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The purpose of the present paper is to study the three-dimensional general solution and Green’s 
functions in transversely isotropic thermoelastic diffuson media for static problem. With this objective, 
two displacement functions are introduced to simplify the basic equation and a general solution is then 
obtained by using the operator theory. Based on the obtained general solution, the three- dimensional 
Green’s functions for a study point heat source on the apex of a transversely isotropic thermoelastic 
cone are constructed by four newly introduced harmonic functions. The components of displacement, 
stress, temperature distribution and mass concentration are expressed in terms of elementary 

functions and are convenient to use. When the apex angle   2  equals to  , then we obtain the solution 
for semi-infinite body with a surface point. From the present investigation, a special case of interest is 
deduced to depict the effect of diffusion on components of stress and temperature distribution. 
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INTRODUCTION 
 
Fundamental solutions or Green’s functions play an 
important role in the solution of numerous problems in the 
mechanics and physics of solids. Green’s functions can 
be used to construct many analytical solutions of 
boundary value problems. They are essential in boundary 
element method as well as the study of cracks, defects 
and inclusion.  They are a basic building block of future 
works. For example, fundamental solutions can be used 
to construct many analytical solutions of practical 
problems when boundary conditions are imposed. Ding et 
al. (1996) derived the general solutions for coupled 
equations in piezoelectric media. Dunn and Wienecke 
(1999) investigated the half space Green’s functions in 
transversely isotropic piezoelectric solid. Pan  and  Tanon 

(2000) studied the Green’s functions for three 
dimensional problems in anisotropic piezoelectric solids. 
When thermal effects are considered, Sharma (1958) 
investigated the fundamental solution in transversely 
isotropic thermoelastic material in an integral form. Chen 
et al. (2004) derived the three dimensional general 
solution in transversely isotropic thermoelastic materials. 
Hou et al. (2008, 2009) investigated the Green’s function 
for two and three-dimensional problem for a steady point 
heat source in the interior of a semi-infinite thermoelastic 
material. Also, Hou et al. (2011) investigated the two 
dimensional general solutions and fundamental solutions 
in orthotropic thermoelastic materials. 

Diffusion can be defined as random  walk  of  assembly 
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of particles from a high concentration region to a low 
concentration region. An example of diffusion is heat 
transport or movement transport. Thermal diffusion 
utilizes the transfer of heat across a thin liquid or gas to 
accomplish isotope separation. Today, thermoelasticity 
remains a practical process to separate isotopes of noble 
gases (e.g. xexon) and other light isotopes (e.g. carbon) 
for research purposes.  

Nowacki (1974a, b, c, d) developed the theory of 
thermoelastic diffusion by using coupled thermoelastic 
model. Sherief and Saleh (2005) developed the 
generalized theory of thermoelastic diffusion with one 
relaxation time which allows finite speeds of propagation 
of waves. Kumar and Kansal (2008) derived the basic 
equations for generalized thermoelastic diffusion (G-L 
model) and discussed the Lamb waves.  When diffusion 
effects are considered, Kumar and Chawla (2011a) 
derived the Fundamental solution in orthotropic 
thermoelastic diffusion material. Kumar and Chawla 
(2011b) discussed the plane wave propagation in the 
context of anisotropic three-phase-lag and two-phase-lag 
model of thermoelasticity. Kumar and Chawla (2012) 
derived the Green’s functions for two-dimensional 
problem in orthotropic thermoelastic diffusion media. 
Recently, Kumar and Chawla (2013) discussed the 
problem of reflection and transmission in thermoelastic 
media with three-phase-lag model. However, the 
important Green’s function for three-dimensional problem 
function in transversely isotropic thermoelastic diffuson 
material has not been discussed so far. 

Keeping in view of these applications, the three 
dimensional general solution and Green’s function in 
transversely isotropic thermoelastic diffuson elastic 
medium for steady state problem was studied. After 
applying the dimensionless quantities and using the 
operator theory, the general expression for displacement 
components, mass concentration and temperature 
change are derived in terms of four harmonic functions. 
By virtue of the obtained general solution, the three- 
dimensional Green’s functions for a study point heat 
source on the apex of a transversely isotropic 
thermoelastic cone are constructed by four newly 
introduced harmonic functions. From the present 
investigation, a special case of interest is also deduced to 
depict the effect of diffusion. 
 
 
Basic equations 
 
Following Sherief and Saleh (2005) the basic governing 
equations for homogenous anisotropic generalized 
thermoelastic diffusion solid in the absence of body 
forces, heat and mass diffusion sources are: 
 
(1)  Constitutive relations: 
 

Cbac ijijkmijkmij  
            (1) 
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(2)  Equations of motion: 
 

, ,, ijijjijjkmijkm uCbac  
            (2) 

 
(3)  Equation of heat conduction: 
 

ijijijijE KaCaC ,00   
                                       (3) 

 
(4)  Equation of mass diffusion: 
 

,, **
,

* CabCb ijijijijijkmkmij
 
                        (4) 

 

Here, 
  )( ijmkjikmkmijijkm cccc 

are elastic parameters; 
  ),( jiij aa 

 
  )( jiij bb 

are respectively, the tensor of 

thermal and diffusion moduli.    is the density and   EC  is 

the specific heat at constant strain,   ba,   are respective 
coefficients describing the measure of thermoelastic 

diffusion effects and of diffusion effects, 
 

0T   is the 
reference temperature assumed to be such that 
 

.1
0
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T

T
  )(),( jiijjiij KK  

 and 

 

2
,, ijji

ij

uu 


  
denote  the components of  thermal conductivity, stress 

and strain tensor respectively.   ),,,( tzyxT  is the 

temperature change from the reference temperature 
 

0T   

and  C  is the mass concentration. 
 

iu
 is a component of 

displacement vector while 
  )( **

jiij  
 are diffusion 

parameters. 
In the above equations, the symbol (,) followed by a 

suffix denotes differentiation with respect to spatial 
coordinate and a superposed dot (".") denotes the 
derivative with respect to time respectively. 
Following Slaughter (2002), applying the transformation, 
we have: 
 

  ,,cossin,sincos zzyxyyxx             (5) 

Where 
  is the angle of rotation in the zx  plane. In the 

Equations (1) to (4), the stress-strain-temperature-
concentration relation, equations of motion, heat 
conduction and mass diffusion equation in homogeneous, 
transversely isotropic thermoelastic diffusion media in  

cartesian coordinates   ),,( zyx  can be written as:  
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FORMULATION OF THE PROBLEM 
 
We consider a homogenous transversely isotropic 
thermoelastic diffusion medium. Let us take Oxyz as the 
frame of reference in Cartesian coordinates. 

For three dimensional problems, we assume the 
displacement vector, temperature distribution and mass 
concentration are respectively, of the form: 
 

  ).,,,(),,,,(),,,( tzyxCtzyxwvuu 


        (12) 
 
Moreover, we are discussing steady problem 
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We define the dimensionless quantities as: 
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Applying the dimensionless quantities defined by 
Equation (14) in Equations (7) to (11), after suppressing 
the primes, we obtain: 
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STATIC GENERAL SOLUTIONS 
 

Two displacements functions    and G are introduced 
as follows: 
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Using the displacements functions   and G  in 
Equations (15) - (19), we obtain 
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where D is the differential operator matrix given by 
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Equation (22) is a homogeneous set of differential 

equations in  CTwG ,,, . The general solution by the 
operator theory is as follows: 
 
  ).4,3,2,1(,,, 4321  iFATFACFAwFAG iiii   (23) 
 
The determinant of the matrix D is given as: 
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Where
  dcba ,,,  and  are given in Appendix A. The 

function  F in Equation (23) satisfies the following 
homogeneous equation: 
 
  0FD

            (25) 
 

It can be seen that if   3,2,1i are taken in Equation (23), 

three general solutions are obtained in which  0T . 
These solutions are identical to those without thermal fact 

and are not discussed here. Therefore if   4i should be 
taken in Equation (23), the following solution is obtained: 
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Where
  )3,2,1(,, icba iii  and 

 
4d  are given in Appendix B. 

 

In cylindrical coordinate   ),,,( zr   the general solution can 

be easily obtained. In fact, the expression for   Tw, and  C  
are identical to that in Equations (26) to (31), while those 

r radial and circumferential displacements 
 

ru  and 
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are, 
respectively 
 
 

,
4

4

12

2

1
2

1 r

F

z
c

z
ba

r
ur 
























                             (31) 
 
 

.
4

4

12

2

1
2

1  






















r

F

z
c

z
ba

r
u

                              (32)  
 

Here 
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rrrr  is the Laplacian in polar 
coordinates. 

The general solutions of Equation (25) in terms of 
F can be rewritten as: 
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where 
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K

K
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, and 
  )3,2,1( js j are three roots 

(with positive real part) of the following algebraic equation 
 
  .0246  dscsbsa                        (34) 
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As known from the generalized Almansi theorem (Ding et 

al., 1996) the function  F can be expressed in terms of 
four harmonic functions: 
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 satisfies the following harmonic equation 
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The general solution for the case of distinct roots can be 
derived as follows: 
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Where 
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In the similar way general solution for the other three 
cases can be derived. Equation (36) can be further 
simplified by taking 
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Where 
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The function 
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 satisfies the harmonic equations 
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In which 
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In cylindrical coordinates  ),,( zr  , the expression for 
  CTw ,,  will remain the same as given in Equation (38), 
while the components of displacement in cylindrical 
coordinates are 
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Introducing the following notations for the components 

both in Cartesian coordinate   ),,( zyx and cylindrical 

coordinate  ),,( zr  , 
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Upon using the notations, the general solution in 

Equation (38) in the Cartesian coordinate   ),,( zyx  can be 
simplified as 
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For non-torsional axisymmetric problem, 
  00   and 

  )4,3,2,1(  jj are independent of   , such that 
  0u and 

  .0   rz   
The general solution given by equations in cylindrical 

coordinate   ),,( zr  can be simplified to the following form: 
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For torsional axisymmetric problem
  )4,3,2,1(0  jj , 

  0  is independent of   ,  so that 

  0,0,0  CTuu zr  and 
  .0 rzzzrr     

 
The general solution can be simplified as: 
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BOUNDARY CONDITIONS OF CONE 
 
We consider a transversely isotropic thermoelastic 

diffusion cone 
 

cot
r

z

, where   2 is the apex angle, 

whose isotropic plane is perpendicular to z axis. At the 
origin of the coordinate system, the apex is to be taken. 

At the apex, a concentrated force
  ,kpipipP zyx 

a 

concentrated moment 
  kMiMiMM zyx 

 and a point 

heat source  H are applied, where 
  kji ,, are three unit 

vectors of Cartesian coordinates 
  ).,,( zyx   

In addition, the cone is loaded on the surface with 

prescribed density of normal heat flux 
 

nq


 and surface 

forces
  ,zzrr eXeXeXX    where 

 
zr eee ,,   are 

three unit vectors of cylindrical coordinates   ),,,( zr   

which are related to 
  kji ,, by the following relations: 
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The boundary conditions in cylindrical coordinates on the 
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As shown in Figure 1, when a segment of cone cut off by 
  bz  , its global mechanical concentration and thermal 
equilibrium equations will be: 
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Figure 1. A thermoelastic diffusion cone under loading. 
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Green’s function for a point heat source  H on the apex of 
a transversely isotropic thermoelastic diffusion material. 

We consider the case only, when point heat source 
 H is applied at the apex and the surface of the cone is 
traction free, impermeable and thermally insulated, that 
is, 
 
  ,0,0  zyxzyx MMMppp

 
 
  ,0 zr XXX   and 
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The general solution given by Equation (44) is derived in 
this section. 

For non-torsional axisymmetric problem, introduce the 
following harmonic functions: 
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Substituting the values of 
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For non-torsional axisymmetric problem, the boundary 
condition in Equation (48) has been satisfied, and 
Equations (49) to (51) can be deduced from the global 
mechanical, impermeable and thermal equilibrium 
condition in Equations (52). The only boundary condition 
in Equation (47) and the following equations need to be 
satisfied: 
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Substituting the values of 
  Czrrr ,,  and T from 

Equation (57) in Equations (47) and (60 to 62) yields 
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Where 
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The constants  
  )4,3,2,1( jA j  can be determined by 

solving Equations (63) to (66). When the cone  has  been 



 
 
 
 

reduced to a semi-infinite body, that is,  
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Using Equation (49) in Equations (45) to (48) can be 
simplified as: 
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We have determined four constants 
  )3,2,1( jAj from 

three equations including Equations (68) to (71) by the 
method of Cramer’s rule. 
 
 
Special case 
 
In the absence of diffusion effects, that is, 
  ,031  babb

Equations (57) to (59) yields 
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where 
  4321 ,,, ssss

in this case are reduces to 
  321 ,, sss

 

with 
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21,ss  are two roots (with positive real 
part) of the equation 
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Consider the continuity at plane   0z  for 
  zu  and 

 
zr and substituting the values of 

 
zzzz  ,  and T from 

Equations (64) with the aid of  
 

313 / KKs 
  yield the 

following equations in the absence of diffusion: 
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The constants 
  )2,1( jA j are determined by two 

Equations (74) and (75) using the method of Cramer’s 
rule. 

The above results are similar as obtained by Hou et al. 
(2005). 
 
 
NUMERICAL RESULTS AND DISCUSSION 
 
Here, the numerical discussions are reported and 
analysis is conducted for magnesium material. Following 
Dhaliwal and Singh (2005), the values of physical 
constants are taken as: 
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Figures 2 to 5 depict the variations of radial displacement  
  ,ru axial  displacement  

  ,zu temperature  change T   and  
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Figure 2. Variation of radial displacement 
 

ru
 w.r.t.  r .  
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Figure 3. Variation of axial displacement 
  u w.r.t.  r . 

 
 
 

mass concentration  C  w.r.t. r  for thermoelastic diffusion 
material. The solid and dotted line respectively, 

corresponds to thermoelastic theory (WTD  5z ), 

(WTD  10z ) and centre symbols on these lines, 
respectively corresponds to thermoelastic theory with 

mass  diffusion (WD  5z ) ,(WD   10z ). 
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Figure 4. Variation of temperature distributionT  w.r.t. r . 
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Figure 5. Variation of mass concentration distribution C  w.r.t. r .  

 
 
 

Figure 2 shows that the values of 
 

ru  in case of WTD 
slightly decrease for smaller values of r  and for higher 

values of ,r the values of 
 

ru  become dispersionless, 

although for the case of WD, the values of 
 

ru increase 

for all values of .r  It is noticed that the values of 
 

ru in 
case of WD remain more in comparison with WTD. 

Figure 3 depicts that the values of 
 

zu  in case of WTD 

decrease for all values of   ,r whereas for the case of WD,  



 
 
 
 

the values of 
 

zu
slightly increase for smaller values of 

r and finally becomes constant. 

It is evident that the values of 
 

zu in case of WD remain 
more in comparison with WTD. Figure 4 shows that the 

values of  T  in case of WTD slightly decreases for all 

values of   ,r  although for the case of WD, the values of 
 T increase for all values of  .r It is noticed that the values 

of  T in case of WD remain more in comparison with 

WTD. Figure 5 depicts that the values of  C  in case of 
  5z  slightly decrease for all values of   ,r  whereas for the 

case of   10z  the values of  C  increases for all values of 
r . It is evident that the values of  T in case of 
  5z remain more in comparison with  .10z  
 
 
Conclusion 
 
The Green’s functions for three-dimensional problem in 
transversely isotropic thermoelastic diffusion medium 
have been derived for static case. After applying the 
dimensionless quantities and using the operator theory, 
we have obtained the general expression for components 
of displacement, temperature distribution, mass 
concentration and stress components in Cartesian as 
well as in cylindrical coordinates. Based on the obtained 
general solution, the three- dimensional Green’s function 
for a study point heat source on the apex of a 
transversely isotropic thermoelastic cone in case of 
steady state problem are derived by four newly 
introduced harmonic functions. All components of 
thermoelastic field are expressed in terms of elementary 
functions and are convenient to use. 

From the present investigation, a special case of 
interest is deduced to depict the effect of diffusion. From 
numerical results, we conclude that the values of 

horizontal displacement 
  ,ru axial displacement 

 
zu  and 

temperature change  T  remain more in case of 
themoelastic diffusion  (WD) in comparison to 
themoelastic medium (WTD). 
 
 
Conflict of Interest 
 
The authors have not declared any conflict of interest. 
 
 
REFERENCES 
 
Chen WQ, Ding HJ, Ling DS (2004). Thermoelastic field of transversely 

isotropic elastic medium containing a penny-shaped crack: Exact 
fundamental solution. Int. J. Solids Struct. 41:69-83. 
http://dx.doi.org/10.1016/j.ijsolstr.2003.08.020  

Dhaliwal RS, Singh A (1980). Dynamical coupled thermoelasticity; 
Hindustan Publishers, Delhi. 

Kumar and Chawla         77
 

 
 
 
Ding HJ, Chen B, Liang J (1996). General solutions for coupled 

equations in piezoelectric media. Int. J. Solids Struct. 33:2283-2298. 
http://dx.doi.org/10.1016/0020-7683(95)00152-2  

Dunn ML, Wienecke HA (1999). Half space green's functions for 
transversely isotropic piezoelectric solids. J. Appl. Mech. 66:675-679. 
http://dx.doi.org/10.1115/1.2791548  

Hou PF, Leung AYT, Chen CP (2008). Green's functions for semi-
infinite transversely isotropic thermoelastic materials, ZAMM Z. 
Angew. Math. Mech. 1:33-41. 
http://dx.doi.org/10.1002/zamm.200710355  

Hou PF, Sha H, Chen CP (2011). 2D general solution and fundamental 
solution for orthotropic thermoelastic materials, Engng Anal. Bound. 
Elem. 35:56-60.  

Hou PF, Wang L, Yi T (2009). 2D Green's functions for semi-infinite 
orthotropic thermoelastic plane. Appl. Math. Model. 33:1674-1682. 
http://dx.doi.org/10.1016/j.apm.2008.03.004  

Kumar R, Chawla V (2011). A study of fundamental solution in 
orthotropic thermodiffusive elastic media, Int. Comm. Heat. Mass 
trans. 38:456-462. 

Kumar R, Chawla V (2011). A study of plane wave propagation in 
anisotropic three-phase-lag and two-phase-lag model. Int. Comm. 
Heat. Mass trans. 38:1262-1268. 

Kumar R, Chawla V (2012). Green's functions in orthotropic 
thermoelastic diffusion media. Eng. Anal. Bound. Elem. 36:1272-
1277.  

Kumar R, Chawla V (2013). Reflection and refraction of plane wave at 
the interface between elastic and thermoelastic media with three-
phase-lag. Int. Comm. Heat. Mass trans. 48:53-60. 

Kumar R, Kansal T (2008). Propagation of lamb waves in transversely 
isotropic thermoelastic diffusive plate. Int. J. Solid Struct. 45:5890-
5913. http://dx.doi.org/10.1016/j.ijsolstr.2008.07.005  

Nowacki W (1974a). Dynamical problem of thermodiffusion in solid – 1, 
Bull. Pol. Acad. Sci. Ser. IV Technol. Sci. 22:55-64. 

Nowacki W (1974b). Dynamical problem of thermodiffusion in solid-11, 
Bull. Pol. Acad. Sci. Ser. IV Technol. Sci. 22:129-135.  

Nowacki W (1974c). Dynamical problem of thermodiffusion in solid-111, 
Bull. Pol. Acad. Sci. Ser. IV Technol. Sci. 22:275-276.  

Nowacki W (1974d). Dynamical problems of thermodiffusion in solids. 
Proc. Vib. Prob. 15:105-128.  

Pan E, Tanon F (2000). Three dimensional green's functions in 
anisotropic piezoelectric solids. Int. J. Solids Struct. 37:943-958. 
http://dx.doi.org/10.1016/S0020-7683(99)00073-6

 Sharma B (1958). Thermal stresses in transversely isotropic semi-
infinite elastic solids. ASME J. Appl. Mech. 23:86-88.  

Sherief HH, Saleh H (2005). A half space problem in the theory of 
generalized thermoelasticdiffusion. Int. J. Solids Struct. 42:4484-
4493http://dx.doi.org/10.1016/j.ijsolstr.2005.01.001  

Slaughter WS (2002). The linearized theory of elasticity; Birkh¨auser 
Boston. http://dx.doi.org/10.1007/978-1-4612-0093-2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



78         Afr. J. Math. Comput. Sci. Res. 
 
 
 
Appendix A 
 

,)()()()(),( 1
*
24

*
75

*
31141

*
4

*
8

*
25

*
8

2
1

2
4

*
85

*
411  qqqqqqqbqqa 

),(),()()()( *
7

*
11

*
8

*
21

*
7

*
154

*
2141

*
3

*
7

2
1

2
4 qqdqqqqqqqc  

 

.
2

2

2

2

yx 







 

 
 
Appendix B 
 

*
541

*
3

*
741

*
7

*
55

*
6

*
8111

*
7

*
51 )()()(,)( qqqqqqqbqqa  

1
*
45

*
6

*
84

*
81

*
611 )()(  qqqqqc 

 )(),()()( *
71

*
5112

*
5

*
74

*
7

*
111

*
5

*
12 qqbqqqqqqa 

),(),()()( *
61

*
8112

*
8

*
64

*
6

*
21

*
8

*
21 qqcqqqqqq  

*
114

*
6

*
21

*
5

*
15

*
5

2
1

2
431

*
5

*
13 )()()(,)( qqqqqqbqqa  

*
6514

*
551

*
214

*
6

*
25

*
6

2
4

2
13 ,)1()()( qdqqqqqc    

 
 
 
 


