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This work describes the development, analysis, implementation and a comparative study of a class of
Implicit Multi-derivative Linear Multistep methods for numerical solution of non-stiff and stiff Initial
Value Problems of first order Ordinary Differential Equations. These multi-derivative methods
incorporate more analytical properties of the differential equation into the conventional implicit linear
multistep formulae and vary the step-size (k) as well as the order of the derivative (l) to obtain more
accurate and efficient methods for solution of non-stiff and stiff first order ordinary differential
equations. The basic properties of these methods were analyzed and the results showed that the
methods are accurate, convergent and A-stable. Hence, suitable for the solution of non-stiff and stiff
initial value problems of ordinary differential equations. A comparative study of the newly developed
methods are carried out to determine the effect of increasing the step-size (k) and the order of the
derivative (I). The result showed a remarkable improvement in accuracy and efficiency as the step-size
(k) and the order of the derivative (I) are increased.
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INTRODUCTION

Differential equations occur in connection with the

mathematical description of problems that are
encountered in various branches of science like
Mechanics, Chemistry, Biology and Economics.

(Awoyemi, 1992).Consequently, it constitutes a large and
very important aspect of today’s mathematics. Though,
these problems exist by theory or principle, their
mathematical analyses give rise to differential equations,
because the objects involved obey certain physical and
chemical laws involving rates of change (Ross, 1989;
Auzinger et al., 1990; Courant, 2007). Only a few of these
differential equations can be solved analytically, this
reason gave the search for numerical approximation.

Ordinary differential equations (ODEs) can be classified
into two: Initial value problem (IVP) or boundary value
problem (BPV) depending upon the given condition(s)
(Ademiluyi and Kayode, 2000).

A differential  equation  together  with initial
condition prescribed at one point is called IVP. For
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example the differential equation:

y'=x+y, y(0) = 1

A differential equation together with conditions specified
at two ends is called BVP. For example, the differential
equation:

y'= x+ 2y, y(0) = 1,y(1)=0

With condition prescribed at two points x=0 and x=1 is
called BVP
Thus, a differential equation of the form:

Y Zf(?@)’)a y(xo):yo,anSb (1)

is a first order IVP where f is assumed to be Lipschitz
continuous (Gonzalez et al., 2002).

A Linear Multi-step Method (LMM) for numerical
solution of first order ordinary differential equations of
the kind (1) is a computational method of the form:



k k
Z% Yn+j=h2ﬁj Yontj (2)
=0 =0

for approximating y, at the successive points (X, Yn),
where a; and B; are constants to be determined
(Auzinger, et al., 1993; Jain, 1984).

In this study, we consider the development of methods
for which k=1 and 2 respectively with the inclusion of
more analytical properties of the differential equation by
way of more derivative properties of the differential
equation. The study also attempts to determine the effect
of increasing the order of the derivatives as well as
varying the step-size of the Linear Multistep Methods of
the form:

k ] k
Z“j Ynrj = Zhi Zﬂ,, Ve 0 =+l (3)
=0 i1 j=0

which involves more derivative properties of the
differential equation. The aim of this study is to compare
the accuracy and stability of some implicit multi-derivative
linear multi-step methods.

DERIVATION OF THE METHODS

Linear multistep methods of the Form 2 can be classified
into explicit and implicit methods (Lambert, 1973). The
method is explicit when B¢ = 0 and implicit when By # 0. In
this study, we are concerned with the development,
analysis, implementation and a comparative study of a
family of implicit multiderivative linear multistep methods.
That is, methods for which Bx # 0. To achieve this, the
local truncation error Formula 5 to determine parameters
a;® and B;*° of the Formula 4 for step numbers k = 1and 2
was considered. Consequently, it is assumed that the
local truncation error T, for step application of the
formula to problem 1 (Equation 1) can be defined as:

k k
T =0, Y, = DB D By ¥ (4)
j=0

!
i=1 j=0
where /is the order of the derivative of y,,;

Adopting Taylors series expansion of variables y's+; ,

j=0(1), and iqu)L given as:

) ) h roor+i
Vi =Y u, j=1(1)m

pry r!
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in Equation 4 and combine terms in equal powers of h,
we have:

T =C3, +Ghys +GIEY n +..CJy +..1H™)  (5)

where:
P14 J (P—1v,:1 o (P 2v,:1 2i
One - step first derivative method
Setting k = 1, | = 1 in Equation 4 gives:
Y, + 4y, =hBy, +hB, Y., (6)
with local truncation error:
—_ ! '
7:1+1 _%yn +qyn+1 _hlq(lyn_hﬁ lyn+1 (7)
The Taylor’s expansion of:
2" 3 _.iii
Vo =y, +hy.+ Wy Bk 0(h*) (8)
2! 3!
and;
. . R
Vit =yn+hjfn4—2)j4—§+.....+0( ") )

Substituting these into Equation 7 and combine terms in
equal powers of h, gives:

T, =Cy,+Chy,+C,h*y  +Ch°y " +....40(h")
where:
Co=a,+a,

C =a - p,- B,
CZZAaI_ﬁII
Caz%al_%ﬁn

Imposing accuracy of order 2 on 7T, , to have
C,=C,=C,=0 and T,,= 0(h°).

That is,

o,+o,=0
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Q, _1610_:611 =0
%al _1611 =0

C3=%a1_%:611 #0

Solving this set of equations with a;= 1, gives:

a, ==L 8, :% and 3, :%

Substituting these values into Equation 6 and simplifying
to obtain a one-step first derivative method of the form:

Yor1 = Vo +g(y'n+1 y.) o

which coincides with the Trapezoidal method (Lambert,
1973).

One - step second derivative method

Setting k =1,/ =2 in (4) gives:

&+ =HAY A8V WJHABY ABY ] (1)

with local truncation error:

T =@+ B ALY ABY, (12)

Adopting the Taylor's series expansion of yn,; and y'n.1
as in Equations 8 and 9 respectively and;

i i iii h 4
yn+1—yn+hy n+ 2' + 3' +...... 'j'(xh) (13)

in Equation 12, combining terms in equal powers of h
gives:

T.=C,y, +C1hy'n +C2h2y"n+C3h3 i |
+C4h4yiv,, +()(h5)
where,

C,=o,+¢

C =« _1610 _1611

a
C, = TI_ﬁll _ﬁzo _ﬁZI

o B
3 6 2 ﬁZl
C4 ﬂ_ﬁ_ﬂﬂ

24 6 2
c.o % _Pu_ B
5

120 24 6

Imposing accuracy of order 4 on T, to have

4

C,=C,=C,=C,=C,=0 and T,,4= 0(h°).

Consequently, the following system of linear equations
were obtained:

o,+a,=0
al_ﬁlo_ﬁll =0

1

Eal _ﬁll _ﬁzo _ﬁZI =0
1 1

gal _51611 _:621 =0

1 1 1
aal_gﬁn _51621 =0
Q, 1611 1621

Solving this set of equations with a;=1 gives:

&, =-1, 1610:%’ 1611:%: 1620:"'%2 and

1321:_%2-

Substituting these values into Equation 11 and simplifying
to obtain a one step linear multi-derivative multistep
formula:

h . .
Yt =N -l_zb} n+1+)} n] _liy =y n] (14)

Two - step first derivative linear multi-step method

Setting k =2,1=1 in (4), gives:

B, 10 TR, :}{ﬁ VY Y mz] (15)

with local truncation error:



7-;-*—2 = %yn +aiyn+1 +a2yn+2 _h[ﬁ())}n-i-ﬁ ly 'n+1+ﬁ Zy'IH—Z] (1 6)

Adopting the Taylor's series expansion of Yn.i, Y n..
y,., and y's2 as given in Equations 8, 9, 17 and 18 in
Equation 16:

) 4h2 il 8h3 i
yn+2:y,,+2hy’n+7'y+T'y+ ...... +0h)  (17)
' ' B Zyiii 3yiV
Yo =Yntdiyut— — ke +0(1') (18)

and combine terms in equal power of h gives:
T.,=Cy, + Clhy'n + Czhzy"n + C3h3ymn + O(h4)

where;

C,=o,+to,+¢
C=a+2a, _1610 _1611 _1612

o 4
C3_ 61+§0(2_162H_2,812
o, 2 B, 4
C =22 P _ =
¢ 24+3 6 3’3‘2
4 1 2
C:— S —fB +=
5 120% 15 2 24ﬂll 3ﬂlZ

Imposing accuracy of order 4 on T we have

n+2

G=G=G=G=C=0and 7, ,=0(r"
That is,

o,+o,+a,=0

o, +2a, _1610 _1311 _1612 =
o
71"'20{2 _,611 _2,812 =0

o 4

6 g 27 IBH 2,621

o 2 4

a 5 2_%__,6217&0
o 4 B, 2
—L+—a, - —-=4,#0
120 15 ° 24 3521
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Solving this set of equations with a,=1gives:

=-1, o, =0, ,3102%: 1611:% and '612:%

Substituting these values into Equation 15 and simplifying
we obtain a two-step first derivative
formula of the form:

h 1 ] ]
Yy =Y, +§(y oty L) (19)

which coincides with Simpson’s one — third rule (Lambert,
1973).

Two - step second derivative linear multi-step
method

Settmgk Zl 2|n
By, BN A D A HBY ABY B

with local truncation error:

4) gives:

T =@+ B A B, B Y4B

............. (21)

Adoptlng the Taylor's series expansion of Yo,1. Y et Yns2
and y'.,»as in Equations 8, 9, 17 and 18 in Equat|on 21
and combine terms in equal powers of h gives:

T.,=Cy, +Chyn+CI'y n+Cl'y n+.....

7
CHY oy
Where;
C,=o,+o,+q,
C=a+2a, _1610 _1611 _1612
o
G, :71"' 2a, _,611 _2,812 _,620 _:621 _:622

a 4
G, :gl"' 3 a, — IBH 2:812 :821 2:822
a, 2o ,6 4 B
c =%, % Pu_ % p  Pu_,
“+ T 3 6 3 B, > b
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C =l[& i __1611 2/, _%ﬁzl_‘lﬁzzj

> 3140 15
I 4 1 1
C6_3(2410 15 2_4_01811__1812_§:821_21822j
(o 8 1 4
_1 28, 1 1, 4
7 3(1680 105 ° 24oﬁ“ ﬁ‘z ﬁ =5 A 22}

:@gaﬁ +25@, 7&5 % :@1"‘64822)

Imposing accuracy of order 7on T, , to have:
c,=C,=C,=C,=C,=C,=C,=C, =0,
and T,,,=0(h°

That is,

o,+a, +a,=0

Q +2&'2—,310 _1611 _1612 =0

a,

5 +2a, - ﬁll _2ﬁ12 _ﬁzo _ﬁZI _ﬁzz =0

%+ga2—% 2, = By =2/, =0
2(Zflo+%az_4ioﬁ“ %ﬁ” _%ﬁ” "2 =0
gt 105~ g P i P~ g a5 Pa =0

Solving this set of equations gives:

Substituting these values into Equation 20 and simplifying
we obtain a two-step second derivative formula of the
form:

(22)

Yo D, %Yn&_)}n) _}2118’"9 _8)/"*1 +); n

Basics properties of the methods

According to Gear (1971), a good numerical method for
solution of ordinary differential equations is required to be
accurate, consistent, =zero-stable, convergent and
absolutely-stable, these were investigated.

Order of accuracy and error constant of the methods

Errors are often generated when numerical formula is
used to solve a differential equation. These errors occur
as a result of using approximate values of function vy,
coupled with numerical truncation. The magnitude of the
error determines the degree of accuracy of the schemes.
If the magnitude is adequately small, the method is said
to be accurate, otherwise it is inaccurate (Babatola and
Ademiluyi, 2007; Dahlquist, 1978). Its effect on numerical
solution is to make it deviate significantly from the exact
solution, which can make the solution unstable.
According to Lambert (1973) and Fatunla (1988), a linear
multi step method is said to be of order P if the order of
the local truncation error T, is P.

One-step first derivative method

For the One-Step First Derivative Method (10) the local
truncation error:

T, =C,y, +Chy.+C,h*y n+Ch*y",

+C,h*y", +0(r°)

where;

G=q+q

G :q_ﬁo_ﬁl 03
Q:}éq_ﬁl (23)
G :%af—}éﬁl

with;

=-1,8, :% and f,, :%

Substituting these values into Equation 23 to have:

C,=—1+1=0

.
2 2



szl—l:()
2 2
1 1 1
C3:_——:——¢O
6 4 12
implying that, C, =C, =C, =0, C, :_%2¢O

hence method (10) is of order 2 with error constant

C==}s

One-step second derivative method

For the one-step second derivative method (14) the local
truncation error:

T, =Cy +Chy.+Ch’y.+Ch’y",

+C,h*y", +0(r°)

where;
C,=o,+¢
Clzal_ﬁlo_ﬁll
o
szj_ﬁll_ﬁzo_ﬂzl
o P
szgl_%_,ﬁzl
c-% Bi B,
24 6 2
_ o 1811 1621

o, =-1, ,6’10:%, ,b’ll:%, ,620:+%2 and

,321:_%2-

Substituting these values into Equation 24 gives:

C,=—1+1=0
co1-tolog
2 2

11 1 1
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111
T 4 12
111
T4 12 24

1 1 1 1

ST120 48 72 720

Implying that; C, =C, =C, =C,=C, =0,

Two-step first derivative method

For the two-step first derivative method (19) the local
truncation error:

T.,=Cy +Chy.+Ch>y.+Ch’y",

+C,h*y", +0(r°)
where;

C,=o,+to,+¢

C=a+2a, _1610 _1611 _1612
o

G, :?1"‘20(2 _1811 _21812

o, 4 i)
C3 = 61 +§a2 - 211 _21812
al 2 ﬂll 4
= — -, ————
Y24 37 6 3’3‘2
1 4 1 2
C.=—a—-—a,+—p,+—=
5 120 1 15 2 24ﬂ11 3ﬁ12

with;

a,=-1, a,=0, ﬂoz%s 1611:% and '612:%

Substituting these values into Equation 25 gives:

G, =-1+0+1=0
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C1=O—2—l—i—l=0
3 33
C2=O+2—£—z=0
3 3
cord 2,
3 6 3
c-0s2-2 4
3 18 9
_o A 4 2_1
’ 15 72 9 90
Implying that; C{) =C :Cz =Q :CZ; :O, and
c= L 0
90

Hence, method (19) is of order 4 with error constant

1
C.=—
> 90

Two-step second derivative method

For the two-step second derivative method (22) the local
truncation error:

T, =C,y, +Chyn+C,h>y n+C,h’y n+.. +
C,h"y" n+0(h°)
where;

C,=o,+to,+q,
G =a'1+2&'2—,310—,311 _1612

o

G, :?1"‘20(2 _1811 _21812 _1820 _1621 _1822
a 4

C3=—1+—Ot IBH 21812 1821_2,822

_&-F%—&—i—ﬂ &_Zﬂzz

| 4 1
Cs = _(_14__“2 - gﬂll _21312 - 5:321 _41322]

I{ o, 4 1 4 1
G :_[2410 +Ea2 _4_01611 _gﬁlz _gﬁZI _zﬁzzj

1
G :M(gq +25 ) 5040(1811 8612) (1821"_647822)
with;
—_1
o,=1 B Z—% Pro = 44
o =-2 161120 1621:%

%=1 ’612:% 1622:_%4

Substituting these values into Equation 27 gives:

C,=1-2+1=0
CI:—2+2+§—O—§:O
8 8
C,=-1+2- O—g L—l !
8 24 3 24
C3:_l+i_ _§_1+i:
3 3 8 6 12
C4:_L+E_ —l—l-’-i:
12 3 2 6 12
C5:_L+£_ _2_14_120
20 5 3 6 6
1 4 3 1 1
6:__+__ _—t — =
120 15 10 24 12
1,8 4. 3 1t 1
T840 105 10 120 40
C8:—L+i—0—i—i+i:0.0017¢0
6720 105 105 720 90
Implying that

Cc,=C,=C,=C,=C,=C,=C, =C, =0and
C, =0.0017

Hence, method (22) is of order 7 with error constant

C, =0.0017

Consistency

According to Lambert (1973) and (Awoyemi, 1999 and
2001), a linear multi-step method of type (4) is consistent
if the parameters a° and By° satisfy the following
conditions:



i) Order P >1

k
iy 2% =0
Jj=0
k k
iy 2J% =) f,
Jj=0 Jj=0

One-step first derivative method

(i) Since the One-step first derivative method (10) is of
order 2, then the first condition above is satisfied.

(i) With O ==L =L,@0=}/2 and 8, = 1

l
D % =0+

Jj=0

+1

=-1
= 0

Also, the second condition is satisfied.

/
iy D.Jja; =00, +1a; ang

=0
/
Zﬁjzﬁo-l_ﬁl
=0
1 1
= 0 + 1 and = 5"'5
= land =1

Hence, the third condition is satisfied. Now that all the
conditions are satisfied, then the one-step first derivative
method is consistent.

One-step second derivative method

(i) The one — step second derivative method (14) is of
order 4, then the first condition is satisfied.

iy with @, =—1, O = 1 » Buo =%, ﬁl:}/Z’
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B :%2 and 5, :_%

/
D ja; =00, +1a; =-1+1=0

j=0

Also the second condition is satisfied;

/
(iii) D jar, = 0, +1a; and

j=0

ilgy = B+, + B + By

= 1 and = 1
meaning that the third condition is satisfied. Now that all

the conditions are satisfied, then the one-step second
derivative method is consistent.

Two-step first derivative method

(i) The Two — step second derivative method (19) is of
order 4, then the first condition is satisfied.

(i) With, @, = 1,0, =0, @, =1, B, = 1,

B :% and '812:%

2
da,=ay+o+a, =-1+0+1=0
j=0

Also, the second condition is satisfied.

2
iy Y. ja; =00, +1a, + 20, and
j=0

Zzlﬁg/ = 1810 +1811 + 1812

j=0

=0+0+2 and =
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meaning that the third condition is satisfied. Now that all
the conditions are satisfied, then the two-step first
derivative method is consistent.

Two - step second derivative method

(i) The two-step second derivative method (22) is of order
7, then the first condition is satisfied.

iy With o, =1, B, :—%, B =—%4
a, =-2, B, =0 '621:%

B, = %! B, = _%4

a, =1,

2

dYa,=a+o+a, =1-2+1= 0
j=0

Also, the second condition is satisfied;

2
(iii) D jar, = 0, +1a; + 20, and
j=0

Zzlﬂij :ﬂl() +ﬂll +ﬂ12 +ﬂ20 +ﬂ21 +ﬂ22

j=0
=0'2+2and =_§+0+§_L+l_L =0

8 8
and=0
meaning that the third condition is satisfied. Now that all
the conditions are satisfied, then the two-step second
derivative method is consistent.
Zero — stability
According to Auzinger et al. (1992), Bakaev and Osterman

(2002), Babatola and Ademiluyi (2007), a linear multistep
method of the form:

Yok =0, +h(BY ek + ByY)

with first characteristic polynomial;

p(r) = ™ - otr”

is said to be zero-stable if the root of the first
characteristic polynomial p(r) has modulus less than or
equal to 1.

One- step first derivative method

The one — step first derivative method.

SPLINIS
Y1 = Wn 2yn+1 Yn

whose first characteristic polynomial is:

r"(r=1)=0
anditsrootsare r=0 or r=1
Showing that the roots are within a unit circle, hence it is
zero — stable.
One - step second derivative method

The one — step second derivative method:

B oy P
yn+l :yn+5(y n+l+yn)_E(y n+l_y n)

with first characteristic polynomial is:

r"(r=1)=0

Solving we have r =0 or r=1

Since the roots are within a unit circle, the method is
zero-stable.

Two- step first derivative method

The Two — Step first Derivative Method:
Yuer = ¥, + %[y',,+2+ 4yt ]
whose first characteristic polynomial

o(r) = rn+2 —r" =0

=r"(r*-1)=0

Solving gives r =0, r=1or r=—1

Since the roots are within a unit circle, the method is
zero-stable.

Two step second derivative method

The two step second derivative method:



2

3. R . .
Yoo :2yn+1 -V, +_h(y n2 =Yy n)+_ (y n+2 +8y n+l +8y n)
8 24
whose first characteristic polynomial:
o) =" 2" 41" o
r (r2 —2r+1) =0

r"(r-17=0

Solving gives r = 0 or r = 1(twice)
Since the roots are within a unit circle, the method is
zero-stable.

Convergence

According to Palencia (1994) Auzinger et al. (1996) and
Awoyemi (2005), a necessary and sufficient condition for
a linear multistep method to be convergent is that, it must
be consistent and zero-stable. From the analysis above,
the methods are consistent and zero stable, hence the
methods are convergent.

Absolute stability of the methods

A linear multi-step method is said to be absolutely —
stable if the region of its stability covers the whole left half
of the complex plain. (Palencia,1993).To ascertain the

region of A — stability of the methods, boundary locus
method and Dalhquist Stability model test equation

(y'=Ay) are adopted.

One - step first derivative method

Applying the one — step second derivative method:

Yo =Y o (Vo +)
n+l n 2

to solve the test equation gives:

h
yn+1 zyn +5(/,lyn+l +/1yn)
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Setting Z = Ah we obtain:

M_H%

-z
y,,l2

where u(z) is called the stability function. This method
will produce a convergent approximate if:

|u(z1<1
that is +% <1

Simplifying, we have sets A and B with;
a={z/z<2} and B={z/z<0}

The region of A — stability is the intersection of sets A and
B as shown in the doubly shaded portion of the region in
Figure 1. Hence, the method is A — stable.

One - step second derivative method

Applying the one — step second derivative method:

2

Yot =V +g (v + y’n)—il—z (¥ +y)

to solve the test equation gives:

h h?

yn+l = yn +_(//lyn+l +//lyn)__(/12yn+l +/12yn)
2 12

Simplifying to obtainz <2 orz<0.

The region of A — stability is shown by the doubly shaded
portion of the region in Figure 2.

Hence the method is A — stable.
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3 that is (- oo, 0)

Figure 1. Region of absolute stability of one-step first derivative method.

that is(- <, 0)
2

Figure 2. Region of absolute stability of one-step second derivative method.

Two — step second derivative method

The two — step first derivative method:

h \ \ \
yn+2 :yn +§[y n+2+4y n+l+y n]
with first characteristic polynomial:
p(r) =r*—1

and second characteristic polynomial:
L,
Ar) =§(r +4r+l)

Applying the boundary locus method; implying

) =21

5(?’) where r=¢"% = Cos@+isin 8

Cos 20 +isin 260 —1

h(@)= 0
g(cgs 20 +isin 20 + 4(Cos @ +isin 8)+1)

Rationalizing, simplifying and considering only the real
part of:

h6)=x(6)+iy(0), 0°<o<18(

gives x(6 )= (0,0)

Hence the method has zero stability only, therefore it is
not A — stable.

Two — step second derivative method

The two — step second derivative method:

2

- -I%I{))mz—)/n)-lgél(y'mﬁ@'m +8y,)

with first characteristic polynomial:
p(y=r-2r+1

and second characteristic polynomial:



0

that 1§ (o, 0)

Figure 3. Region of absolute stability of two-step second derivative method.
Hence the method is A — stable.

Table 1. Results obtained for problem 1 in respect of methods 1 to 4.

Famurewa.

One step second

derivative

Two step first

derivative

derivative

Two step second

Xn Exapt One s_lep_firsl
solution derivative

0.0 1 1

0.1 1.11034200 1.110000000
0.2 1.24280500 1.242749763
0.3 1.39971800 1.398465250
0.4 1.58364900 1.581804101
0.5 1.79744300 1.794893532
0.6 2.04423800 2.040857353
0.7 2.32750500 2.323147375
0.8 2.65108200 2.645577849
0.9 3.01920600 3.012363523
1.0 3.43656400 3.428161693

1
1.110341667
1.242805142
1.399716994
1.583648480
1.797441277
2.044235924
2.327503253
2.651079126
3.019202827
3.436559480

1
1.110341667
1.242805142
1.399716994
1.583648480
1.797441277
2.044235924
2.327503253
2.651079126
3.019202827
3.436559480

]
1.110341836
1.242805117
1.399717616
1.583649096
1.797442543
2.044237602
2.327505016
2.651081858
3.019206023
3.436563657
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h(r)= plr) where r=¢"’ = Cos@+isin @
5(r)
n(6) = 8(Cos@ +isin—1)

3(Cos@+isin@+1)

Rationalizing, simplifying and considering only the real
part of:

h6)=x(0)+iy(0), 0°<6<180°

gives x(@ :(_"0,0)

the region of A — stability is shown by the doubly shaded
portion of the region in Figure 3.

Test problems

To test the suitability and performance of the schemes,
the formulae are translated into computer algorithms
using FORTRAN programming language. These
FORTRAN programmes are used to solve some sample
first order initial value problems of (non-stiff and stiff)
ODEs. The results are presented in Tables 1 to 4 and
Figures 4 to 6. The main aim is to determine the accuracy
of the methods as the order of the derivative and step
number were increasing.

Problem 1

A non —stiff . V. P.

y=x+y, y0)=1, x[0,] witth=0.]

Exact solution: )(X) =2¢' —x—1
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Table 2. Results obtained for problem 2 in respect of methods 1 to 4.

Xn

Exact solution

One step first

One step second

Two step first

Two step second

derivative derivative derivative derivative

0.0 1 1 1 1 1

0.1 0.36788044 0.38150632 0.36842207 0.36840322 0.36788134
0.2 0.60653078 0.60832461 0.60655749 0.60654910 0.60653136
0.3 0.77800800 0.77961324 0.77809183 0.77809099 0.77801042
0.4 0.88249690 0.885632246 0.88258694 0.88256863 0.88249923
0.5 0.93941306 0.94432639 0.93943306 0.93940826 0.93941882
0.6 0.96923323 0.97036215 0.96928343 0.96924644 0.96923723
0.7 0.98449644 0.98540632 0.98449995 0.98445961 0.98449984
0.8 0.99221794 0.99401241 0.99227784 0.99223084 0.99222065
0.9 0.99610137 0.99801243 0.99696487 0.99660078 0.99610605
1.0 0.99804878 0.99967201 0.99808842 0.99802022 0.99804977

Table 3. Results obtained for problem 3 in respect of methods 1 to 4.

Xn

Exact solution

One step first
derivative

One step second
derivative

Two step first
derivative

Two step second
derivative

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1

3.059023205D-08
6.118046410D-08
9.177069615D-08
1.223609282D-07
1.529511603D-07
1.835413923D-07
2.141316244D-07
2.447218564D-07
2.753129885D-07
3.059023205D-07

1
3.059611237D-08
6.119936216D-08
9.179463292D-08
1.227323625D-07
1.534632604D-07
1.838360172D-07
2.148069141D-07
2.449721306D-07
2.758314022D-07
3.064125662D-07

]
3.059062114D-08
6.118050163D-08
9.177096391D-08
1.223613532D-07
1.529520391D-07
1.835463520D-07
2.141324635D-07
2.447301651D-07
2.753243114D-07
3.059042916D-07

1
3.059062066D-08
6.118050073D-08
9.177096122D-08
1.223613211D-07
1.529520113D-07
1.835463208D-07
2.141324341D-07
2.447301372D-07
2.753243049D-07
3.059042563D-07

1
3.059023211D-08
6.118046493D-08
9.177069662D-08
1.223609312D-07
1.529511682D-07
1.835413984D-07
2.141316327D-07
2.447218587D-07
2.753129916D-07
3.059023246D-07

Table 4. Results obtained for problem 4 in respect of methods 1 to 4.

Xn

Exact solution

One step first

One step second

Two step first

Two step second

derivative derivative derivative derivative
0.1 1.18619591 1.17342860 1.18608991 1.48609946 1.48619546
0.2 1.02819279 1.02321363 1.02808143 1.02808285 1.02819223
0.3 0.90869320 0.89461242 0.90856202 0.90856326 0.90869251
0.4 0.81304294 0.80732946 0.81303397 0.81303572 0.81304238
0.5 0.73340497 0.71834675 0.73324162 0.73324329 0.73340436
0.6 0.66518150 0.63103711 0.66501098 0.66501282 0.66518114
0.7 0.60549394 0.58343291 0.60536149 0.60536216 0.60549341
0.8 0.55245110 0.53621495 0.55229052 0.55229196 0.55245094
0.9 0.50476580 0.47365129 0.50459061 0.50459241 0.50476484
1.0 0.46153435 0.43659024 0.46142011 0.46142203 0.46153392
Problem 2 Exact solution: y(x)= x° +e %"
A stiff . V. P.

y'=-10(y—x*)+3x2, y(0)=1 withh =0.1

Problem 3
A stiff . V. P.
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Figure 6. Errors of second derivative methods and some existing | mm with respect to problem three.

y'=-15y(x), y(0)=1 withh=0.1

Exact solution: y(x)= e "

Problem 4

A non-Linear I.V.P. (Bernoulli differential equation)

y=xy'—y, y(0)=1 xe[0,1]withh =0.1

Exact solution y(x) =

Conclusion

In this study, a class of implicit multi-derivative linear
multi-step methods has been developed for numerical
solution of first order ordinary differential equations.
Analysis of the basic properties showed that the methods

are consistent, zero — stable, convergent and absolutely
stable. Suggesting that the methods are suitable for the
solution of non-stiff and stiff Initial Value Problems of
Ordinary Differential Equations and that second
derivative methods gave better accuracy than first
derivative methods.
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