
 

African Journal of Mathematics and Computer Science Research Vol. 2(8), pp. 163-166, September, 2009     
Available online at http://www.academicjournals.org/ajmcsr 
© 2009 Academic Journals 
 
 
 
Full Length Research Paper 
 

A dimension result for polar sets of Brownian path in n-
spaces 

 
A. C. Okoroafor1* and P. U. Uzoma2 

 
1Department of Mathematics, Abia State University, P. M. B. 2000, Uturu, Abia State, Nigeria. 

2Department of Mathematics and Statistics, Federal Polytechnic Nekede, P. M. B. 1036, Owerri, Imo State, Nigeria. 
 

Accepted 13 August, 2009 
 

Let ( )��� �  denote the occupation measure of the ball of radius r centered at x for Brownian 

motion { } 310 ≥≤≤ �����	 �
� �� . We consider the set 
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show that for a = 0, ( ) ( ) 12 >= λλ
�
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 . Moreover, φ=∩ ��� 0  for 0>� . We deduce that the 

Hausdorff dimension of 0�  is 2 for n > 3 
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INTRODUCTION 
 
Let ( ){ }0>= ��		 � �  be a Brownian motion defined 

on a probability space ( )���ΣΩ  taking values in Rn. 
This is a special case of a more general symmetric stable 
processes �	 �α  of index ( ]20�� ∈αα  defined in Taylor 

(1986). 
 
A Borel set ��� ⊂  is said to be polar for Xt  if; 
 

{ } 0=>∈ ������������	� �             1.1                                   
 
These sets are “thin” in the sense that they have zero 
Lebesgue measure. 

In the study of geometric properties of polar sets, one is 
often interested in the fractal dimensions of the sets (e.g. 
the Hausdorff dimension and the packing dimension, see 
for example by Taylor (1986) and Xiao (2004). 

These properties also provide information about the 
underlying geometric structure of the set of points where 
the solution of a Laplace equation fails to be bounded in 
n-dimensional space. 

Hausdorff dimension is the most commonly used tool  in 
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analyzing the geometry properties of such sets. 
The well known relationship between Riesz - Bessel 

capacity and Hausdorff dimension is often used to 
measure the dimension of any Borel set E in Rn, using 
the range of a symmetric stable process. 

Following the results of Hawkes (1971a, b): if  
 

{ }������������ �� >=∈= �
�

� 	���� αα   

 
is the range of a symmetric stable process of index α , 
and dim denotes Hausdorff dimension, then for a Borel 
set E in Rn  
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( ) ������� � >=∩ αα ������ �   1.2 

 
More details were given, see (for example by Taylor 
(1986) and Xiao (2004)) that for any Borel set ��� ⊂  
with 2−≥ ����� . 
 

{ }�	��� ������
����������������� αα 0>−=
 
Our particular interest in the  present  note  is  to  use  the 
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more recent tool of multifractal analysis to obtain more 
information about the possible values of 3>�������� . 
 
 
TOOLS FROM MULTIFRACTAL ANALYSIS 
 
We summarize some useful techniques for determining 
the Hausdorff dimension. We consider the random 
probability measure � on Rn defined by: 
 

( ) [ ]{ }BXtBu t ∈∈= :1,0  

 
For any Borel set ��� ⊂  
 
Where;  
Xt  = Brownian motion in Rn  

⋅  = Lebesgue measure in R1. 

 

Thus, ( ) �=
1

0 ),( )(),( dtXIrxBu trxB  is the length of time 

from zero up to 1 spent in the ball ( )��� �  of radius r 

centered at x by the process Xt and ( )���� �  is the 

indicator function of ( )��� � .  

If { }101 ≤≤=∈= ����	���� �
� �  denote 

the range of the Brownian motion { } utX t .10, ≤≤  is 
supported by R1 and uniformly spread on R1. 

If u is a locally finite Borel measure on Rn, then the 
pointwise Holder exponent of u at x is  
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It is well known that for almost all Brownian paths Xt, in 
the range RT, the pointwise Holder exponent 
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One of the aims of multifractal analysis is to characterize 
the geometric properties of a measure u by giving the 
“size” of the set �� , more precisely their fractal 
dimensions. 

The Hausdorff dimension α���� ���� is called the 
singularity or multifractal spectrum of u and we say that u 
is a multifractal measure when ( ) 0>α����  for 
generalα ’s. 

 
 
 
 

To capture the dedicate fluctuation of the occupation 
measure of Brownian motion, the set of “thick” points of 
the measure u were considered by Dembo et al. (2000). 

A point ( )3≥∈ ��� �  is called a thick point of u if 
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They obtained the Hausdorff dimension of the set of thick 
points of the occupation measure of Brownian motion as 
follows: 
 
Let Xt be a Brownian motion in �� 3≥�� �  then for 

all 2

4
0

��
� ≤< ,  
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Where; 
qn is the first positive zero of the Bessel function 
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Let h be a gauge function that is ( ) ( )1010 ��� →
  is a 
continuous monotone increasing function 
satisfying ( ) ( ) ( ) 0200 >≤=+ ���
�
���
 � . It 

is clear that for any 1�� ∉ , the limit 
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gives zero, while for a fixed point 1�� ∈ ,  
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 may give a finite positive limit for a 

suitable choice of h. (2.1 ) can be strengthened to hold 

for 2

4
0

��
� ≤≤  (Xiao (2004), theorem 12.6). Thus; 
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Then φ=∩ ��� . 
 
 
HAUSDORFF DIMENSION OF THE POLAR SET FOR A 
BROWNIAN MOTION 
 
Now we are ready to prove the main result. We show that 
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Note that for the occupation measure associated with 
Brownian motion in 3≥� , (3.1) has a simple meaning, 
for it becomes; 
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Where; 
 

( ) ( )( )�=
1

0
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is the total time spent in ( )��� �  from zero up to time 1. 

It is sufficient to consider ( ) ( )���� =�0 . 
The key to the proof of the main result is the following 

result in Taylor (1967) which we state as;  
 
 
Lemma 1 
 
 For a Brownian motion in 2>�� � �  there exists a 

positive constant c such that for 00 >≥    
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Then we state: 
 
Lemma 2 
 
Let �	  be a Brownian motion in 3≥�� � �   
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Proof 
 

For  a   fixed   0∈>    and   0→!�    as   ∞→!   
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By Lemma 1, 
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Hence,  
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Thus by Borel Cantelli Lemma, we have ( ) 00 ="� ��� �  

Therefore there exists 0�  such that 
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For some 0��! ≤  a.s 
Hence, 
 

( )
1

12
0

>≤∈

		



�
��



�→
λλ ���

�
�

��

!

!

!

�!


��

���
�� . 

 
Allowing 0∈→ , shows that   
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Blumental zero one law. 
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Hence by monotonicity of T and h, we have 
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result is established. 
 
It then follows from 6, theorem 12.6.i that 2=����  
a.s. 
But 2−< �����   a.s., by (1.2) 

Hence, 32 >= �������� . 
 
 
Conclusion 
 
Characterizing the polar sets for Brownian motion is re-
lated to determining the sizes of sets hRA ⊂  for which 
there are nontrivial bounded harmonic functions on  R^n. 

It is well known that there exist bounded harmonic func-
tions on R^n if and only if A is polar for Brownian motion. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Such a set is called removable for a bounded harmonic 

functions and it is big enough to hide a pole of the 
harmonic function inside. 

But for all Borel sets with ( ) 2dim −< nA , A is polar. In 
this note we have shown that, for a polar set A for 
Brownian motion, ( ) 2dim =A  for 3>n . This means 
that the size of A is substantial in this case. Also we 
established a class of gauge functions for Hausdorff 
dimension results. 
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