DOI: 10.5897/AJMCSR12.008

ISSN 2006-9731©2012 Academic Journals

Short Communication

Properties of the symmetric groups S_n (n≤7) acting on unordered triples

Stephen Kipkemoi Kibet¹, Ireri N. Kamuti¹, Gregory Kerich² and Albert Kimutai³*

¹Department of Mathematics, Kenyatta University, P. O. Box 43844-00100 Nairobi, Kenya. ²Gregory Kerich, Mount Kenya University, Eldoret Campus P. O. Box 6212-30100, Eldoret Kenya. ³Kabianga University College, P. O. Box 2030-20200, Kericho, Kenya.

Accepted 6 February, 2012

In this paper, we investigated some properties associated with the action of symmetric group S_n (n≤7) acting on $X^{(3)}$. If G_x is the stabilizer of $x \in X$, the lengths of the orbits of G_x on X are called sub-degrees and the numbers of orbits are called ranks. Ranks and sub-degrees of symmetric groups S_n (n=1, 2, ---) acting on 2-elements subsets from the set X = (1, 2, ---, n) have been calculated by Higman (1970). He showed that the rank is 3 and the sub-degrees are $1, 2(n-2), \binom{n-2}{2}$. Therefore, we extend these calculations to the specific symmetric groups S_n (n≤7) acting on $X^{(3)}$.

Key words: Ranks, sub-degrees, suborbits, primitivity.

INTRODUCTION

Sub-degrees of primitive permutation representations of PSL (2, q) have previously been calculated by (Tchuda, 1986; Bon and Cohen, 1989; Kamuti, 1992). They have also gone further to calculate sub-degrees of PGL (2, q) on the cosets of maximal dihedral sub-groups. These sub-degrees have been used by (Bon and Cohen, 1989; Faradžev and Ivanov, 1990) to determine the distance – transitive representations of groups G with PSL (2, q) $\leq G \leq P\Gamma L$ (2, q).

In this paper we calculated the ranks and sub-degrees of specific symmetric groups S_n (n≤7) acting on X ⁽³⁾

PRELIMINARY DEFINITIONS

In this aspect, we looked into some results in permutation groups which would be needed later on.

Group actions

Definition 1

Let X be a set; a group G acts on the left on X if for each $g \in G$ and each $x \in X$ there corresponds a unique element $gx \in X$ such that:

- (i) $(g_1g_2) = g_1(g_2x), \forall g_1, g_2 \in G \text{ and } x \in X$
- (ii) For any $x \in X$, 1x=x, where 1 is the identity in G.

List of notations: S_n , Symmetric group of degree n and order n!; $Stab_G(x)$ or G_x , The stabilizer of x in G; |G|, The order of a group G; $H \le G$, H is a subgroup of G; $\{a, b, c\}$, An unordered triple; $X^{(3)}$, The set of all unordered triples from the set; $X = \{1, 2,...,n\}$; (p, q), A graph with p vertices and q edges; (r), r

combinations; | Fix (g) |, The number of elements in the fixed point set of g;

⁽Table 1). We used some geometrical arguments different from those used by (Tchuda, 1986; Bon and Cohen, 1989). Sub-degrees of the transitive symmetric groups S_n (n \leq 7) acting on X (3) which do not seem to have been published so far will mainly be calculated by using the methods employed by Higman in 1970.

^{*}Corresponding author. E-mail: kimutaialbert@yahoo.com.

Table 1. Table of marks for ranks and sub-degrees of S_n (n≤ 7) acting on $X^{(3)}_{}$

Symmetric groups	Rank	Sub-degrees
S ₃	1	1
S ₄	2	1,3
S_5	3	1,3,6
S_6	4	1,1,9,9
S_7	5	1,4,12,18

Definition 2

Let G act on a set X. Then X is partitioned into disjoint equivalent classes called orbits or transitivity classes of the action. For each $x \in X$ the orbit containing x is called the orbit of x and is denoted by $Orb_G(x)$.

Definition 3

Let G act on a set X. The set of elements of X fixed by $g \in G$ is called the fixed point set of g and is denoted by Fix (g). Thus Fix (g) = $\{x \in X \mid gx=x\}$.

Definition 4

Let G act transitively on a set X. Then a subset B of X is a block if gB = B or $gB \cap B = \emptyset$ for $g \in G$. Clearly the set X and the singleton subsets of X form blocks; these blocks are called trivial blocks. If these are the only blocks, then we say that G acts primitively on X. Otherwise G acts imprimitively.

We now state some important theorems which will be used later in this project.

Theorem 1 (Harary, 1969: 98) (Cauchy - Frobenius Lemma)

Let G be a finite group acting on a set X. Then the number of orbits of G is;

$$\frac{1}{|G|} \sum_{g \in G} |Fix(g)|$$

Definition 5

If a finite group G acts on a set X with n elements, each $g \in G$ corresponds to a permutation G of X, which can be written uniquely as a product of disjoint cycles. If G has α_1 cycles of length 1, α_2 cycles of length 2,... α_n cycles of length n, we say that G and hence g has cycle type $(\alpha_1,\alpha_2,...,\alpha_n)$.

Theorem 2 (Krishnamurthy, 1985: 68)

Two permutations in S_n are conjugate if and only if they have the same cycle type; and if $g \in G$ has cycle type $(\alpha_1,\alpha_2,...,\alpha_n)$, then the number of permutations in S_n conjugate to g is; n!.

$$\overline{\prod_{i=1}^{n} \alpha_{i} ! i^{\alpha_{i}}}$$

Graphs

Definition 6

A graph G is an ordered pair (V, E), where V is a nonempty finite set of vertices and E is a set of pairs of (distinct) vertices of G, called edges.

Definition 7

A graph G is connected if every pair of vertices of G are joined by some path; otherwise, G is disconnected.

Suborbits and suborbital graphs

A detailed treatment of the results in this area may be found in Sims (1967) or Neumann (1977); Chapter 5.

Let G be transitive on X and let G_x be the stabilizer of a point $x \in X$. The orbits $\Delta_o = \{x\}, \Delta_1, \Delta_2, ..., \Delta_{r-1}$ of G_x on X are known as the surborbits G. The rank of G in this case is r. The sizes $n_i = |\Delta_i| \ (i = 0, 1, ..., r-1)$, often called the 'lengths' of the suborbits, are known as sub-degrees of G. It is worth while noting that both r and the cardinalities of the suborbits $\Delta_i \ (i = 0, 1, ..., r-1)$ are independent of the choice of $x \in X$.

Definition 8

Let Δ be an orbit of G_{x} on X.

Define $\Delta^* = \left\{ gx \middle| g \in G, \quad x \in g\Delta \right\}$, then Δ^* is also an orbit of G_x and is called the G_x -orbit (or the G-suborbit paired with Δ). Clearly $_{|\Delta| = |\Delta^*|}$. If $\Delta^* = \Delta$, then Δ is called a self-paired orbit of G_x .

Theorem 3 (Wielandt, 1964)

 G_x has an orbit different from $\{x\}$ and paired with it if and only if G has even order.

Observe G acts $X \times X$ by $g(x, y) = (gx, gy), g \in G, x, y \in X$. If $O \subseteq X \times X$ is a G-orbit, then for a fixed $x \in X$, $\Delta = \left\{ y \in X \, \big| \big(x.y \big) \in O \right\}$ is a $O = \left\{ \left(\, gx, gy \right) \middle| \, g \in G, \, y \in \Delta \right\} \ \, \text{is a G-orbit on } X \times X \ \, .$ We say Δ corresponds to O. The *G*-orbits on $X \times X$ are called suborbitals. Let $O_i \subseteq X \times X$, i = 0,1,...,r-1 be a suborbital. Then we form a graph Γ_i , by taking X as the set of vertices of Γ_i and by including a directed edge from x to $y(x, y \in X)$ if and only if $(x, y) \in Q$. Thus each suborbital O_i determines a suborbital graph Γ_i . Now $O_i^* = \{(x, y) | (y, x) \in O_i\}$ is a G-orbit. Let Γ_i^* be the suborbital graph corresponding to the suborbital O_i^* . Let the suborbit Δ_i (i = 0, 1, ..., r - 1) correspond to the suborbital O_i . Then Γ_i is undirected if Δ_i is self-paired and Γ_i is directed if Δ_i is not self-paired.

Theorem 4 (Sims, 1967)

Let G be transitive on X. Then G is primitive if and only if each suborbital graph Γ_i i = 1, 2, ..., r-1 is connected.

SOME PROPERTIES OF THE SYMMETRIC GROUP S_n (n \leq 7) ACTING ON UNORDERED TRIPLES

Theorem 5

 S_n (n \leq 7) acts transitively on $X^{(3)}$

Proof

We prove this Theorem for n=7. For the other n, the proof is similar. We apply Theorem 5 to show that the action of S_7 on X $^{(3)}$ gives one orbit. Let $g\!\in S_7$ have cycle type $\left(\alpha_1,\alpha_2,\ldots,\alpha_n\right)$ then the number of permutations in S_7 having the same cycle type as g is given by Theorem 7, and the number of points in X $^{(3)}$ fixed by g is given by |Fix

(g)
$$\mid = \begin{pmatrix} \alpha_1 \\ 3 \end{pmatrix} + \alpha_2 + \alpha_3$$
. Applying Cauchy –

Frobenius Lemma (Theorem 1), we find that the number of orbits of G acting on $X^{(3)} = \frac{1}{|G|} \sum_{g \in G} \left| Fix(g) \right|$ is 1.

Therefore, S_n (n≤ 7) acts transitively on $X^{(3)}$ but not doubly transitively.

RANKS AND SUB-DEGREES OF S_N (N \leq 7) ACTING ON $X^{(3)}$

The suborbital graphs of S_n (n \leq 7) acting on $X^{(3)}$ were constructed. We deduced that the resulting suborbital graphs were connected except when n = 6. Therefore S_n (n \leq 7, n \neq 6) acts primitively on $X^{(3)}$.

REFERENCES

Bon JV, Cohen AM (1989). Linear groups and distance-transitive graphs, Eur. J. Combin. 10:399-411.

Faradžev IA, Ivanov AA (1990). Distance-transitive representations of groups G with PSL (2,q)≤G≤PΓL(2,q), Eur. J. Combin., 11:347-356.

Harary F (1969). Graph Theory. Addison-Wesley. Publishing Company, New York. pp. 98

Higman DG (1970). Characterization of families of rank 3 permutation groups by subdegrees I., Arch. Math. 21: 151-156.

Kamuti IN (1992). Combinatorial formulas, invariants and structures associated with primitive permutation representations of PSL (2,q) and PGL (2,q). Ph.D. Thesis, University of Southampton, U.K.

Krishnamurthy V (1985). Combinatorics, theory and applications, Affiliatede East- West press Private Limited, New Delhi. pp. 68

Neumann PM (1977). Finite permutation groups, Edge-colored graphs and matrices, Topics in group theory and computation, edited by M.P.J Curran, Academic Press, London.

Sims CC (1967). Graphs and finite permutation groups. Math Z. 95:76-86.

Tchuda FL (1986). Combinatorial-geometric characterizations of some primitive representations of groups PSL(n,q) for n=2,3, Ph.D. Thesis, University of Kiev, U.S.S.R.

Wielandt H (1964). Finite permutation groups. Academic Press New York and London.