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A new formula for mathematics is derived which gives the upper half of the series expansion of the 

expression 
nbay 2)(  , where n

 
is a natural number. A proof of the new formula is given followed by a 

simple example to test its accuracy. This formula is helpful whenever n  is large.  
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INTRODUCTION 
 
The usefulness of this formula is not yet known since it is 
new. Attempt was made to prove beyond reasonable 

doubt that it is possible to integrate  
y

n

y
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(this is, the function 
ny  is integrated n times, wherein the 

region of integration is ][ y , n  can be any natural 

number, even if it turns out to be Avogadro’s number, as 
long as the limits of integration is the same throughout. 
This problem surfaced while attempting to find a 
mathematically accurate solution to the standard 
thermodynamic equation for some fluid models. One of 
the intermolecular potential models attempted was that of 
the hard sphere which led to Equation 1. Earlier, it was 
perceived that it is not possible to perform this integration 
conveniently if n  turns out to be a large number. Due to 

dedication and determination, a general solution was 
obtained which is true in general (Turay, 2018). That is, 
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While finding a way of simplifying the aforementioned 
series, what can best be described as the halfway series 
expansion was obtained. The result of this series 
summation is pivotal to help simplify the result. But its 
other uses cannot be ascertained presently.  
 
 
SERIES REPRESENTATION OF THE HALFWAY 
EXPANSION 
 
Consider the function: 
 

nbayyf 2)()(                                                           
(2) 

 
The right hand side can be expanded and obtain (Burton, 
2007; Guichar, 2017; Kalman, 1993):   
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In series notation 
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2007; Guichar, 2017), the upper halfway in the series 

expansion of the function )(yf is given by 

 




























 

n

n
b

n

n
bay

n

n
bayyhf nnnn

2

2

12

2
)(

2
)()( 212

 

        (3) 

 





























































n

n

ay

b

n

n

ay

b

n

n
bayyhf

nn

nn

2

2

12

22
)()(

1

    (4) 

 
In series notation (Burton, 2007): 
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This can be rewritten as 
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Now let krn   

 
Substituting this into the aforementioned equation gives 
(Guichar, 2017) 
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Thus, in series notation, the upper halfway expansion of 

nbayyf 2)()(   is given by (Burton, 2007; Guichar, 

2017): 
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This holds since   
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RIGOROUS PROOF OF THE SUMMATION OF SERIES 
 
Furthermore, let us introduce the function: 
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Let us further make the substitution: 
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This reduces the function )(1 yfh  to a new function 

)()( 11 xHyfh  (Wrede and Speigel, 2010): 
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Introducing other new functions called: 
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This gives   
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First attempt was made to prove that  
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This was started by finding an expansion for the function 
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The first and last term, the second and second to last, 

etc., were taken, then it was generalized by obtaining 

the
thp  term and the 

thpn )2(  term (Burton, 2007). 

Making use of the fact that 2 2

2
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0, ,2p n  
(Burton, 2007; Guichar, 2017), it can be 

rewritten as: 
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With the substitution
 
p n k  ,  it was clearly see that 

(Swokowski, 1979): 
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ioThis expression holds for every value of p  and so it 

trivially holds for every k , since knp  . 
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By simplifying, we obtain: 
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By taking into consideration the case 0k , the result 

follows:    
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Then attention given to finding an expression for 
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So it was observed that: 
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An important formula is (Burton, 2007): 
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That is 
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 Applying this formula, another relationship that was later 
found helpful was arrived at (Swokowski, 1979). 

 
This helpful relationship is
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Thus
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(see Swokowski, 1979) 
 

Another result that was found useful is: 
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  (This is known as Pascal’s 

Identity (Burton, 2007): 
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This clearly makes the relationship 
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 valid. By substituting 

this into the present equation, we arrive at:   
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Now 
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Let us make the substitution 1 pr  (Wrede and 

Speigel, 2010): 
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With the substitution 1 pr , we arrive at 
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Some of the terms cancel out and we are left with: 
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Digress (Swokowski, 1979; Wrede and Speigel, 2010): 
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Making the above substitutions gives us 
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This first order differential equation can be solved by 
simply finding an integrating factor. Let (Bronson and 
Bredensteine, 2003): 
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where R  is the integrating factor, we use the known 

formula 
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where t   is a dummy variable and the lower limit of 

integration is 0 because 0)0(  . 

 
 
THE NEW FORMULA 
 
Going back to Equation 9,  
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Thus the halfway summation 
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SIMPLE ILLUSTRATION TO TEST RESULT 
 
Let us test the result for a small value of n because we 

can easily cope with it by hand. Say for instance 2n , 

the present formula simplifies to 
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Thus, we have (Swokowski, 1979; Bronson and 
Bredensteiner, 2003): 
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This is the exact expression for the upper half way 

expansion of 
4)( bay . 

 
 
OTHER APPLICATIONS OF THE HALFWAY 
FORMULA 
 

A series for 
nq  )1(  will be built. If we happen to take 

the painful task of extending the Pascal’s triangle by 
inducing the terms underneath which turns out to be the 
lower half of another triangle, so that the combination of 
these two gives a square (Figure 1). Following the 
direction of the arrows, we see that, the first arrow 
depicts the coefficient of the first few terms of the 

expansion of the series 
1)1(  q , while the second gives 

the first few terms of the coefficients of the expansion of 
2)1( q , etc. From Figure 1, a series is built (Kalman, 

1993): 
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From Equation 26, we obtain the series: 
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Furthermore, from Equation 27, if we take the sum of the 

first 1n  terms of the series and then multiply this series 

by 
nq , a series will be obtained whose first 1n  

coefficients are the same as those in Equation 26, but 
with the order of its powers reversed (in descending 
order). The new series described so far can be 
expressed by the formula: 
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Now in other to see the usefulness of Equation 28, let us 
extract from Equation 1, the expression: 
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Substituting this in Equation 28, gives us: 
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Figure 1. The induced Pascal’s square. 

 
 
 
A proof of Equation 29 is yet to be obtained; but from 
simple illustrations it is true. Its accuracy for small values 

of n  has been tested. Well say for instance 3n  and 
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For the left hand side (Burton, 2007), we have:   
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So left hand side = right hand side. 

From Equation 29, if the substitution 
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When sq 1 is substituted, the equation reduces to: 
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This new Equation 30 is clearly the halfway series 

expansion of 
ns 2)1(  , that is 

 

 































n

k

kn
n

k

kn s
n

kn
s

kn

n
sh

00

2 1
1

12
)1(     (31) 

 
 
A RELATIONSHIP DERIVED FROM THE INDUCED 
PASCAL’S SQUARE 
 
The formula  
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This is valid for all 1m , also may be found useful 

(Enochs, 2004) and is also deducible from Figure 1.  
 
 
CONFLICT OF INTERESTS 
 
The authors have not declared any conflict of interests. 



86          Afr. J. Math. Comput. Sci. Res. 
 
 
 
REFERENCES 
 
Bronson R, Bredensteiner EJ (2003).   Schaum’s Series Differential 

Equation. McGraw Hill, New York. 
Burton DM (2007).  Elementary Number Theory (sixth Edition) McGraw 

Hill, New York. 
Enochs EE (2004). Binomial Coefficients. Boletin de la Association 

Matematica Venezolana 11(1):17. 
Guichar D (2017). An Introduction to Combinatorics and Graph Theory. 

http:www.whitman.edu/mathematics/cgt_online/cgt.pdf 
Kalman D (1993). Six ways to sum a series. The College Mathematics 

Journal 24(5):402-421. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Swokowski EW (1979). Calculus with Analytic Geometry (Second 

Edition). Prindle, Weber & Schmidt, Boston, Massachusetts. 
Turay AI (2018). Equations of State obtained via Thermodynamic 

Considerations. Tertiary Education Commission Journal, Sierra 
Leone. 

Wrede R, Speigel MR (2010).  Schaum’s Series Advance Calculus. 
Third edition. McGraw Hill, New York. 


