P remains 
finite.  

A revenue management model was designed, in which 
demand is stimulated by moving a number of product 
units to a promotion space, rather than by price changes. 
Thus, they addressed the problem of filling a promotion 
location with limited space to maximize the expected 
revenue, which we have termed the knapsack problem 
for perishable Items (KPPI). Examples of the promotion 
space include shelves close to the cash register, 
promotion kiosks, or a depot used for selling via the 
Internet.  

They solved the KPPI using problem decomposition 
into single product unit sub problems. A natural 
mathematical setting for the KPPI sub problems is the 
restless bandit model of a fundamental stochastic model 
for resolving a trade-off between exploration and 
exploitation in an optimal fashion. In our model, the 
bandits (perishable items) are restless, because they can 
get sold regardless of being in the knapsack or not, the 
time horizon is finite, and we are to select more than one 
item for the knapsack, which is allowed to be filled 
partially, due to the heterogeneity of the items. Each 
product unit is assigned a promotion priority index, which 
captures the opportunity cost of promotion, as a function 
of its price, lifetime, expected demand, and expected 
promotion power. These indices are then used for each 
item as objective-function value coefficients in a (classic) 
knapsack problem, whose solution yields a well-
performing heuristic for the KPPI. They thus mix up two 
models: the restless bandit problem and the knapsack 
problem. 

 
 
 
 

Optimal dynamic promotions, under time-homogeneous 
demand, suppose that the item perishes in T time 
periods, implying a final cost c > 0 if not sold before. Let 1 
− p be the probability that a promoted item is sold in one 
period, and (1 – q) be that of a non-promoted item (q > 
p). Future costs are discounted by the one-period 
discount factor �. The next proposition asserts that, 
optimally, an item with lower probabilities of being sold 
when not promoted is assigned a higher promotion 
priority index, and that the index is non-decreasing over 
time. Hence, once the item is optimally chosen for 
promotion, then it should remain promoted until it 
perishes.  
 
 
PROBLEM FORMULATION 
 
Suppose an FM station wants to play n number of 
adverts, each worth pi Ghana cedis and a duration (time 
to broadcast) of wi seconds, the station wants to 
broadcast as many valuable adverts as possible, but it 
can broadcast by not exceeding a total time of c seconds, 
which adverts should be broadcast to obtain optimal 
income under the constraints of c seconds? This problem 
can be formulated as a 0 - 1 knapsack problem as 
explained further. 
 
 
Knapsack algorithm  
 
The knapsack problem is the classic integer linear 
programming problem with a single constraint. The 0-1 
knapsack problem (KP) is a problem of choosing a subset 
of the n items such that the corresponding profit sum is 
maximized without having the weight sum to exceed the 
capacity b. This may be formulated as:  
 

Max  1 1 2 2 ... n npx px p x+ + +              
        

That is:   
n

i ii
z p x=�       
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Since profits and weight are positive, it will be supposed, 
without loss of generality, that is:  
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Table 1. List of Commercials for prime time for a day collected from garden city radio. 
 

Company name( ix ) Duration of advert in seconds ( iw ) Value/Cost per advert ( ic ) 

A001 30 9.00 
A001 30 9.00 
A002 60 17.00 
A003 25 9.00 
A003 25 9.00 
A003 25 9.00 
A004 30 9.00 
A004 30 9.00 
A004 30 9.00 
A004 30 9.00 
A004 30 9.00 
A005 29 9.00 
A005 29 9.00 
A005 29 9.00 
A006 45 14.00 
A006 45 14.00 
A007 57 17.00 
A008 30 9.00 
A008 30 9.00 
A008 30 9.00 
A008 30 9.00 
A010 30 9.00 
A010 30 9.00 
A010 30 9.00 
A010 30 9.00 
A011 45 14.00 
A011 45 14.00 
A011 45 14.00 
A012 40 14.00 
A012 40 14.00 
A012 40 14.00 
A013 30 9.00 
A013 30 9.00 
A013 30 9.00 
A014 30 9.00 
A014 30 9.00 
A015 30 9.00 
A015 30 9.00 

 
 
 

The ic and ia  as seen in Table 1 represents the value 

and weight of selecting item i respectively for inclusion 
in the knapsack. The constant b represents the 
maximum weight that the knapsack is permitted to hold.   

KP is NP-hard and is a well-known problem and 
several exact and heuristic algorithms have been 
proposed for its solution. The exact algorithm can be 
subdivided into two classes: branch and bound methods 
(Kolesar, 1980; Greenberg and Hegerich, 1970; Horowitz 
and Sahni, 1997;  Fayard  and  Plateau,  1975).  The 

performance of both classes largely depends on the size 
of the problems to be solved. This can generally be 
decreased by applying reduction procedures (Ingargiola 
and Korsh, 1973) so as to fix the value of as many 
variables as possible.  

One of the essential ingredients of the implicit 
enumeration algorithms and the reduction procedures is 
the quality of the upper bounds used in the computation. 

Other types of Knapsack Problems are: Subset-sum 
problem; the change-making problem; multiple knapsack 
problem; multi-dimensional knapsack problem.  
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Using heuristic scheme in solving knapsack problem 
 
According to Amponsah and Darkwa (2009), heuristic 
scheme may be used to solve the knapsack problem 
instead of the method of branch and bound using the 
steps as: 
  

Step 1: Input the vector of weight { }jw  and items value 

{ }jc  

Step 2: Input random initial solution { }0,1 n
oS ∈ and 

check for feasibility of oS  by using the  

equation
1

n

j j
j

w x b
=

≤� . If oS  is not feasible, discard it 

and choose another oS . 
Step 3: Find a feasible solution and compute the 
objective function value ( )of S  by using the objective  

function  
1

n

j j
j

Max c x
=
�  

Step 4: Obtain a new solution { }1 0,1 n
S ∈ from 0S  by flip 

operation and check for feasibility, continue flip 
operations until the solution 1S so obtained is feasible. 
Compute the             objective function 
value ( )1f s . If ( ) ( )1 0f S f S>  then put 0 1S S=  else 

retain 0S and             descend 1S .  

Step 5: Repeat step 3 for all feasible iS  
 
 
Data collection 
 
Garden city radio (GCR) has various ways of generating 
income. These include sponsorship of programmes, 
social and funeral announcements, advertisements, 
among others. We focused on advertisements which are 
slotted before, during or after programmes.  

GCR has three categories of time for adverts: Prime 
time (6am, 1pm, 6pm news); adjacencies (five minutes 
before and after news prime time); break in programmes 
(adverts within a programme). Each of these categories 
have different rates and for that matter, constitutes a 
source of income to the radio station. The rate also 
depends on the duration of the advert.  

Clearly, the pile up of commercials at the FM-station at 
any point in time is a typical case of a knapsack problem.  
 
 
Software developed (resource optimizer) 
 
We used Visual Basic dot Net to write codes  that  was  

 
 
 
 
developed into software using Heuristic method. The 
features of software developed enables: Data entry, 
which can be entered manually, loaded from previously 
saved file or generated; data verification; specify extra 
options for the algorithm; generation of initial solution and 
flip to generate other solutions to obtain an optimal 
solution; allows any number of Iterations; report 
generated can be viewed or saved for future used. 
 
 
RESULTS 
 
Prime time  
 
The software generated an initial data structure of  
 
1. S0= {0 0 0 1 0 0 0 1 0 0 0 1 0 1 1 0 1 0 1 0 1 0 0 0 0 0 
1 0 1 1 1 0 0 0 1 1 1 0}  
 
2. The objective function value corresponding to S0 is: 
 
F(S0) = GH� 168.00  
 
3. Number of loops to obtain optimal solution = 115 
2. Optimal Solution: S115 ={0 0 0 1 0 1 0 1 1 1 1 1 1 0 1 1 1 
1 0 1 0 1 0 1 0 1 1 1 1 1 1 0 0 1 1 1 1 1} 
4. Total number of adverts selected = 26 out of 38 
5. F(S115) = GH � 282.00  
6. Total time available for adverts = 900 sec 
7. Total time for selected adverts = 890 sec 
 
Selected adverts is as seen in Table 2. 
 
News Adjacencies: 
 
1.S0={010000111011000001101001001101101101011010
00010110110101011101111 000011}  
2. The objective function value corresponding to S0 is 
F(S0) = GH� 294.00  
3. Number of loops to obtain optimal solution = 332 
4. Optimal Solution: S332 = {00011001111110111o110111 
1111101110 011001110101101 110111100110010010111} 
5. Total time available for adverts = 1800 sec (30min) 
6. Total number of adverts = 46 out of 68 
7. Total time for selected adverts = 1795 sec 
8. F(S332) = GH � 382.00  
 
Selected adverts for news adjacencies is as seen in Table 
3. 
 
 
Conclusion and future Work 
 
We have described the pile of adverts at GCR as a clear 
case of knapsack problem. Adverts were selected from a 
pile of adverts based on their value but now, effective, 
efficient and more scientific means can now be used. 
Piling of adverts is  reduced  significantly  since  more 
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Table 2. Selected adverts for primetime news (06:00 to 06:30 and 013:300 to 18:30 hours GMT). Total time 
available is 900 s (15 min). 
 

Adverts Time (s) Number of adverts Total time Amount (Ghana cedis ) 
A003 25 2 50 18.00 
A004 30 4 120 36.00 
A005 29 2 58 18.00 
A006 45 2 90 28.00 
A007 57 1 57 17.00 
A008 30 2 60 18.00 
A010 30 2 60 18.00 
A011 45 3 135 42.00 
A012 40 3 120 42.00 
A013 30 3 90 27.00 
A015 25 2 50 18.00 
Total  26 890 282.00 

 
 
 

Table 3. Selected adverts for news adjacencies (1800 s; 30 min). 
 

Advert Time (s) Number of adverts Total time Amount (Ghana cedis) 
B001 45 2 90 18 
B002 30 2 60 14 
B007 30 2 60 14 
B008 30 2 60 14 
B009 50 3 150 33 
B010 60 3 180 33 
B011 45 3 135 27 
B012 30 5 150 35 
B013 30 2 60 14 
B014 30 6 180 42 
B015 29 5 145 35 
B016 30 1 30 7 
B017 45 3 135 27 
B018 30 2 60 14 
B020 60 5 300 55 
Total  46 1795 382 

 
 
 
adverts are played within a given period of time. Income 
generated from playing advert shot up. Software 
developed can be used to solve knapsack problem using 
HS to select commercials from a pile, given limited time 
constraint.  

We recommend to GCR to use the software in selecting 
adverts to be played on air. There are situations where 
too many adverts spoil the beauty of programmes and 
make it boring. In this case, it is considered as more than 
one constraint (that is, both adverts limit and time limit, 
where the adverts number and limited time are not 
related); we get the multiply-constrained knapsack 
problem. We recommend that in future such situation 
should be considered. 
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