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In this article 2 examples of the coupled system of nonlinear partial differential physical equations
including diffusion-reaction equation have been investigated by means of variational iteration method
which is a new numerical method for solving these types of equations. The results are presented finally
in comparison with the exact solution, which show a good agreement and consistency with the exact
solution and introduce this method as a powerful and applicable one in this field.
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INTRODUCTION

Nonlinear phenomena that appear in many areas of
scientific fields such as solid state physic, plasma phy-
sics, fluid dynamics, mathematical biology and chemical
kinematics can be modeled by partial differential equa-
tion. A broad class of analytical methods and numerical
methods were used in handle these problems (Wakil and
Abdou, 2007).

In this paper we consider 2 examples of the coupled
system of nonlinear partial differential physical equations
including diffusion-reaction equation have been investi-
gated by means of variational iteration method (VIM)
(Ganji et al, 2006; Barari et al., 2008; Momani and
Abuasad, 2006; Farrokhzad et al., 2008; Omidvar et
al.,2008; He, 1999, 2006, 2007, 2008; He and Wu, 2006,
2007; Xu, 2007; He and Zhang, 2007; Sweilam and
Khader, 2007).

The application of VIM to the mentioned examples is
investigated to compute an approximate solution to the
governing equations. Finally, In order to verify the obtain-
ed results, a comparison will be made to the exact solu-
tion.

Reaction-diffusion equations describe a wide variety of
nonlinear systems in physics, chemistry, ecology, biology
and engineering. Reaction-diffusion equations are widely
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used as models for spatial effects in ecology. They sup-
port 3 important types of ecological phenomena: the exis-
tence of a minimal patch size necessary to sustain a
population, the propagation of wavefronts corresponding
to biological invasions and the formation of spatial pattern
in the distributions of populations in homogenous envi-
ronments. Reaction-diffusion equations can be analyzed
by means of methods from the theory of partial diffe-
rential equations and dynamical systems (Yildirim, 2009).

Basic idea of variational iteration method

To clarify the basic ideas of VIM, we consider the fol-
lowing differential equation:

Lu+Nu=g(), (1)

Where L is a linear operator, N is a nonlinear operator
and g(t)is a homogeneous term.

According to VIM, we can write down a correction func-
tional as follows:

()=, )+ [ AlLu, @)+ Nit, (0)-g(@)dz (@

Where A is a general lagrangian multiplier which can be
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identified optimally via the variational theory. The sub-
script n indicates the nth approximation and u, is consi-

dered as a restricted variation, that is, 0 iin =0

Application of VIM

2 coupled system of nonlinear equations are presented
here to solve using VIM.
In the first model, we shall deal with coupled system of

nonlinear physical equations:

Example 1

M:ua_uz—vﬂum 1>0, ()
ot

ov(x,1) —v(l—u—v)+v,, (4)
ot B

With initial conditions are as fallows:

ekx
70 =F 7> 5
u(x,0) [1+e’°‘] (5)
Y(x.0) = 1+(3/4)e" ©)

[1+ekx ]2

and the exact solutions are as fallows:

k(x+ct)
u(x,t) = W , (7)
k(x+ct)
W)= 1E—1(3/:1()e )T @
+e x+ct

Where k is constant.

azun (x,7)

At — — ) (9)
un+1(x,t)=un(x,t)+_[(t) (tng o Up (6 7) 14y (5, 7)7 +

Uy (X, T)vy (x,7))dT

Its stationary conditions can be obtained as follows:
/1 r:r:O

1+4|,,=0

(10)

We obtain the lagrangian multiplier:

A=-1 (11)

As a result, we obtain the following iteration formula:

azun (x,7)

U 4106 1) =t (,1) + Ié C o

Uy (x,T)vy, (x,7))dT

—uy (x,7) +uy(x, 7)3 +

(12)

Now we start with an arbitrary initial approximation that
satisfies the initial condition:

kx

e
u(x,0)==———, 13
(x,0) [1+ek*] (13)
W0y = L BIDE"

[1+ ek‘}z

Using the above variational formula (12), we have

azu() (x,7)

up () = g (1) + [ 8(_1)(“07 T2

uq (x, T)vo(x,7))dt

—ug(x,7)+ug(x, T)3 +

(14)

Substituting Eq. (13) in to Eq. (14) and after simplifl-
cations, we have:

K (4 8eKY _402KY _4p 2y 1 a2k, 50K
41+ k)3

u(x,t) =uyp(x,t)=—
(15)

And for determiningv(x,t), we consider the fallowing
equation:

azvn (x,7)

> v, (x,7)+vy, (x,l')2 +

A —
V] (6, 1) = vy (x.1) +jé Onr o

Uy (X, T)vy (x,7))dT

(16)

Its stationary conditions can be obtained as follows:

Al,.=0 (17)
1+4|,.,=0

We obtain the lagrangian multiplier:

A=-1 (18)

As a result, we obtain the following iteration formula:

azvn (x,7)

Y (60 = v (50) +jé(‘1)(vm a2

uy (x,7)v, (x,7))dT

v (X, 7))+ vy, (x, 7)2 +

(19)



Now we start with an arbitrary initial approximation that
satisfies the initial condition:

ekx
[1+ek"] ’
1+3/4)e™
[1+ekx]2

Using the above variational formula (19), we have

u(x,0)= (20)

v(x,0)=

2
97 (x7) —v(x, T)+v0(x,r)2 + (21)

()= vo(x,r)+j(’) (=Dvor -

X
ug (x,7)vg (x,7))dt

Substituting Eqg. (20) in
simplifications, we have:

to Eg. (21) and after

1

16(1+ <)%

120k 2eRK% _16K 262K _1263R% 21— 40K% s 302K

V(1) = vy (1) =~ (~16- 445 — 4062 _125K (22

And so on. In the same way the rest of the components
of the iteration formula can be obtained, but we show that
using the one iteration, we obtained good results which
they are very close to the results of the exact solution.

Example 2

A second interactive model is a coupled system of
diffusion-reaction equation:

ou(x,t)

=u(l-u—v)+u,, 1>0, (23)
ot ©
ov(x,t
w1 _ v —uv, (24)
ot ‘
The initial condition is as fallows:
ekx
u(x7 0) = b
[1 + eOASkxj|2
(25) and (26)
v(x,0)= !

And the exact solutions are as fallows:

ek(x-f»ct)

|:1+ e(),5k(x+(-r):|2 ’

u(x,t) =

(27) and (28)

1

v(x,t) = —,
|:1+ e(),Sk(x+Lt):|
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Where k is constant.

2
B 0“uy (x,7) B 2
up41(x,1) = uy (x,1) +J‘(;A(Mn7 axz U (%) Fup (X, T) +

uy (X, T)vy (x,7))dT

(29)
Its stationary conditions can be obtained as follows:
Al_=0
i (30)
1+ 4[,.,=0
We obtain the lagrangian multiplier:
A=-1 (31)

As a result, we obtain the following iteration formula:

azun (x,7)

-1 _
up41(x,1) :“n(X,t)+I(§( Wupr ax2

Uy (X, T)vy, (x,7))dT

=y (x,7) +uy(x, T)2 +

(32)

Now we start with an arbitrary initial approximation that
satisfies the initial condition:

kx
e

0=—
e

b
[1+e‘5kx]

Using the above variational formula (32), we have

v(x,0)= (33)

32u0 (x,7)

2 —ug(x, T)+u0(x,z’)2+

Ml(x,t)=M0(x,t)+'|~(;(—1)(u07— N

u (x,7)vo (x,7))dT
(34)

Substituting Eq. (33) in to Eq. (34) and after simplifica-
tions, we have:

1.5kx 2kx

1 (0.5)(2¢X + 4¢
(14 0N H | 5,2k, 2 15k

+2e
1.5kxt

(35)

u(x,t) =uy(x,1)=
t+2e

And for determiningv(x,t), we consider the fallowing
equation:

Bzvn (x,7)

vn+1(x,t)=vn(x,t)+f(;l(vnr— 2 (36)
x

+uy, (X, Ty (x,7))dT
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Figure 2a. The exact wave front solution of u(x,?) with fixed
Figure 1a. The numerical solution of by VIM for different

. values of k =c =1 (Example 1).
values of time. (k = 1) (Example 1).

Figure 2b. The exact wave front solution of
with fixed values of (Example 1).

Figure 1b. The numerical solution of V(x,) by VIM for diffe-
rent values of time. (k = 1) (Example 1).

ekx
. " . u(x,0)=———,
Its stationary conditions can be obtained as follows: [1+ eO‘Skx]
A|..=0 (40)
1+ A4 0 (57) 1
a v(6,0) = s,
|:1+eO.5kx:|

We obtain the lagrangian multiplier:

Using the above variational formula (39), we have

A=-1 (38)
2
As a result, we obtain the following iteration formula: v (x,1) :vo(x,t)+J'é(—1)(vOT—avoi(zx’r)mo(x,r)vo(x,r))dr
X
t 32y (x,7) (41)
)= , -1 = ) ,7)d I .
Vet (1) = vy (X t)+-[0( g a2 F it (T (. D) T Substituting Eqg. (40) in to Eq. (41) and after

(39) simplifications, we have:

0.5kx | gokv 4 1 20kx, _2,0-5kx, _4okx,  (42)

O‘Skx)B

Now we start with an arbitrary initial approximation that V(5,1 = vy (1) = O 2NE +8e
satisfies the initial condition (+e



Figure 3a. The numerical solution of u(x,?) by VIM for
different values of time. (k = 2/3) (Example 2).

Figure 3a. The numerical solution of u(x,?) by VIM for
different values of time. (k = 2/3) (Example 2).

And so on. In the same way, the rest of the components
of the iteration formula can be obtained.

RESULTS AND DISCUSSIONS

To verify obtained results, we assume k=c=1 and
therefore, Figures (1 - 4) show comparison of obtained
results u(x,t) and v(x,t) by VIM with the exact solution.
The results clearly illustrate that using the one iteration,

we obtained good results which they are very close to the
results of the exact solution.

Conclusion

In this letter we applied variational iteration method, for
solving coupled system of nonlinear partial deferential
equations. The results obtained here were compared with
the exact solution. The results revealed that the variatio-
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Figure 4a. The exact wave front solution of #(x,?) with
fixed values of kK =2/3,c =1 (Example.2).

Figure 4b. The exact wave front solution of V(Xx,?) with
fixed values of k =2/3,c=1. (Example 2)

nal iteration method is a powerful mathematical tool for
solutions of nonlinear equations in terms of accuracy and
efficiency. Besides, in all examples the convergence of
the VIM method are faster than ADM method (Wakiland
Abdou, 2007) which introduces this method as an
efficient method for solving nonlinear partial deferential
equation.
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