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Assuming the presence of first order residual effects, besides periods, experimental units and direct 
effects of treatments, a class of minimal strongly balanced changeover designs has been proposed. For 
v treatments, the designs require 2v experimental units for v/2 periods. It is seen that in terms of 
variances of estimated elementary contrasts in treatment effects, these designs are partially balanced 
based on the circular association scheme. The efficiency factors for the estimation of various treatment 
effects of the proposed designs relative to the orthogonal designs have been tabulated for v ≤≤≤≤ 24. 
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INTRODUCTION 
 
In many fields of research, experiments are conducted in 
which several treatments are applied to experimental 
units over a number of periods and observations are 
recorded in each period. Statistical designs used in such 
experiments have been given several names in the 
literature such as changeover designs, crossover 
designs, repeated measurements designs, designs 
involving sequences of treatments. A distinctive feature of 
these experiments is that the treatments have carryover 
effects in the periods following the periods of their direct 
application. The carryover effects may be of different 
magnitudes. The carryover effects that persist only for 
one period after the period of treatments application are 
called first order carryover (residual) effects. Here, we 
shall consider the presence of first order residual effects 
of the treatments. These designs have been extensively 
studied in the literature from various angles (Jones and 
Kenward, 2003; Afsarinejad, 1990; Bailey and Kunert, 
2006; Hedayat and Yang, 2005; Varghese et al., 2002). 

Hedayat and Afsarinejad (1975) presented a class of 
minimal  balanced  change over  designs  that  require 2v 
experimental units and (v+1)/2  periods  for   v   odd  number 
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of treatments and gave a method of construction for 
prime or prime power   values   of   v.   Constantine   and 
Hedayat (1982) constructed balanced minimal 
changeover designs with number of periods, p < v and 
gave divisibility conditions for existence of such designs. 
These designs are essentially partially variance balanced 
for the estimation of contrasts in direct effects as well as 
first residual effects. Subsequently, Sharma et al. (2003) 
constructed minimal balanced changeover designs for all 
odd values of v with p = (v+1)/2 using 2v experimental 
units.  

Here, we present a new class of minimal strongly 
balanced changeover designs for even number of 
treatments. The designs require v/2 periods and 2v 
experimental units for v treatments. These designs are 
seen to be partially balanced following the circular 
association scheme in terms of variances of estimated 
contrasts in direct or first order residual effects. 

We first give some definitions that will be used in the 
subsequent sections. 
 
 
DEFINITIONS 
 
Pre-period 
 
In usual changeover designs, the observations in the  first 
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period do not contain the residual effects of the 
experimental treatments and may contain the residual 
effects of some unknown treatments received by the 
experimental units before the start of the experiment. In 
view of this, anduration as the other periods, called pre-
period, is introduced just before the start of the 
experiment during which the treatments are applied to the 
experimental units but the observations are not recorded 
or if recorded, are not taken into account while analyzing 
the data. As a result of this, observations in the first 
period also contain the residual effect of the treatments 
included in the experiment. 

Minimal strongly balanced changeover (MSBCO) 
designs:  A design is said to be strongly balanced, if  

 
(a) every treatment occurs equally often in each period, 
say λ1 times, where  λ1 is a positive integer, and  
(b) each treatment is preceded by every treatment 
including itself equally frequently, say λ2 times;  λ2 being 
a positive integer. 
 

Evidently, for such a design, n = λ1v and np = λ2v
2. For 

given v and p, a strongly balanced changeover design is 
said to be minimal if its parameter λ1 is the smallest inte-
ger such that λ1p ≡ 0 (mod v). Thus a minimal strongly 
balanced changeover design consists of the minimum 
number of experimental units and contains each ordered 
pair of treatments once. 

The designs studied by Quenouille (1953), Berenblut 
(1964) and Patterson (1973) require v2 experimental units 
and 2v periods for v treatments and are strongly 
balanced. However, these designs are not minimal as 
each ordered pair of treatments occurs 2v times in the 
design. The circular designs obtained from Sharma 
(1981) require v experimental units for 2v periods and are 
Strongly balanced and orthogonal for the estimation of 
various effects. But these designs are also not minimal as 
each ordered pair of treatments occurs two times in the 
design. A good feature of these classes of designs is that 
the designs are variance balanced and have high 
efficiency for the estimation of treatment effects. 

In the following section, we present a method of 
constructing MSBCO designs with a pre-period and 
having the parameters v = 2m, p = m and n = 4m (m ≥ 3). 
The underlying additive fixed effects model with usual 
assumptions includes a general mean, direct and first 
residual effects of treatments besides periods and 
experimental unit effects. 
 
 
CONSTRUCTION OF MSBCOD (2m, m, 4m)  
 
Let the v = 2m treatments be denoted by the symbols 0, 
1, 2,…, 2m-1. 

The following two initial sequences of m+1 elements 
each, 

 
 
 
 
For m odd: 
Sequence 1:  {0(≡2m), 0, 2m-1, 1, 2m-2, 2, 2m-3,…, 
(3m+1) / 2, (m-1) /2} 
Sequence 2: {(3m-1)/2, (m-1)/2, (3m+1)/2, (m-3)/2, 
(3m+3)/2,…, (2m-2),1, (2m-1), 0}. 
 
For m even: 
Sequence 1: {0(≡2m), 0, 2m-1, 1, 2m-2, 2, 2m-3, …, m/2-
1, 3m/2}   
Sequence 2: {m/2, 3m/2, m/2-1, 3m/2+1, m/2-2, …, 2m-2, 
1, 2m-1, 0}. 
 
When developed, mod (2m) give rise to two rectangular 
arrays each consisting of 2m rows and m+1 columns.  
Number the rows of the first array from 1 to 2m and that 
of the second from 2m+1 to 4m and number the columns 
of both arrays, from 0 to m.  If the rows represent the 
experimental units and columns, the periods, then both 
arrays together form a MSBCOD (2m, m, 4m) with oth 
period as the pre-period. 
 
 
Example 1 
 
Let v = 6 (= 2 × 3). Here, m = 3. The MSBCOD (6, 3, 12) 
is given in Table 1 with the initial sequence in bold figures 
and oth period representing the pre-period. 
 
 
Example 2 
 
Let v = 8 (= 2 × 4). Here, m = 4. The MSBCOD (8, 4, 16) 
is given in Table 2 with the initial sequences in bold 
figures; the oth period being the pre-period. 

The  following  proof  ensures that  the method always 
yields the MSBCOD (2m, m, 4m): 
 
Proof: Every treatment occurs in   each   period exactly 
twice as the initial sequences have been developed mod 
(2m). Besides, if xi and yi (i = 1, 2, …, m+1) denote the ith 
element of the Sequences 1 and 2, respectively, then the 
set {xi - xi+1, yi - yi+1, mod (2m); i = 1, 2, …, m} contains 
each element of mod (2m) including zero exactly once. 
This implies that each ordered pair of treatment symbols 
occurs precisely once in the design. Thus the method 
always ensures existence of MSBCOD (2m, m, 4m). 
 
 
Remarks 
 
It can be easily seen that with regards to the estimation of 
elementary contrasts in direct or first order residual 
effects, the MSBCOD (2m, m, 4m) is a partially variance 
balanced design with m-associate classes based on the 
following circular association scheme: 
 
Circular association scheme: Arrange v = 2m treatment  
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Table 1. Minimal strongly balanced changeover design (v = 6, p = 3, n = 12). 
 

 Periods  Periods 
 0 1 2 3  0 1 2 3 

1 0 0 5 1 7 4 1 5 0 
2 1 1 0 2 8 5 2 0 1 
3 2 2 1 3 9 0 3 1 2 
4 3 3 2 4 10 1 4 2 3 
5 4 4 3 5 11 2 5 3 4 E
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6 5 5 4 0 
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12 3 0 4 5 
 
 
 

Table 2. Minimal strongly balanced changeover design (v = 8, p = 4, n = 16). 
 

 Periods  Periods 
 0 1 2 3 4  0 1 2 3 4 
1 0 0 7 1 6 9 2 6 1 7 0 
2 1 1 0 2 7 10 3 7 2 0 1 
3 2 2 1 3 0 11 4 0 3 1 2 
4 3 3 2 4 1 12 5 1 4 2 3 
5 4 4 3 5 2 13 6 2 5 3 4 
6 5 5 4 6 3 14 7 3 6 4 5 
7 6 6 5 7 4 15 0 4 7 5 6 
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8 7 7 6 0 5 
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16 1 5 0 6 7 
 
 
 
symbols on the circumference of a circle. Treatment 
symbol β is the ith associate of α, if it lies (i = 1, 2,…,m) 
distance apart from α on either side of it. The  parameters 
of the association scheme are v = 2m, ni = 2 (i = 1, 
2,…,m-1), nm =1 and the association matrices, Pi (i = 1, 2, 
…,m) of order m are: 
 

P1= )p( 1
αβ ,                                              (1) 

 
where   
 

1
��p =1, if � = i and β = i+1 or � = i+1 and β = i (i = 

1,2,…,m-1)= 0, otherwise  

P2= )p( 2
αβ                                                  (2)                                                      

where 

2pαβ = 1 if � = i and β = i+2 or � = i+2 and β = i (i = 

1,2,…,m-2) or � = β = 1 or m-1 = 0, otherwise etc. and 
 

Pm ( )mp  ��= ,                                                        (3) 

 
where 

otherwise. 0,       

 1)-m1,2,...,(i i-m  and i if 2,  pm

=

==== ����   

If residual effects are ignored and experimental units are 
taken as blocks, then MSBCOD (2m, m, 4m) reduces to a 
PBIB design with repeated blocks and has the 
parameters v = 2m, b = 4m, r = 2m, k = m, �i = 2 (m-i), i = 
1, 2, …, m. 

In Example 1, the parameters of the association 
scheme are: v = 6, n1 = n2 = 2, n3 =1 and 
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and the parameters of the associated PBIB design are: v 
= 6, b = 12, r = 6, k = 3, �1 = 4, �2 = 2, �3 = 0. 
 
The parameters of the association scheme for Example 2 
are: v = 8, n1 = n2 = n3 = 2, n4 = 1 and 
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The parameters of the related PBIB design are: v = 8, b = 
16, r = 8, k = 4, �1 = 6, �2 = 4, �3 = 2, �4 = 0.
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Table 3. Efficiency factors of the MSBCODs relative to the orthogonal designs. 
 
 

 

v= no. of treatments; p= no. of periods; n= no. of units; Ed, Er, and Et denote respectively, the 
efficiency factors for direct, first residual and treatments effects ignoring residuals. 

 
 
 
EFFICIENCY FACTORS 
 
The efficiency factor is defined as  
 

V
V

E o=                                                                  (4) 

where V is the average variance of the estimated 
elementary contrasts of treatment effects for the 
proposed design and oV  that for an orthogonal design 
using the same number of observations. It is assumed 
that the error variance is the same in both the designs. It 
can be seen that the efficiency factor given at (4) reduces 
to   
 

r
E

�=                                                                       (5) 

 
where δ is the harmonic mean of the non-zero 
characteristic roots of the C-matrix for treatment effects  
and r  is the average number of replications of the 
treatments in the proposed designs.  In case of these 
designs r  = 2m for various treatment effects. The 
efficiency factors of the designs have been computed for 
direct effects, residual effects and treatment effects 
ignoring residual effects with number of treatments ≤ 24 
and are given in Table 3. If first residual effects are not 
found to be significant, then efficiency of treatment effects 
ignoring residual effects becomes important. These 
efficiencies have also been presented in Table 3. 
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S/No. v p n Ed Er Et 

1 6 3 12 0.4976 0.4526 0.7434 
2 8 4 16 0.5941 0.5623 0.8095 
3 10 5 20 0.6585 0.6372 0.8480 
4 12 6 24 0.7047 0.6882 0.8732 
5 14 7 28 0.7397 0.7271 0.8913 
6 16 8 32 0.7672 0.7569 0.9048 
7 18 9 36 0.7894 0.7810 0.9152 
8 20 10 40 0.8077 0.8006 0.9236 
9 22 11 44 0.8230 0.8170 0.9304 

10 24 12 48 0.8360 0.8309 0.9362 


