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The purpose of the present paper is to study the three-dimensional general solution and Green’s
functions in transversely isotropic thermoelastic diffuson media for static problem. With this objective,
two displacement functions are introduced to simplify the basic equation and a general solution is then
obtained by using the operator theory. Based on the obtained general solution, the three- dimensional
Green'’s functions for a study point heat source on the apex of a transversely isotropic thermoelastic
cone are constructed by four newly introduced harmonic functions. The components of displacement,
stress, temperature distribution and mass concentration are expressed in terms of elementary

functions and are convenient to use. When the apex angle 2a equals to 7, then we obtain the solution
for semi-infinite body with a surface point. From the present investigation, a special case of interest is
deduced to depict the effect of diffusion on components of stress and temperature distribution.

Key words: Thermoelastic diffuson media, Green'’s function, transversely isotropic.

INTRODUCTION

Fundamental solutions or Green’s functions play an
important role in the solution of numerous problems in the
mechanics and physics of solids. Green’s functions can
be used to construct many analytical solutions of
boundary value problems. They are essential in boundary
element method as well as the study of cracks, defects
and inclusion. They are a basic building block of future
works. For example, fundamental solutions can be used
to construct many analytical solutions of practical
problems when boundary conditions are imposed. Ding et
al. (1996) derived the general solutions for coupled
equations in piezoelectric media. Dunn and Wienecke
(1999) investigated the half space Green’s functions in
transversely isotropic piezoelectric solid. Pan and Tanon

(2000) studied the Green's functions for three
dimensional problems in anisotropic piezoelectric solids.
When thermal effects are considered, Sharma (1958)
investigated the fundamental solution in transversely
isotropic thermoelastic material in an integral form. Chen
et al. (2004) derived the three dimensional general
solution in transversely isotropic thermoelastic materials.
Hou et al. (2008, 2009) investigated the Green’s function
for two and three-dimensional problem for a steady point
heat source in the interior of a semi-infinite thermoelastic
material. Also, Hou et al. (2011) investigated the two
dimensional general solutions and fundamental solutions
in orthotropic thermoelastic materials.

Diffusion can be defined as random walk of assembly
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of particles from a high concentration region to a low
concentration region. An example of diffusion is heat
transport or movement transport. Thermal diffusion
utilizes the transfer of heat across a thin liquid or gas to
accomplish isotope separation. Today, thermoelasticity
remains a practical process to separate isotopes of noble
gases (e.g. xexon) and other light isotopes (e.g. carbon)
for research purposes.

Nowacki (1974a, b, ¢, d) developed the theory of
thermoelastic diffusion by using coupled thermoelastic
model. Sherief and Saleh (2005) developed the
generalized theory of thermoelastic diffusion with one
relaxation time which allows finite speeds of propagation
of waves. Kumar and Kansal (2008) derived the basic
equations for generalized thermoelastic diffusion (G-L
model) and discussed the Lamb waves. When diffusion
effects are considered, Kumar and Chawla (2011a)
derived the Fundamental solution in orthotropic
thermoelastic diffusion material. Kumar and Chawla
(2011b) discussed the plane wave propagation in the
context of anisotropic three-phase-lag and two-phase-lag
model of thermoelasticity. Kumar and Chawla (2012)
derived the Green's functions for two-dimensional
problem in orthotropic thermoelastic diffusion media.
Recently, Kumar and Chawla (2013) discussed the
problem of reflection and transmission in thermoelastic
media with three-phase-lag model. However, the
important Green’s function for three-dimensional problem
function in transversely isotropic thermoelastic diffuson
material has not been discussed so far.

Keeping in view of these applications, the three
dimensional general solution and Green’'s function in
transversely isotropic thermoelastic diffuson elastic
medium for steady state problem was studied. After
applying the dimensionless quantities and using the
operator theory, the general expression for displacement
components, mass concentration and temperature
change are derived in terms of four harmonic functions.
By virtue of the obtained general solution, the three-
dimensional Green's functions for a study point heat
source on the apex of a transversely isotropic
thermoelastic cone are constructed by four newly
introduced harmonic functions. From the present
investigation, a special case of interest is also deduced to
depict the effect of diffusion.

Basic equations

Following Sherief and Saleh (2005) the basic governing
equations for homogenous anisotropic generalized
thermoelastic diffusion solid in the absence of body
forces, heat and mass diffusion sources are:

(1) Constitutive relations:

Oy = CijmEiam + T +1;C

1)
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(2) Equations of motion:

Cijm€im,j T aijT’j+bijC,j = pU;

)
(3) Equation of heat conduction:
L T+aT,C-aTé =K, T, -
(4) Equation of mass diffusion:
_aij*bkmgkm,ij _aij*bc’ij +aij*aT’ij =C @

Here Ciskn(=Cumii =Cjikn = Cijrni)
aij (: aji)v bij (: bji)

thermal and diffusion moduli. © is the density and Ce is

the specific heat at constant strain, ab are respective
coefficients describing the measure of thermoelastic

diffusion effects and of diffusion effects, T

° is the
reference temperature assumed to be such that
T

— << 1. £ = Ui i
Ty Kij (= Kji)1o-ij (:Uji) y 2
denote the components of thermal conductivity, stress

and
and strain tensor respectively. 14D s the
TO

are elastic parameters;

are respectively, the tensor of

temperature change from the reference temperature

and C is the mass concentration. Ui is a component of

displacement vector while o (=aj) are diffusion
parameters.

In the above equations, the symbol (,) followed by a
suffix denotes differentiation with respect to spatial
coordinate and a superposed dot (".") denotes the
derivative with respect to time respectively.

Following Slaughter (2002), applying the transformation,

we have:
X' =XCOSp+Ysing, Y =—xsing+Yycosy, 7' =z, 5)

Where ¢ is the angle of rotation in the X = Z plane. In the
Equations (1) to (4), the stress-strain-temperature-
concentration relation, equations of motion, heat
conduction and mass diffusion equation in homogeneous,
transversely isotropic thermoelastic diffusion media in

cartesian coordinates %¥:2) can be written as:

O | [Cy & &g 0 0 0 )& a| |b

| |G & & 0 0 0 |8 a| |b

Oz |_|Gs  Gs  Ca 0 0 U & T_ by c

o,| |0 0 0 Ca O 0 |2, 0 ol

o,/ 10 0 0 0 ¢ 0 |2, 0 0

o, [0 0 0 0 0 cgl2,| (0] [0] ©)
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2 2 2 2 2

oy iy e u+c >+ +cC )ﬂ+( +cC )M—
115 T Ce6 44— +(C12 +Cep axdy C13+Caa) 3 >
ar C
aq—-b—=p—-,
(co+ )a—2u+ 6—2\/+ 6—2\/+c a—zv+( +C, )&V—
C2 %Ga@y 066@(2 011@2 44622 Ci3+Cyy oy
2 5, T,
15)’ 5] a%’ (8)
( +c)6 +( +c)6v+c @V-FC @er @—
Ci3 Gy Ci3tCyy o w5 446)/2 Css o
ar  oC  dw
i
(9
ar oC au oV oW
T+ T a(o+
e el [ai( ay)+a3 j

P A AN IR AN Wi
Hod a2 oxar? Yooy o) oya?

by B A i ) N D o T
Hota ofa) Cad Hod o2) Ca?

Where
4 =-a0;, by=-bs; K=K, lis not summed
C —
CGG — 11 2 C12 .
and

FORMULATION OF THE PROBLEM

We consider a homogenous transversely isotropic
thermoelastic diffusion medium. Let us take Oxyz as the
frame of reference in Cartesian coordinates.

For three dimensional problems, we assume the
displacement vector, temperature distribution and mass
concentration are respectively, of the form:

u=(uv,w), TXVyzt), C(xYy,z1). (12)
Moreover, we are discussing steady problem
u_ov_ow_oT _oC_

ot ot ot ot ot (13)

We define the dimensionless quantities as:

*

(x’, y/,z',u’,v’,w’,b’, r'):w—l(x, Y,Z,u,v,w,b,r),

Vi
reny L
(T'.c")=—(aT.bC)
Cll
O-ij,: i Hr= &y,
alTO C11K3
Where
, a;f:aC“.
vi =by, Ky (14)
Applying the dimensionless quantities defined by

Equation (14) in Equations (7) to (11), after suppressing
the primes, we obtain:

[;; 62 6182 {53;; [5 i’ 7%}{%}::0' (15)
SR
(‘S“;}{é;} {‘i[;; S;J @‘}N o (17)

[522+ o jT +gz[ azij =0,
oX oy 0z (18)
R
a o af) Car| ol ad o) a| al taé of) &
Mol st
a of) a af) vt (19)
Where
1
(é,@,é,@,@):— (406G G CiaTCis ) & :%, 71:%: & =§,
a b K

* * * * 1 * * 1 L E
( 1% Gs %) % (Oaam oy, g ab, %aibs) (05,06)?(0&01&0@&161),
* * 1 * % E

( 'Oe):a( h%aab),

a =(C,+Cp) +Ca0 s 8 = 20,04 +Cyy0%, b, =(Cyy +C)oy, +Ciay,

Cu—C
>

by = 20,01, +Cyp0, G =

STATIC GENERAL SOLUTIONS

Two displacements functions ¥ and G are introduced
as follows:



_o¥ oG, __o¥ o6
oy ox’ x oy (20)
Using the displacements functions ¥ and G in
Equations (15) - (19), we obtain
02 02 02
52(24’2)4'5 Z:|lP_O
{ oxX oy 0z 1)
G 0
w 0
D =
C 0
T 0 (22)

where D is the differential operator matrix given by

[ 2
A+@% —645 1 1
ol & ol d
—@:A& @A+5sg “hy —ay
s Y & oL
(qlAerquaZ J GA—+0, 7(q7A+q3 g] 06A+q6¥
0 0 0 A+53ﬁ2
L a

Equation (22) is a homogeneous set of differential

equations inGW,T.C  The general solution by the
operator theory is as follows:
G=AF ~w=AF C=AF

T=AF (1=1234). (23)

The determinant of the matrix D is given as:

6 4 2 2
ID| = (aa+bAa4+cA2 0 +dA3J [A+s3azj,
oz° 0 oz? oz (24)

Whereg'b’é’d and Aare given in Appendix A. The

function Fin Equation (23) satisfies the following
homogeneous equation:

‘D‘F =0 (25)

123

It can be seen that if i= are taken in Equation (23),

three general solutions are obtained in whichT =0
These solutions are identical to those without thermal fact

and are not discussed here. Therefore if i= 4sh0u|d be
taken in Equation (23), the following solution is obtained:
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(26)
2 4
v=\P—(alA2+blA > clallng
Z oz Y @7)
2 4
0" oF
w=|a,A” +b,A—+C, ndl
z2? 0zt ) oz
(28)
2 4 6
C (alA3+bA262 03A64+d466]F,
0z 0z 0z (29)
6 4 2
T= [aa+bAa+CA2 0 +dA3J
0z° ozt 0z° (30)

Whereéi’bi’éi(i =123) and d4 are given in Appendix B.

(r,0,2),

In cylindrical coordinate the general solution can

be easily obtained. In fact, the expression for W, T ang C
are identical to that in Equations (26) to (31), while those
r radial and circumferential displacements Ur and u9are,
respectively

2 4
u = a;;—(aiAerblAa +cl8 JZF
r ot )er 31)
2 4
ug=—6;rp—(a1A2+blAa ¢’ ]a&;
(32)

2 10 1 o°
:—2+7—+ —
Here or? ror r?o0
coordinates.

The general solutions of Equation (25) in terms of

F can be rewritten as:

4 62 62
H[ax2+ P ZJF =0
i Z;

]

is the Laplacian in polar

(33)
where

7:=5.2,8 Ky
= J y 4: R — - . _
Ks , and s'(J 123) are three roots

(with positive real part) of the following algebraic equation

]

as® —bs* +cs’ —d =0. (34)
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As known from the generalized Almansi theorem (Ding et

al., 1996) the function F can be expressed in terms of
four harmonic functions:

1) F=R+F+FE+F o distinct °) (1=1234),
2) F=F+F+F+2F ¢ S 7S, #53 =5,
3) F :|:1+|:2+Z|:3+Zzl:4 for Sl ¢Sz :S3 254,
4)F F, + zF, +zF+zF4]cor S =8, =8; =5,
where ' | satisfies the following harmonic equation
2 2
LA | (i=1234).
oX° o0z,
: (35)

The general solution for the case of distinct roots can be
derived as follows:

\P 4 4
_E ,Z; Jaxaz - 8x JZ; aya“’

L OF o°F

W= ZS pZ] az5 ) :Zp3j 527;’ :p44?64-
= i 4 (36)

Where

Py =& —bksj+cs (k=12)

Pa; = -8, + 0,57 —Cys? +d,s°

P, =—d +Ts2 —bs; +as]

In the similar way general solution for the other three
cases can be derived. Equation (36) can be further
simplified by taking

o'F, _
plj 62_4:l//j’ (J :1121314)
j (37)
and writing Yo =Y
M Loy Y Loy oy

) -3

V= ,  w=)>s.P
& ia o X 3oy Z e,

%y %y
C= szl 521’ T=Py—3"
‘i ‘ (38)
Where
Plj =p2j/p1j’ sz =p3j/p1j’ P34=p44/p14
The function Vi satisfies the harmonic equations
2
[m; ]Wl =0 j=01234.
2 (39)
In which
52
Ly, =35,Z,5, = ;
1

In cylindrical coordinates ("?+2)

W, T,C will remain the same as given in Equation (38),
while the components of displacement in cylindrical
coordinates are

, the expression for

N, &Hoy, N, &Hoy;
_ 9% _ u, = -2

u = —_ :
"ree S oo o S roe (40)

Introducing the following notations for the components

both in Cartesian coordinate (xy.2) and cylindrical
coordinate (r.0,2) ,

- 9 -
U=u+iv=e"(u, +iu,),
0, =0 +0,, =0, +0y,

2|z9

0,=0,—-0, +2ic, =" (0, -0, +2i0,),

_ H _ alf
7, =0, tio, =e (o, +io,,).

Upon using the notations, the general solution in

Equation (38) in the Cartesian coordinate (x,y.2) can be
simplified as

4
U= —Fl(i‘lfo +Y ¥, j

i

i1
< 82‘//] o’y
C=2P—7 T=Py—5
j=1 aZJ 824

4 4
o1 = 22(066 e ST ‘chsrl{i‘l’o 2. J
j=L

i1
4 4 . a

=AY,  o,=I Zsjrj —i8,Cpy —2 82 .

i= i=t 0 (41)



Where
I, = i+ i i,
ox oy
2 2
A:a_2+a_2
ox oy in Cartesian coordinates (x,y,2),
2 2
A=i+ 0 0

or? ror  r?p6% in cylindrical coordinates (r.6,2),

and
Cyp + C13P1;51 Cflp2j - CI1P34 *
i = > =Cu(1-Pyj) =
S
* * 2 * *
—Cy3 —Cg3S§ P +&1C11Pag + 71C11 Py, (42)
(C11’ C131Ca31 Cags Cae) = (Cn’ C131C331Cas: Ces )
0 (43)
. . . \PO =0
For non-torsional axisymmetric problem, and
Y. (j=1234 .
‘(J . )ar independent  of 9 such that
UH :Oand (720 :O'rg :O.
The general solution given by equations in cylindrical
coordinate (r.0,2) can be simplified to the following form:

-S3p Y c- T-p, 2V
Wzsllj& 2321&2’ _34&2’

jl

D VP T T
O, - SW ,0 - SW— ,
m Z:6 a = &2 00 _2:561 a = &2
62%-

4
Gzz:z}‘ji
A

= &Jz‘ zr Zsj]a_&

(44)

, ) , Y. =0 (j=1234)
For torsional axisymmetric problem ,

Fo is independent of 0, o) that

u,=u,=0T=0C=0_, G =0y=0,=0,=0.

The general solution can be simplified as:

2 2 2
ugz—agrjo,quc;G[;aazz ;2}1’ Cy sc;g;o.
0 0 (45)
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BOUNDARY CONDITIONS OF CONE

We consider a transversely isotropic thermoelastic

i . EZCOta 20
diffusion cone r , where 4Zis the apex angle,

whose isotropic plane is perpendicular to Z —axis. At the
origin of the coordinate system, the apex is to be taken.

P=p.i+p,i+p,Kk,
At the apex, a concentrated force P+ B+ D, a

M=M,i+M,i+Mk
I J,k

concentrated moment and a point

heat source H are applied, where are three unit

vectors of Cartesian coordinates (X' y: Z)'
In addition, the cone is loaded on the surface with

prescribed density of normal heat flux 9n and surface

X=X +X,e,+X,e, €,€,,€,

forces where are

three unit vectors of cylindrical coordinates (r.6,2),
which are related to " J’ K by the following relations:

e, =icos@d+ jsing, e, =isind+ jcosd, e, =k. (46)
The boundary conditions in cylindrical coordinates on the

cone z/t = cotar are

o,C0sa—o,sina=X

" (47)

0,,C0Sa— 0, sina =X, (48)
o, C0sa—ao,sina=X,, (49)
K, ﬂcosac K, ﬂsmoz T

tor oz (50)
oC oC
—cosa - K,—sina =17,
or oz (51)

As shown in Figure 1, when a segment of cone cut off by

z :b, its global mechanical concentration and thermal
equilibrium equations will be:

P+Tm]'rzarq +0,8,+a£ )rdré+ _[ _[ (X +Xg,+Xe )zdtanycos=Q
(52)

27 btanx

M-+ [ [(-boyg +{o, ~a ), +ro,e rdrd+
0 0

:u_,g;

l X8 +(X. —X, tane, + X, tance, )7 dzatany/cosr=0, (53)
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—> X

\K
2a r
XXX,
y 0 7T

~__ |

N —

Figure 1. A thermoelastic diffusion cone under loading.

27 btana aT 2z b
| = drd+ [ [(Ka, sina+Kg, cosa)zdzddtana/cosa =—H,
0 0 00

(54)

27 btana ac 2z b
| =, rdrdo+ | [ @, sine+4, cosa)zdzddtana/cosa =0.
00

0 0

(55)

Green'’s function for a point heat source H on the apex of
a transversely isotropic thermoelastic diffusion material.
We consider the case only, when point heat source

His applied at the apex and the surface of the cone is
traction free, impermeable and thermally insulated, that

Yr:)THZ)TZZO’ and q_m:ﬁmzo'

The general solution given by Equation (44) is derived in
this section.

For non-torsional axisymmetric problem, introduce the
following harmonic functions:

¥, =A(z;logR] -R)), (j=1234)

and (56)

Substituting the values of ! from Equation (56) in
Equation (44), we have:

4 r 4 . 4 A]
u=>A = W:Z:l:sjPlﬁ logR’, C:Z_llej =

j=1 j j i i (57)
LA G A 4 A
T- pM%, o =2y L-Ssw L, o =3,
4 [ERA I j [ER (58)
LAEA 4 LA 4 r
Oy :ZCGGZEi—Z(SjZWj _ZCGG)EJ’ Oy, :ZSJ rJA‘ W
=Y = j = I} (59)

For non-torsional axisymmetric problem, the boundary
condition in Equation (48) has been satisfied, and
Equations (49) to (51) can be deduced from the global
mechanical, impermeable and thermal equilibrium
condition in Equations (52). The only boundary condition
in Equation (47) and the following equations need to be
satisfied:

27 btana

[ Jo,rdrdo=o,
0

0 (60)
27 btana
T
K3j ja—rdrdez—H,
0z
0 0 (61)
27 btana
J j ‘Z—Crdrda:o,
0 0 z (62)
Substituting the values of Ty Oy C and T from

Equation (57) in Equations (47) and (60 to 62) yields

4
D Aj| 25 L - shw, L =1 L =0,

= (63)
4 r.

Ly, =0

= (64)
4 s

> L _115;P;A; =0,

i H;tana (65)

S, H
Py Ay =— :

[H4tana ]S“ 24 27K (66)
Where

H;=y1+si/tan’a, N, =H, +s;/tana (j=123).

Ai(j=1234)

The constants can be determined by
solving Equations (63) to (66). When the cone has been



7
a=—
2

reduced to a semi-infinite body, that is, then

H.

(=Nj=1  (j=1234)

: (67)

Using Equation (49) in Equations (45) to (48) can be
simplified as:

I

Ajsjrj =0,
i=t (68)

=1 (69)
4
Z s;P,;A; =0,
i1 (70)
B H
Y 27K,s,P, (71)

A(j=1273

We have determined four constants '(J )from
three equations including Equations (68) to (71) by the
method of Cramer’s rule.

Special case

In the absence of diffusion effects, that s,
=b;=a=b=0 . .
by =D "Equations (57) to (59) yields
3 r 3 " . . ~ A4
U =D A= u, =) sjRjA;sign2)logR;), T =Pp_",
ER = Ra
L3A 3 A 3
Oy =2Ce5 z%_zs%wj Rijv O = zrj Rijv
=Ry j=1 i = i
L3 A 3 . A 3 ;
T =255 ) —r— 2. (5w —ZCGG)FTJv O =D SjMA 5|gn(z*)r’
ELINE i [El RiR; (72)

where 11520531540 this case are reduces to 1’ 52' 53

Ky
37 Ks s
with 3 and 152 are two roots (with positive real
part) of the equation

~d L2 A
as” —bs“+C=0, (73)

and
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Pyj =8 _Bksjz (k=12),
P3s =4 _b?»SJ2 +635j‘, a =—54, 61 = 55 _Szglv 62 = 5481-

8y =84, by = (52 ~52) =5, &5 =535,

Uz and

Consider the continuity at plane 2=0 for
O2r and substituting the values of ©22:%zz and T from

Equations (64) with the aid of 3~V Ki/Ks yield the
following equations in the absence of diffusion:

3 —~
D .sjPijA; =0.
j=1

(74)
3
2.5iA; =0
= (75)
and
H

A=——

27ZKSS4 P24

A:.(j=12 .
The constants J(J ' )are determined by two
Equations (74) and (75) using the method of Cramer’s
rule.
The above results are similar as obtained by Hou et al.
(2005).

NUMERICAL RESULTS AND DISCUSSION

Here, the numerical discussions are reported and
analysis is conducted for magnesium material. Following
Dhaliwal and Singh (2005), the values of physical
constants are taken as:

Cy1 =5.974x101°N.m? ¢, = 2.624x10"°N.m?, ¢, 3 = 2.17x101N.m2,
C3 =6.17x10"N.m?, ¢y =3.278x101°N.m2 Ty =.298x10°K,

a =2.68x10°Nm’K ™, a, =2.68x10° Nm’K ™, K, =1.7x10°Wm'K ™,
Ky =L7x10°Wm K™, g =2.1x10'm’Kg™ ag, =25x10 'm’Kg™
a=24x10"m?s 2K 1, b=13x10°Kgm's 2, o5 :.95x10£m*3.s.Kgy
a§ =.90x10°m3sKg

Figures 2 to 5 depict the variations of radial displacement

u

I axial displacement uZ’temperature change T and
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Figure 4. Variation of temperature distributionT wrt I
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Figure 5. Variation of mass concentration distribution C wrt T

Figure 2 shows that the values of Uy in case of WTD
slightly decrease for smaller values of I' and for higher

values of r’the values of Uy become dispersionless,
although for the case of WD, the values of Ur increase

for all values of - It is noticed that the values of Ur in
case of WD remain more in comparison with WTD.

Figure 3 depicts that the values of Uz in case of WTD
decrease for all values of r whereas for the case of WD,



the values of u; slightly increase for smaller values of
I and finally becomes constant.

It is evident that the values of Yz in case of WD remain
more in comparison with WTD. Figure 4 shows that the

values of T in case of WTD slightly decreases for all
values of " although for the case of WD, the values of
T increase for all values of ' It is noticed that the values
of Tin case of WD remain more in comparison with
WTD. Figure 5 depicts that the values of C in case of
2=5 slightly decrease for all values of I whereas for the

case of £= 10 the values of C increases for all values of
r. It is evident that the values of T in case of
Z=J5remain more in comparison with £ =10.

Conclusion

The Green’s functions for three-dimensional problem in
transversely isotropic thermoelastic diffusion medium
have been derived for static case. After applying the
dimensionless quantities and using the operator theory,
we have obtained the general expression for components
of displacement, temperature distribution, mass
concentration and stress components in Cartesian as
well as in cylindrical coordinates. Based on the obtained
general solution, the three- dimensional Green’s function
for a study point heat source on the apex of a
transversely isotropic thermoelastic cone in case of
steady state problem are derived by four newly
introduced harmonic functions. All components of
thermoelastic field are expressed in terms of elementary
functions and are convenient to use.

From the present investigation, a special case of
interest is deduced to depict the effect of diffusion. From
numerical results, we conclude that the values of

horizontal displacement ur’axial displacement Uz and

temperature change T
themoelastic diffusion
themoelastic medium (WTD).

remain more in case of
(WD) in comparison to
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Appendix A

a=31(104 —50g). b =(52 —67)g +5(d2 —G) + U (71— 54) + 81 (103 — 5s7) — 54071,
C=(3 —8) + 0 (0n —5,) — 503, + 4 (G) —a) +3,(05 — ), d =5,(cf — ),

82 82
A:y +¥.

Appendix B

& = (0 — )6, by = 6,(0 —0e) + 65 (0s — ) + &.(8,0; — &) = 716,
C = (71q; + glq;)54 + (q; - q;)55 - ngl

&, = (0 +%)7+&(0 —)+6,(0; —05), b, = 6,105 —,07) +
£(0p +5) —72(0z + ) + 6,(05 = Gs), T, = 6,(£:05 — 7.

& = (0 —0:)8,, by = (67 —67)0s +5,(0f —0e) +6,(ap + G) — 5,60,
63 = (612 —542)(.]; +55(q; +q;) —54(6'1(]; +1) _5155(1;' a4 = 5155(1;



