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In this paper a two unit standby system with single repair facility has been considered. When a working 
unit fails, it is immediately taken over by standby unit and repair on the failed unit is started 
immediately. Taking two types of distribution, namely, Weibull and Erlangian, various system 
effectiveness measures such as MTSF, Availability and Busy Periods are compared and results are 
interpreted numerically. Regenerative Point Technique and Semi-Markov process have been employed 
in this paper to find the results. Results are supported with numerical data also. Failure time 
distributions are taken to be exponential whereas the repair times are particular. The result obtained 
from this can be applied to study complex system where small change in the value of one variable 
affects the system measures to a great extent. 
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INTRODUCTION 
 
Reliability measures of a component for a two-component 
system with repair facility were obtained by several 
authors under different assumptions. Harris (1968), 
considered a two-unit parallel redundant system in which 
failure times of the components are dependent and 
distributed as bivariate exponential of Marshall and Olkin 
(1967), to derive the mean time to system failure using 
the supplementary variable technique for an arbitrary 
repair time distribution. Osaki (1980) extended the 
analysis to obtain the availability of the system by using a 
variant  of  Semi-Markov  process  with  non-regeneration 

point technique. Jye-Chyi (1992) studied the effects of 
dependence on modeling system reliability via 
multivariate Weibull distribution. In reliability theory, the 
steady-state availability of a repairable system is an 
important feature. 

In this paper, we have taken two different types of 
distributions namely Weibull and Erlangian to study the 
reliability measures such as mean time to system failure, 
steady-state availability, busy period of the repairman in 
repairing the failed units and profit analysis and compare 
them. Very few  authors  have  attempted  to compare the
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system effectiveness measures before now. The 
comparison can be helpful in studying the performance of 
complex system from reliability point of view and will be 
fruitful to system managers for evaluating the profit 
analysis of working systems. In the present work a two-
unit standby system with single repair facility is 
considered. As soon as the main unit fails, it is taken over 
by the standby unit and the failed unit is sent for repair. 
To improve reliability, the concept of preventive 
maintenance is also added. When both the units fail, the 
whole system is shut down to prevent any further losses 
and the system starts afresh.  
 
 
Literature review 
 
Earlier Gopalan and Waghmare (1992) worked on 
evaluating cost benefit analysis of single server n-unit 
system. Gupta (2002), Yong et al. (2012), Li and Zuo 
(2008) have calculated reliability measures of k out of n 
systems. Jane and Laih (2010) has provided dynamic 
algorithm for multistate two-terminal reliability. Whereas 
Lie et al. (1977) has provided calculation techniques for 
Availability. Marshall and Olkin (1967b), Nadarajah and 
Kotz (2005), Osaki (1970) provided excellent results on 
BVE Weibull and Markov Renewal Process which are the 
backbone of reliability literature. Paul and Chandrasekar 
(1997) have introduced the idea of dependent structure 
for failure and repair times. On the other hand, 
Pijnenburg et al. (1993) gave the idea of dependent 
parallel system. Rander et al. (1992) and Singh et al. 
(1986) discussed two unit cold standby concept 
considering various assumptions regarding failures, 
repairs, inspections and replacement. Yearout et al. 
(1986) provide excellent review on standby redundancy. 
 
 
Assumptions used in the model 
 
(a) The system consists of two main units along with an 
associate unit in which one main unit is kept on standby 
mode. 
(b) Whenever an operational unit fails, it is immediately 
taken over by standby unit. 
(c) There is a single repairman which repairs the failed 
unit on priority basis. 
(d) If both the main units fail the system shuts down. 
(e) After repair all units work as new. 
(f) After random period of time the whole system goes for 
preventive maintenance. 
(g) The failure rates of all the units are taken to be 
exponential whereas the repair time distributions are 
particular. 
 
 
Symbols and Notations 
 
 

0E =State of the system at epoch t=0  

 
 
 
 

E = set of regenerative states 
 

60 SS   
  )(tq ji  Probability density function of transition time from 
 

ji StoS  
  )(tQ ji Cumulative distribution function of time to 

transition time from 
 

ji StoS  
  )(ti Cumulative distribution function of time to system 

failure when starting from   
  ESE i 0  state  

  )(ti Mean Sojourn time in the state 
  ESE i 0  

  )(tBi Repairman is busy in the repair at time t / ESE i 0  
  321 // rrr Constant repair rate of Main unit / Associate 
units respectively. 

 /  = Failure rate of Main Unit / Associate units 
respectively. 
  )(/)(/)( 321 tgtgtg = Probability density function of repair 
time of Main Unit / Associate units / Shut Down mode 
respectively. 
  )(/)( 21 tGtG = Cumulative distribution function of repair time 
of Main Unit / Associate units respectively.  
a(t) = Probability density function of preventive 
maintenance . 
b(t) = Probability density function of preventive 
maintenance  completion time. 
A(t) = Cumulative distribution function of preventive 
maintenance. 
B(t) = Cumulative distribution function of preventive 
maintenance  completion time. 

s
  = Symbol for Laplace -stieltjes transform  

 
  c

  = Symbol for Laplace-convolution 
No/NS/Nr = unit under operation / good and non –
operative mode / repair state 
Po/PWR/Pr = unit under operation / good and non –
operative mode / repair state 
P.M  = System under preventive maintenance 
S.D = System under shutdown  
 
Up states - S0 = (NO, PO, Ns); S1 = (Nr, PO, NO); 
S3 = (Nr, Pwr, NO); S4 = (NO, Pr, Ns) 
 
Down states - S2 = (S.D.);   S5 = (P.M.) 
 
 
TRANSITION PROBABILITIES AND MEAN SOJOURN 
TIMES 
 
Using Markovian regenerative process, simple 
probabilistic considerations yield the following non zero 
transition probabilities (Figure 1): 
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Figure 1. State Transition Diagram. 
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And the mean sojourn times are given by: 
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Mean time system failure 
 
Let  in the state  be defined as the time that system 
continuous to be in state   before transiting to any other 
states. If T denotes the Sojourn time in state , then 
time to system failure can be regarded as the first 
passage time to the failed state. To obtain it we regarded 
down state as absorbing states. Using argument as for 
the regenerative process, we obtain the following 
recursive relation for  as follows: 
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                       (20) 
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Taking Laplace-Stieltje’s transform and solving the 
subsequent matrix 
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We get  
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Availability analysis 
 
Let  denote the probability that the system is up 
initially in regenerative state  at epoch t without passing 
through any other regenerative  state.  It  might  return  to 

 
 
 
 
itself through one or more non regenerative states so that 
either it continues to remain in regenerative state without 
visiting any regenerative state including itself by 
probability arguments. We observe that the entry to any 
of the state  is a regenerative point.  

is defined as the probability that the system is up in 
state    at epoch t. 

To obtain it, all possible consequences are considered: 
 
(1) Probability that the system initially up is  is up at 
epoch t without transiting to any other regenerative state 
in E which is  . 
(2) Probability that the system transits to  in E during 
(u,u+du) and then starting from it is up at epoch t 
which is 
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Thus we have 
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Taking Laplace-transform of the above equations and 
writing in matrix form: 
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We get the following expression for Availability: 
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BUSY PERIOD ANALYSIS 
 
Busy period repairman for performing normal repair 
 
Let  denote the probability that the repairman is 
busy initially with repair in regenerative state S4 and 
remains busy at epoch t without transiting to any other 
state or returning to itself through one or more 
regenerative states. By probabilistic argument, we have: 
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Developing similar relationship as in availability for 
normal repair, we have to find the steady state, the 
fraction of time for which the repairman of busy with 
normal repair is given by: 
 
 

)0('
)0(

)(1*
0

lim)(
2

3
0

1
0

D

N
tBs

B 
 

 
  )()()1()0( 34130114443041301343340113 pppppppppppN  

          
  (30) 

 
Where D2

/(0)  is same as in Availability expression. 
Therefore, in the long run, the fraction of time for the 

repairman in busy with the normal repair is given by: 
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Busy period repairman performing for shutdown 
repair 
 
Similarly, to find the steady state the fraction of time for 
which the repairman of busy with shut down repair: 
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Busy period of repairman performing the preventive 
maintenance 
 
Similarly, in the long run, for the fraction of time the 
repairman in busy with the preventive maintenance is 
given by: 
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Particular case 
 
Case (i) 
 
A random variable is said to have the Weibull distribution 
if its distribution is given, for some λ>0 ,α>0 by 
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Case (ii) 
 
When all repair time distribution are n-phases Erlangian 
distribution, that is, Density Function and Survival 
Function 
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And other distribution are negative exponential 
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Busy period analysis: 
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Profit analysis 
 
The profit analysis of the system can be carried out by 
considering the expected busy period of repairman in 
repair of the unit in [0,t]. Therefore, G(t)= total revenue 
earned by the system in [0,t]- Expected repair cost in [0,t] 
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RESULTS AND DISCUSSION 
 
Case I: When distribution is taken to be Weibull as 
shown in Tables 1 to 3. 
 
Case II: When distribution is taken to be Erlangian as 
shown in Tables 4 to 6. 
 
An excellent work in this direction involving components 
of two-unit system was done by Gaver (1964) and Harris 
(1968) but the comparative study of various parameters 
was not taken into account by any of these authors. We 
have considered two distributions namely Erlangian and 
Weibull which are regarded as the best distributions for 
achieving optimum results. We have employed 
regenerative point technique for obtaining mean time to 
system failure, availability and busy period analysis which 
are helpful in performing the profit analysis for arbitrary 
repair time distribution.  

However, the whole work could also have been viewed 
with the help of developing differential equations and 
taking Laplace-Transform thereof and Inverse Laplace-
Transform after that and reliability analysis could also 
have been performed as well as performance evaluation 
could have been undertaken, which the authors plan to 
carry out in the next work. 
 
 
Conclusion 
  
It is observed that the mean time to system failure 
(MTSF) and availability of the system decreases rapidly 

with the increase of failure rates    &  for fixed values  of 
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Table 1.Variation in MTSF vis-a-vis failure rate of main unit. 
 

α , β  , r 3 r 1, r 2 MTSF 

0.01 
0.02 
0.03 
0.04 

0.005 
0.005 
0.005 
0.005 

0.1 
0.1 
0.1 
0.1 

0.01 
0.02 
0.03 
0.04 

255.923 
108.462 
102.308 
92.254 

 
 
 
Table 2. Variation in Availability vis-a-vis failure rate of main unit. 
 

α , β  , r 3 r 1, r 2 Availability 

0.01 
0.02 
0.03 
0.04 

0.005 
0.005 
0.005 
0.005 

0.1 
0.1 
0.1 
0.1 

0.01 
0.02 
0.03 
0.04 

241.252 
124.977 
114.666 
100.358 

 
 
 
Table 3. Variation in Profit vis-a-vis increase in failure rate of main 
unit. 
 

α , β  , r 3 r 1, r 2 Profit 

0.01 
0.02 
0.03 
0.04 

0.005 
0.005 
0.005 
0.005 

0.1 
0.1 
0.1 
0.1 

0.01 
0.02 
0.03 
0.04 

146.259 
144.122 
122.969 
111.027 

 
 
 
Table 4. Variation in MTSF vis-a-vis failure rate of main unit. 
 

α , β  , r 3 r 1, r 2 MTSF 

0.01 
0.02 
0.03 
0.04 

0.005 
0.005 
0.005 
0.005 

0.1 
0.1 
0.1 
0.1 

0.01 
0.02 
0.03 
0.04 

324.675 
310.491 
310.230 
309.922 

 
 
 
Table 5. Variation in Availability vis-a-vis failure rate of main unit. 
 

α , β  , r 3 r 1, r 2 Availability 

0.01 
0.02 
0.03 
0.04 

0.005 
0.005 
0.005 
0.005 

0.1 
0.1 
0.1 
0.1 

0.01 
0.02 
0.03 
0.04 

341.933 
340.127 
340.116 
330.003 

 
 
 
Table 6. Variation in Profit vis-a-vis failure rate of main unit. 
 

α , β  , r 3 r 1, r 2 Profit 

0.01 
0.02 
0.03 
0.04 

0.005 
0.005 
0.005 
0.005 

0.1 
0.1 
0.1 
0.1 

0.01 
0.02 
0.03 
0.04 

306.211 
284.312 
262.299 
211.033 
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other parameters, when the distribution is taken to be 
Weibull. However, it is noted that when the distribution is 
assumed to be n-phase Erlangian, the mean time to 
system failure and availability of the system do not 
decrease so rapidly. Same can be predicted for profit 
analysis also. 
 
 
Conflict of Interest 
 
The author(s) have not declared any conflict of interest. 
 
 
REFERENCES 
 
Gaver DP (1964). "Failure time for a redundant repairable system of two 

dissimilar elements". IEEE Trans. Reliab. 13:14-22. 
    http://dx.doi.org/10.1109/TR.1964.5218240 
Gopalan MN, Waghmare SS (1992). "Cost benefits analysis of single 

server n-unit imperfect switch system with delayed repair". 
Microelectron. Reliab. 32(2):59-63. 

Gupta RC (2002). Reliability of a k out of n system of components 
sharing a common environment. Appl. Math. Lett. 15:837-844. 

    http://dx.doi.org/10.1016/S0893-9659(02)00051-4 
Harris R (1968). Reliability applications of a bivariate exponential 

distribution. Oper. Res. 16:18-27. 
    http://dx.doi.org/10.1287/opre.16.1.18 
Jane CC, Laih YW (2010). A dynamic bounding algorithm for 

approximating multistate two-terminal reliability. Eur. J. Oper. Res. 
205:625-637. 

    http://dx.doi.org/10.1016/j.ejor.2010.01.033 
Jye-Chyi L (1992). Effects of dependence on modeling system reliability 

and mean life via a multivariate Weibull distribution. IAPQR Trans. 
17:1-22. 

Li W, Zuo MJ (2008). Reliability evaluation of multi-state weighted k-out-
of-n systems. Reliab. Eng. Syst. Saf. 93:160-167. 

    http://dx.doi.org/10.1016/j.ress.2008.01.009 
Lie CH, Hwang CL, Tillman FA (1977). "Availability of maintained 

systems: A state-of-the-art Survey". AIIE Trans. 9(3):247-259. 
    http://dx.doi.org/10.1080/05695557708975153 
Marshall AW, Olkin I (1967a). A multivariate exponential distribution. J. 

Amer. Statist. Assoc. 62:30-40. 
    http://dx.doi.org/10.1080/01621459.1967.10482885 
Marshall AW, Olkin I (1967b). A generalized bivariate exponential 

distribution. J. Appl. Prob. 4:291-302. 
    http://dx.doi.org/10.2307/3212024 
Nadarajah S, Kotz S (2005). On the recent papers on modified Weibull 

distributions. IEEE Trans. Reliab. 54:61-62. 
    http://dx.doi.org/10.1109/TR.2005.858811 
Osaki S (1970a). System reliability analysis by Markov renewal 

processes. J. Oper. Res. Soc. Japan 12:127-188. 
Osaki S (1980). A two unit parallel redundant system with bivariate 

exponential life times. Microelectron. Reliab. 20:521-523. 
    http://dx.doi.org/10.1016/0026-2714(80)90601-0 
Paul RS, Chandrasekar B (1997). Reliability measures for two-unit 

system with a dependent structure for failure and repair times. 
Microelectron. Reliab. 37(5):829-833. 

    http://dx.doi.org/10.1016/S0026-2714(96)00115-1 
Pijnenburg M, Ravichandran N, Regterschof G (1993). Stochastic 

analysis of a dependent parallel system. Eur. J. Oper. Res. 68:90-
104. 

    http://dx.doi.org/10.1016/0377-2217(93)90078-2 
Rander MC, Kumar A, Tuteja RK (1992). "A two unit cold standby 

system with major and minor failures and preparation time in case of 
major failure". Microelectron. Reliab. 32(9):1199-1204. 

    http://dx.doi.org/10.1016/0026-2714(92)90641-W 
Singh SK, Goel SK, Gupta R (1986). "Cost benefit analysis of a two unit 

warm standby system with inspection, repair and post repair". IEEE 
Trans. Reliab. 35(1):49-53. 

 
 
 
 
Singh SK, Kanti S (2011). A Study on a two unit's parallel system 

subject to inspect and replacement. Ultra Scientist Phys. Sci. 
23(3A):717-726. 

Singh SK, Pathak VK (2006). Analysis of the feeding system of Rice 
Mill. J. R.S.U. 19(19):73-85. 

Yearout RD, Reddy P, Grosh DL (1986). "Standby redundancy in 
reliability- A review". IEEE Trans. Reliab. 35(3):285–292. 

    http://dx.doi.org/10.1109/TR.1986.4335434 
Yong W, Lin L, Shuhong H, Qing C (2012). Reliability and covariance 

estimation of weighted k-out-of-n multi-state systems. Eur. J. Oper. 
Res. 221:138-147. 

    http://dx.doi.org/10.1016/j.ejor.2012.02.037 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


