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A new formula for mathematics is derived which gives the upper half of the series expansion of the
expression (ay+b)*", where N is a natural number. A proof of the new formula is given followed by a
simple example to test its accuracy. This formulais helpful whenever N is large.
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INTRODUCTION

The usefulness of this formula is not yet known since it is
new. Attempt was made to prove beyond reasonable

vy
doubt that it is possible to integrate '[---jy”dyl---dyn

o o
(this is, the function y” is integrated n times, wherein the

region of integration is [o Y], N can be any natural

number, even if it turns out to be Avogadro’s number, as
long as the limits of integration is the same throughout.
This problem surfaced while attempting to find a
mathematically accurate solution to the standard
thermodynamic equation for some fluid models. One of
the intermolecular potential models attempted was that of
the hard sphere which led to Equation 1. Earlier, it was
perceived that it is not possible to perform this integration
conveniently if N turns out to be a large number. Due to
dedication and determination, a general solution was
obtained which is true in general (Turay, 2018). That is,

noowo _L!n_nn 2n y;ak (1)
!!yldyldyzdyn_(znya (y a) g(n—kj( a j

» —
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While finding a way of simplifying the aforementioned
series, what can best be described as the halfway series
expansion was obtained. The result of this series
summation is pivotal to help simplify the result. But its
other uses cannot be ascertained presently.

SERIES REPRESENTATION OF THE HALFWAY
EXPANSION

Consider the function:
f(y) =(ay+b)*" (2

The right hand side can be expanded and obtain (Burton,
2007; Guichar, 2017; Kalman, 1993):

(ay+by = (ay)?“(é”j+ (ay)z"1b(12n]+---+(ay)“b”(§n]+---+(ay)b2"1[;: _1J+b2”[§2j

In series notation (ay +b)>" :Zzn[fn](ay)znrbr (Burton,

r=0
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2007; Guichar, 2017), the upper halfway in the series
expansion of the function f () is given by

hf (y) = (ay)" bn(inj bt (ay)bZn—l(g: _1) N bzn[;:j 3)

eyt [ [ B[ o2 Y[2)] @
hf(y)—(ay)b{(n J* * [ayj [2n—1}+(ayj [ZHH ¥

In series notation (Burton, 2007):

d2ny & (b)Y (2n
{2 53 2.

This can be rewritten as

o-@rw| 3 (2] (0

n-r=0 ay

Now let N—r =Kk

Substituting this into the aforementioned equation gives
(Guichar, 2017)

hf (y) = (ay)"b’ Z[EJ (2” j ©

—\lay) (n+k
Thus, in series notation, the upper halfway expansion of

f(y)=(ay+b)*" is given by (Burton, 2007; Guichar,
2017):

nf (y) = (ay)”b"{g[a%j (ﬁ”_ kﬂ ©

This holds si 2n = 2n
is holds since nik ) ln_k

RIGOROUS PROOF OF THE SUMMATION OF SERIES

Furthermore, let us introduce the function:

o 3(5)2)

Let us further make the substitution:

2X b b 1 b
e =—=2Xx=In| = | = x==In| —
ay ay 2 \ay

This reduces the function h f(y) to a new function

h T (y) = H,(X) (Wrede and Speigel, 2010):

= k=0
n 2n n 2n
= h2k inh 2k
kZ:.;cos {n—k};sm X(n—kj

Introducing other new functions called:

where () = kZGn_ k)em = [cosh2kx+sinh 2kxﬁ”_ k) (8)
0

n.2n n
J(X) = Z( )costhx and g(x) = Z[Zn Jsinh 2kx
—\n-k \n—k
This gives

H,(x) =3 () +¢(x) ()

First attempt was made to prove that
n,(2n 1 1(2n
J(X) = cosh2kx==(e* +e7*)*" + = (10)
9 ;‘(n—k] 2( ) Z{nj

This was started by finding an expansion for the function

- 2 ean+ n e-an+ n eZ(n-l)x+ n e-Z(n-l)x+'__+ n eZ(n—p)x+ nn e-Z(ﬂ-D)X ok 2
0 2n 1 n-1 p n-p n

0 (2 2 2 2 2 2
(ex+efx)2 - n ean+ n e?(n—l)x+m+ n e2(n7p)x+m+ n e—2(n7p)x+m+ n e—?(n—l)x+ n e—?nx
0 1 p N-p -1 il

The first and last term, the second and second to last,
etc., were taken, then it was generalized by obtaining

the p™ term and the (2n— p)"term (Burton, 2007).

Making use of the fact that (an:(Zn j

p 2n—p)’

p:O,...,Zn (Burton, 2007; Guichar, 2017), it can be
rewritten as:

(anezmp)x +(2n jez(nwx =[2n][ez(nu)x +efz(n7p)x] = Z[ancosh 2(n-p)x
P n-p P P

With the substitution P =N— k, it was clearly see that
(Swokowski, 1979):

2n 2n
h2(n—-p)x= h2kx:
(p jcos (n—p)x [n_kjcos




ioThis expression holds for every value of P and so it
trivially holds for every K, since p=n- k.

2 n (2
Thus (g% +7)™ :(nn}r zztnn k)cosh 2kx

By simplifying, we obtain:

n

2n 1 1(2n
h2kx = = (e* -xy2n _ —
;(n_k)cos x=5 (" +e™) Z(n ]

By taking into consideration the case k=0, the result

follows:
1(2nj
+—
2\n

Then attention given to finding an expression for
n.(2n .
H(X) = Z( ]smh 2rx
n,(2 2 ; ;
Z( n Jsthkx Z( n Jsinthx since sinh(0) =0
n— n—

r=0 =1
So it was observed that:

o(X) = Z”:[in_ rjsinh 2rx

An important formula is (Burton, 2007):

0 (2

Clearly

[a+1]: (@+)  _ (@+had  _atl  (a) :M(aj
Py (a=pMB+D! (a-ANA+DA) +lla-ANA) p+1B
That i a+l) a+lla

T sl Bl

Applying this formula, another relationship that was later
found helpful was arrived at (Swokowski, 1979).

This helpful

n-r+1(2n+1 B 2n
2n+1 \n-r+1) \n-—r

relationship is
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Thus @(X
#0) = Z 2n+1 \n—r+
(see Swokowsk| 1979)

2n+1
n- r+1( n+ 1Jsinthx =

Another result that was found useful is:

o o a+l
(ﬂj-{_[ﬂﬁ-l}:(ﬁ"‘]} (This is known as Pascal’s

Identity (Burton, 2007):

Proof

PUATAREE
B) \B+L) (a=pUp)! (a-F-DUB+D!

_ (@)! (@)!
“(a-Ba-B-DA)! (@-B-DB+D(B)!
_ (@)! 1 1 }
(@-B-DP|(@-B) (B+Y)

_ ()! (ﬂ+1)+(a—ﬂ)}
[(@-B-DUP] (a-B)B+Y)

B ()" 1+
__(a—ﬁ—l)!(ﬂ)!__(a—ﬂ)(ﬂﬂ)}

_ (@ +1)(@)!
(a-Pla-B-DAB+)(B)!

_ (a+D)!

(a= BB+

[(a+l

{5

This clearly makes the relationship

2n+1 _ 2N N 2N
n-r+1) \n-r) {n-r+

this into the present equation, we arrive at:

1] valid. By substituting

g2, o S 2,
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n.(2n n.2n n, (2n n, (2n
=(n+1 sinh2rx+(n+1 sinh2rx— > r sinh2rx— > r sinh 2rx
( );(n—rj ( );(n—r+1J rzzl: (n—rj rzzl: (n—r+1j

=(n+Dg(x)+(n +1)Zn:(in_ ; +l)sinh 2rx — ir[in_ rJSinh 2y — ir[in

Thus

- 0,2n o (20 & (2 . (11)
n¢(x)—(n+1)2(n7r+1jsmh2rx rZ:‘r[nir]smh 2rx rZl:r[r]7r+1j5|nh2rx

r=l

n.(2n .
Let YA:Z(n_HJsthrx

r=1
n, (2n ]

Yo _;r(n_ jsthrx

Y, =Zn:r 2n sinh 2rx

© r=1 n-—

= ng(x) =(N+Y, —Yz —Yc (12)

n.(2n

NowY, = sinh 2rx 13
WA ;[n—r+1j 43

Let us make the substitution r=p+1 (Wrede and
Speigel, 2010):

n-1
Thus Y, = Z(Zn jsinh 2(p+Dx
p=0 n-p
&L 2n : .
Y, = Z[n IOj[5|nh2pxcosh2x+cosh2 pxsinh 2x]
p=0\"'""

n-1 n-1
= Z(Zn ]sinthx cosh2x + Z(Zn ]costhx sinh 2x
n-p po\N1—Pp

p=0

=[#(x) —sinh 2nx]cosh2x +[J (x) — cosh2nx]sinh 2x

= cosh2x¢(x) —cosh2xsinh 2nx + sinh 2xJ (x) — sinh 2x cosh2nx

Y, =cosh2x¢(x) +sinh2xJ(x) —sinh2(n+1)x (14)
Yy = Zn:r 2 sinh 2rx (15)
° 1 \N—r

_1d “(Zn

== cosh2rx
2dx&\n-r

jsinthx
-r+1
1d 2n
“Za o)
1.,
Ys ==J'(X) (16)
2
Y, =Zn:r 2n sinh 2rx (17)
¢C &Zln-r+1
:lg , [Zn jcosthx
2dx“=\n—r+1

With the substitution I = p+1, we arrive at

1d(2n
Y. == cosh2 1
c 2pr=o[n—pj (p+D)x

n-1
_id > 2n cosh2 pxcosh2x +sinh 2 pxsinh 2x
2dx|sm\n=p

1d Li2n . =L(2n .
==—1cosh2x cosh2 px+sinh 2x sinh 2 px
i S oo sonarS{ T Jonaon

= %% [(3 (%) — cosh2nx)cosh2x + (¢#(x) —sinh 2nx)sinh 2x]

_ 1[(3'(x) - 2nsinh 2nx)cosh2x + (J (X) — cosh2nx)2sinh 2x
2| +(¢'(x) — 2ncosh2nx)sinh 2x + (#(x) — sinh 2nx)2cosh2x

= % J'(x)cosh2x — (n+1)[sinh2nxcosh2x + cosh2nxsinh 2x] + J (x)sinh 2x +%¢’(x)sinh 2X+¢(x)cosh2x

Y, :%J'(x)coshZX—(n +D)sinh2(n +1)x+J(x)sinth+%¢'(x)sinh2x+¢(x)cosh2x (18)
It is clear that

NA(X) =(N+DY, —Yg —Y¢

So

(n+2)cosh2xg(x) + (n+1)sinh 2xJ(x) - (n+n)sinh2(n +1)x—%J'(x)

n=| '
- EJ'(x) cosh2x+ j(x)sinh 2x+§¢’(x)sinh 2n+¢(x)cosh2x - (n+1)sinh2(n+1)x

Some of the terms cancel out and we are left with:

né(x) :ncosh2x¢(x)+nsinh2xJ(x)—%J'(x)(1+cosh2x)—%¢'(x)sinh2x (19)



Digress (Swokowski, 1979; Wrede and Speigel, 2010):

J(x) = Zn:(in_ r] cosh2rx = %{(ex re f" +Gnﬂ
3 =nle* +e> fe* —e)

1+ cosh2x = 2cosh? x

nsinh2xJ(x) —%J'(x)[lJr cosh2x]=ncoshxsinh ><[(ex +exf" J{Enﬂ _ n(ex Jre’x)z"fl(eX —e*Jcosh? x
. 2n .
=ncoshxsinh x{(eX + e’X)Z" + (n ﬂ —ncoshxsinh x(eX + e’*)Zn
. 2n
=ncoshxsinh X(n

= 1 nsinh ZX(an
2 n

Making the above substitutions gives us

n@(x) = ncosh2x¢(x) ——¢ (X)sinh2x+= nsmh ZX(in]
=

1 . 2n
5 ¢'(x)sinh 2x + n@(x)[L—cosh2x|= = nsmh ZX(n )
j—

#'(X)sinh xcoshx — 2ng(x)sinh? x = nsinh xcosh x(inJ

= ¢'(x)coshx —2ng(x)sinh x = ncosh x(inJ
Thus
@' (X) —2ng(x) tanhx = n[inj (20)

This first order differential equation can be solved by
simply finding an integrating factor. Let (Bronson and
Bredensteine, 2003):

P =—-2ntanhx

where R is the integrating factor, we use the known

Pd
formula R:ej g
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Now I Pdx = j— 2ntanhxdx=—-2nlIncoshx

So that R becomes
R= e—2n|ncoshx _ [elncoshx ](‘2”) _ (COSh X)—Zn _ (SEChZX)n
The solution thus becomes
d 2 n 2n 2 n

— ¢(x)(sech x) =n (sech x)

dx n

Thus

P(X) = n( ]cosh2 x)" j sechzt)"dt (21)
where t is a dummy variable and the lower limit of

integration is O because ¢(0) =0.

THE NEW FORMULA

Going back to Equation 9,

H, (%) = J(X) +¢(X)
H,(x) = % (e +e)" + ;(inj + n[in)(cosh2 XTJX'(sechthdt (22)

Making the substitution x = 1 In(ﬂ)
a

2
It is seen that e* +e7* = R _,_\/@
ay b

So

o A

Thus the halfway summation

hf (y) = (ay)"b"[h.(y)] (24)
o {4040 ]

SIMPLE ILLUSTRATION TO TEST RESULT

Let us test the result for a small value of n because we
can easily cope with it by hand. Say for instance N=2,
the present formula simplifies to

i (y) - (ay)Zb{ [%j +;[4j [J[awb]:[sechzt)zdt}
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_ 22| 1 (ay +b)*
—<ay)b[2 )

:(ay)zbz[zww

1 (ay+b)* § 2
+5(6)+ 2(6)W£(sech t)zdt}

+ EMj'(sechzt)zdt}

2 (aby)? 4 (aby)?

Consider [ (sech?)dt = | (sech’t)(sech’t)dt
0 0
sech?t d(tanht)

(1—tanh?t) d(tanht)

O oy < o'—.x

X

1

= [tanht — tanh3tJ
3

0

=tanhx—1tanh3x
3
3
b _jay b _jay
_Vay b 1 Vay b
~[b, fay 3 [b [ay
ay+ b ay+ b
3
_b-ay 1(b-ay
b+ay 3\b+ay
Thus, we have (Swokowski, 1979;
Bredensteiner, 2003):
5, 3@+ b-ay 1(b-ay
4 (aby)® |b+ay 3\b+ay

3

Bronson and

1(ay+b)*
2 (aby)?

hf(y) = (ay)zb{

b+ay 3\b+ay
hF ()= By +b)* +3a%6°y? + > (ay + ' (- ay) - (0+ )b -y
- % (ay+b)* +3a%?y? + % (b+ay)(b—ay)[3b +ay)® — (b—ay)’]
= % (ay+h)* +3a%’y? + % (b2 - (ay)ZIZb2 +8aby + 2a2y2]
- % (ay +b)* +3a%?y? + % (b2 —(ay)? sz +4aby + azyz)
=l Bt o0 sty o by sy ey -ty ]
= % [6a2b2y2 +8ab’y + 2b4]+ 3a’h?y?

=3a’h’y? +4ab’y +b* + 3a%b?y?
=6a’b?y? + 4ab’y + b*

This is the exact expression for the upper half way
expansion of (ay+b)*.

OTHER
FORMULA

APPLICATIONS OF THE HALFWAY

A series for (1—Q)™" will be built. If we happen to take

the painful task of extending the Pascal's triangle by
inducing the terms underneath which turns out to be the
lower half of another triangle, so that the combination of
these two gives a square (Figure 1). Following the
direction of the arrows, we see that, the first arrow
depicts the coefficient of the first few terms of the

expansion of the series (1—() ™", while the second gives
the first few terms of the coefficients of the expansion of

(1—q)™, etc. From Figure 1, a series is built (Kalman,
1993):

2 (n—1+k

(l—q)”:Z(n i jqk n>1 (n is a natural
oo\ -1

number) |Q|<1 (26)

From Equation 26, we obtain the series:

14K
L-z)r Z(n +qu 1q]>1. 27)
k=0

Furthermore, from Equation 27, if we take the sum of the
first N+1 terms of the series and then multiply this series

by (", a series will be obtained whose first n+1

coefficients are the same as those in Equation 26, but
with the order of its powers reversed (in descending
order). The new series described so far can be
expressed by the formula:

cﬂ[q @-% ] ;(n 1+kj (28)

Now in other to see the usefulness of Equation 28, let us
extract from Equation 1, the expression:

2 G S ul) €5

Substituting this in Equation 28, gives us:

N I (e I



1
. >
1 3
1 4
1 s~ 10
1 8 15
1 U ¥ 35
1 8 8 56
1 e T m 126
C10 7 a5 120 210
T oss 1es 330 482
T 0 435 792
715 1287 1716
2002 3003
5005 6435
11440
24310

Figure 1. The induced Pascal’s square.

A proof of Equation 29 is yet to be obtained; but from
simple illustrations it is true. Its accuracy for small values

of N has been tested. Well say for instance N=3 and

g=2
(o}

Right hand side will be (Guichard, 2017):

32+k3_k_23324 5_3 )
kz_[;( ) jq _(qu +[2]q |, fa+| 5 )= +39%+6q+10

For the left hand side (Burton, 2007), we have:

3 B (R MO R R R M R
=20+15(q-1)+6(9* —29+1) +(9° —39° +3q 1)
=(20-15+6-1)+(15-12+3)q+(6—-3)0* +
=10+60+30° +0°

So left hand side = right hand side.

From Equation 29, if the substitution q:l is made,
o
then we obtain:

i(nszJ(q -1 =i(n; ikJ(q)"‘k

k=0 k=0

12870
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S1-x" =0T (-97
3 " 1
5 4 1
10 5 1
20 15 6 1
35 21 7 1
70 56 28 8 1
126 84 36 9 1
252 210 120 45 10
462 330 165 55
924 792 495 220
1716 1287 715
3432 3003 2002
6435 5005
11440
24310

48620

When g -1=sis substituted, the equation reduces to:

n.( 2n n(n—-1+k
> s =" T s (30)
im\n—k o\ n-1

This new Equation 30 is clearly the halfway series
expansion of (S+1)*", that is

on n 2n K nn—-1+k n—k 31
h(s+1 _z[n_kjs _z[ o j(5+1) (31)

k=0 k=0

A RELATIONSHIP DERIVED FROM THE INDUCED
PASCAL’S SQUARE

The formula

i(n 1+kj (n+mj (32)
k=0 n

This is valid for all le, also may be found useful
(Enochs, 2004) and is also deducible from Figure 1.
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