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In this paper, we investigated some properties asso ciated with the action of symmetric group S n (n≤7) 
acting on X (3). If Gx is the stabilizer of x ∈X, the lengths of the orbits of G x on X are called sub-degrees 
and the numbers of orbits are called ranks. Ranks a nd sub-degrees of symmetric groups S n (n=1, 2, ----) 
acting on 2-elements subsets from the set X= (1, 2,  ---, n) have been calculated by Higman (1970). He 

showed that the rank is 3 and the sub-degrees are ( ) 2
1, 2 2 ,

2

n
n

− 
−  

 
. Therefore, we extend these 

calculations to the specific symmetric groups S n (n≤7) acting on X (3). 
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INTRODUCTION 
 
Sub-degrees of primitive permutation representations of 
PSL (2, q) have previously been calculated by (Tchuda, 
1986; Bon and Cohen, 1989; Kamuti, 1992).They have 
also gone further to calculate sub-degrees of PGL (2, q) 
on the cosets of maximal dihedral sub-groups. These 
sub-degrees have been used by (Bon and Cohen, 1989; 
Faradžev and Ivanov, 1990) to determine the distance – 
transitive representations of groups G with PSL (2, q) 
≤G≤PΓL (2, q). 

In this paper we calculated the ranks and sub-degrees 
of    specific    symmetric    groups Sn (n≤7) acting on X (3)  
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List of notations: Sn, Symmetric group of degree n and order n!; 

StabG (x) or G x, The stabilizer of x in G; | G |, The order of a 
group G; H≤G, H is a subgroup of G; {a, b, c},  An unordered 
triple; X (3), The set of all unordered triples from the set; X = {1, 
2,…,n}; (p, q),  A graph with p vertices and q edges; r

s

 
 
 

, r 

combinations; | Fix (g) |,  The number of elements in the fixed 
point set of g;   

(Table 1). We used some geometrical arguments 
different from those used by (Tchuda, 1986; Bon and 
Cohen, 1989). Sub-degrees of the transitive symmetric 
groups Sn (n≤7) acting on X (3) which do not seem to have 
been published so far will mainly be calculated by using 
the methods employed by Higman in 1970. 
 
 
PRELIMINARY DEFINITIONS 
 
In this aspect, we looked into some results in permutation 
groups which would be needed later on. 
 
 
Group actions  
 
Definition 1  
 
Let X be a set; a group G acts on the left on X if for each 
g∈G and each x∈X there corresponds a unique element 
gx∈X such that: 
 
(i) (g1g2) = g1(g2x), ∀ g1, g 2∈G and x∈X  
(ii) For any x∈X, 1x=x, where 1 is the identity in G. 
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Table 1. Table of marks for ranks and sub-degrees of Sn (n≤ 7) 
acting on X (3)

. 

 

Symmetric groups Rank Sub-degrees 

S3 1 1 
S4 2 1,3 
S5 3 1,3,6 
S6 4 1,1,9,9 
S7 5 1,4,12,18 

 
 
 
Definition 2  
 
Let G act on a set X. Then X is partitioned into disjoint 
equivalent classes called orbits or transitivity classes of 
the action. For each x∈X the orbit containing x is called 
the orbit of x and is denoted by OrbG (x). 
 
 
Definition 3  
 
Let G act on a set X. The set of elements of X fixed by 
g∈G is called the fixed point set of g and is denoted by 
Fix (g). Thus Fix (g) = {x∈X |gx=x}. 
 
 
Definition 4  
 
Let G act transitively on a set X. Then a subset B of X is 
a block if gB = B or gB∩B=Ø for g∈G. Clearly the set X 
and the singleton subsets of X form blocks; these blocks 
are called trivial blocks. If these are the only blocks, then 
we say that G acts primitively on X. Otherwise G acts 
imprimitively.   

We now state some important theorems which will be 
used later in this project. 
 
 
Theorem 1 (Harary, 1969: 98)  (Cauchy – Frobenius 
Lemma)  
 
Let G be a finite group acting on a set X. Then the 
number of orbits of G is; 
  

( )1

g G

Fix g
G ∈
∑

 
 
 
Definition 5 
 
If a finite group G acts on a set X with n elements, each 
g∈G corresponds to a permutation б of X, which can be 
written uniquely as a product of disjoint cycles. If σ has 

1α  cycles of length 1, 2α  cycles of length 2,… nα  cycles 

of length n, we say that σ and hence g has cycle type 

( )1 2, , , nα α αK

. 

  
 
 
 
Theorem 2 (Krishnamurthy, 1985: 68) 
 
Two permutations in Sn are conjugate if and only if they 
have the same cycle type; and if g∈G has cycle type  

( )1 2, , , nα α αK
, then the number of permutations  in Sn 

conjugate to g is; 
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Graphs  
 
Definition 6 
 
A graph G is an ordered pair (V, E), where V is a non-
empty finite set of vertices and E is a set of pairs of 
(distinct) vertices of G, called edges. 
 
 
Definition 7  
 
A graph G is connected if every pair of vertices of G are 
joined by some path; otherwise, G is disconnected. 
 
 
Suborbits and suborbital graphs 
 
A detailed treatment of the results in this area may be 
found in Sims (1967) or Neumann (1977); Chapter 5. 

Let G be transitive on X and let xG  be the stabilizer of 

a point x X∈ . The orbits { } 1 2 1, , ,...,o rx −∆ = ∆ ∆ ∆ of xG  on X 

are known as the surborbits of G. The rank of G in this 
case is r. The sizes

i in = ∆ ( )0,1,..., 1i r= − , often called the 

‘lengths’ of the suborbits, are known as sub-degrees of 
G. It is worth while noting that both r and the cardinalities 
of the suborbits ( )0,1,..., 1i i r∆ = −  are independent of the 

choice of x X∈ . 
 
 
Definition 8  
 
Let ∆  be an orbit of 

xG  on X.   

 

Define { }* ,gx g G x g∆ = ∈ ∈ ∆ , then *∆  is also an orbit of 

xG and is called the xG -orbit (or the G-suborbit paired 

with ∆ ). Clearly *∆ = ∆ .  If *∆ = ∆ , then ∆  is called a self-

paired orbit of xG . 

 
 
Theorem 3 (Wielandt, 1964)  
 

xG  has an orbit different from {x} and paired with it if and  

only if G has even order. 



 
 
 
 
Observe that G acts on X X×  

by ( ) ( ), , , , ,g x y gx gy g G x y X= ∈ ∈ .  If O X X⊆ ×  is a  

G-orbit, then for a fixed x X∈ , ( ){ }.y X x y O∆ = ∈ ∈  is a 

xG -orbit. Conversely, if X∆ ⊆  is a xG -orbit, then  

( ){ }, ,O gx gy g G y= ∈ ∈ ∆  is a G-orbit on X X× .  

We say ∆  corresponds to O. The G-orbits on X X×  are 
called suborbitals. Let , 0,1,..., 1iO X X i r⊆ × = −  be a 

suborbital. Then we form a graph iΓ , by taking X as the 

set of vertices of iΓ  and by including a directed edge 

from x to y ( , )x y X∈  if and only if ( , ) ix y O∈ . Thus each 

suborbital iO  determines a suborbital graph iΓ . Now 

( ) ( ){ }* , ,i iO x y y x O= ∈  is a G-orbit. Let *
iΓ  be the 

suborbital graph corresponding to the suborbital *
iO .  Let 

the suborbit ( )0,1,..., 1i i r∆ = −  correspond to the 

suborbital iO . Then iΓ  is undirected if i∆ is self-paired 

and iΓ  is directed if i∆  is not self-paired. 

 
 
Theorem 4 (Sims, 1967) 
 
Let G be transitive on X. Then G is primitive if and only if 
each suborbital graph Γί, ί = 1, 2,…, r-1 is connected. 
 
 
SOME PROPERTIES OF THE SYMMETRIC GROUP Sn 
(n≤7) ACTING ON UNORDERED TRIPLES  
 
Theorem 5  
 
Sn (n≤ 7) acts transitively on X (3)

. 

 
 
Proof 
 
We prove this Theorem for n=7. For the other n, the proof 
is similar. We apply Theorem 5 to show that the action of 
S7 on X (3) gives one orbit. Let g∈ S7 have cycle type 

( )1 2, , , nα α αK  then the number of permutations in S7 

having the same cycle type as g is given by Theorem 7, 
and the number of points in X (3) fixed by g is given by |Fix 

(g) | =  1

3

α 
 
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 + 2α  1α  + 3α . Applying Cauchy – 

Frobenius Lemma (Theorem 1), we find that the number 

of orbits of G acting on ( ) ( )3 1

g G

X Fix g
G ∈

= ∑  is 1. 
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Therefore, Sn (n≤ 7) acts transitively on X (3)

.but not 
doubly transitively. 
 
 
RANKS AND SUB-DEGREES OF S N (N≤ 7) ACTING 
ON X (3)

 

 
The suborbital graphs of Sn (n≤7) acting on X (3) were 
constructed. We deduced that the resulting suborbital 
graphs were connected except when n = 6. Therefore Sn 
(n≤7, n≠6) acts primitively on X (3).  
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