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The result gamma n times gamma 1-n is a useful result in the theory of gamma and beta function, it is 
used to solve a definite integral where the function in it has a multi-valued function, several authors 
have proved this result in a tedious way. In this paper, we obtain a new version of the proof of  

 and the Legendre duplicating formulas for positive integer n, by using a simple analytical 
technique. 
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INTRODUCTION 
 

If n is such that , then                    (1) 
 
Several authors have proved this result as follows: 

 

 

Askey and Roy (2010). 

By transformation   we have that 

 

 

 
This formed integral cannot be solved easily by the 
elementary integral calculus, therefore it will be evaluated 
by the calculus of residue (by using contour integration) 
method, for the case of a multi-valued function. The 
function in the integral has a real singular point; the 
integral is then evaluated along an indented circle.  
Hence, the solution becomes: 

 

 
 
This method of proof is tedious to apply. The aim is to 
give a simple analytical method of proof of (1), which will 
be easier and faster than the previous way of the proof. 
Before we proof this result (1), the proofs of the Legendre 
duplicating formulas are necessary. 
 
 
LEGENDRE DUPLICATING FORMULAS 
 
If m is a positive integer, then 

 

                        (2) 
 
Okunuga (2008). 
 

                            (3)
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Proof of Equations 2 and 3 
 

        (4) 
 

 

 

             (5) 
 
We now proceed to prove (1) using these two results. 
 
 
 
The new version of the proof of Equation (1) 
 
Multiplying Equations (3) and (4) together, we obtain 
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              (6) 
 

Now, let  ,   
 
then Equation (6) becomes 
 

 
 
This completes the proof. 
 
 
Conclusion 
 
Most of the ways several authors proved this result are 
tedious; by first transforming it to a beta function and later 
applying the calculus of residue to evaluate the formed 
integral. We conclude that our new version of the proof is 
better and easier than the previous ways of proving it, 
and this proof is entering the literature for the first time. 
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