
 

 

 

 

 
Vol. 6(3), pp. 40-50,  March 2013 

DOI 10.5897/AJMCSR 2013.0467 

ISSN 2006-9731©2013 Academic Journals 

http://www.academicjournals.org/AJMCSR 

African Journal of Mathematics and  

Computer Science Research 
 

 
 
 

Full Length Research Paper 

 

A model teaching for the cycloid curves by the use of 
dynamic software with multiple representations 

approach 
 

Tolga KABACA 

 
Faculty of Education, Pamukkale University, Kinikli, 20200, Denizli, Turkey. 

 
Accepted 4 March, 2013 

 
 

This study proposes the use of dynamic software that will enable students to explore a specific kind of 
parametric equation at the tertiary level. Firstly, it was aimed at visualizing the basic cycloid curve 
which is the trajectory of a point on the circle rolling along x-axis. Then, the mathematical meaning of 
the design process, which is mostly based on the syntax, was tried to be drawn out. It was explained 
however, that this meaning, produced the parametric equation of basic cycloid. Lastly, it explained the 
abstraction of more specific cycloids, which are called epicycloids and hypocycloid, from the 
mathematical analysis of first design. The entire abstraction process is defined as an example of how a 
model plays cyclic role between mathematics and the real world. 
 
Key words: Dynamic mathematics software, abstraction process, cycloids, mathematical modeling, multiple 
representations, tertiary level. 

 

 
INTRODUCTION 
 
A dynamic software should not be seen as a presenter 
just more dynamic than any regular presentation 
software. When the opportunity of examining the 
mathematical background of the dynamism is assessed, 
valuable mathematical abstraction may be reached. At 
this point, Fischbein’s (1987) comment should be 
remembered, which states that: “a visual image not only 
organizes the data at hand in meaningful structures, but 
is also an important factor guiding the analytical 
development of a solution”. Bishop (1989), also 
advocated that emphasizing visual representations in all 
aspects of mathematics is important. Furthermore, Duval 
(1998) highlighted the need of differentiating between 
different visual processes in the curriculum and proposes 
three cognitive processes which are involved in 
geometrical reasoning as visualization processes, 
construction   processes  (using   tools)   and    reasoning  

processes. Presmeg (1986) also pointed out that some 
visual thinkers are able to think by using dynamic mental 
images. 

By the above point of view, Gorgorio and Jones (1996), 
determined that the use of dynamic geometry software 
such as Cabri-Geometry can support the development of 
visual skills and understanding the visual phenomena 
behind the mathematical concepts. Dynamically capable 
software GeoGebra, also provides us an innovative 
opportunity to investigate and understand the curves 
described as dynamic. GeoGebra can be thought as an 
innovative mathematical modeling tool. Doerr and Pratt 
(2008), proposed two kinds of modeling according to the 
learners’ activity; exploratory modeling and expressive 
modeling after a comprehensive literature synthesis 
about modeling with technology.  

A  learner  uses a ready model, which is constructed by 
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Figure 1. Cyclic structure of modeling task. 

 
 
 

an expert, in exploratory modeling, while he or she shows 
his/her own performance to construct the model in 
expressive modeling. During the process of constructing 
the model, learners can find the opportunity to reveal the 
way of understanding the relationship between the real 
world and the model world (Doerr and Pratt, 2008). 

In Greek geometry, curves were defined as objects 
which are geometric and static. For example, a Parabola, 
is defined as the intersection of a cone and plane like 
other conics, which are first introduced by Apollonius of 
Perga (262 BC – 190 BC). Alternatively, 17th century 
European mathematicians preferred to define the curves 
as the trajectory of a moving point. In his “Dialogue 
Concerning Two New Science of 1638”, Galileo, found 
the trajectory of a canon ball. Assuming a vacuum, the 
trajectory is a parabola (Barbin, 1996). We can 
understand that some of the scientists, who studied on 
curves, were actually interested in the problems of 
applied science, like Galileo, as an astronomer and a 
physician; Nicholas of Cusa as an astronomer and so on 
and so forth. Some of the scientist, who lived 
approximately in the same century, took further, the 
research on the curves as a mathematician (e.g. 
Roberval, Mersenne, Descartes and Wren). 

This historical process also points out the different 
representations for the curves. Multiple representations of 
a mathematical concept, provide the opportunity of 
seeing concepts in different ways and establishing the 
connections among them (Even, 1998; Hiebert and 
Carpenter, 1992). Furthermore, it provides a constructive 
learning environment by enriching the mathematical 
learning environments (Chrysanthour, 2008). Most 
importantly, concepts, which also have dynamic views, 
can be made more understandable by a suitable 
modeling approach. 

The view of expressive modeling approach, defined by 
Doerr and Pratt (2008) and dynamic property of the 
curves, a modeling task, which is constructing the basic 
cycloid curve without using its well known parametric 
equation, was chosen in this study. A cycloid is a curve 
which is the trajectory of a point on the circle rolling along 
any  axis.  The basic cycloid curve is produced by a circle 

rolling along x-axis. The process of producing visual 
model was analyzed using geometry and algebra. During 
this analysis, every step was defined parametrically in 
terms of the software’s language (syntax). At the end of 
the process, an atomic structure of a parametric equation 
of cycloid was obtained. More so, how this anatomic 
structure helps us to produce more complicated cycloid 
curves such as hypocycloids and epicycloids was 
described. Figure 1 represents the cyclic structure of this 
modeling task.  

In other words, this study displayed the mathematical 
anatomy of the equation providing us the chance of 
producing new kinds of visual models and proposes, 
using multiple representation approach in tertiary level in 
the light of using a diverse and dynamic visualization 
process (Duval, 1998; Presmeg, 1986). The following 
sections describe this process and readers are 
recommended to experience and see what is going on. 
 
 
METHODS 

 
In accordance with the purpose of explaining the use of a 
technological tool in making an advanced mathematic concept 
clearly understandable, the entire process was defined by the 
sections below. Basically, three steps were used in illustrating the 
anatomy of the curve.  

First, it is shown how standard units circle can be used in 
producing the standard cycloid, both graphically and analytically. 
Second, the parametric equation, which is abstracted primitively at 
the first step, is analyzed and converted into a formal version. 
Lastly, after understanding the effects of several parameters to the 
cycloid visually, how to obtain hypocycloid and epicycloids curves 
was investigated. This step was also a check on the feasibility of 

the anatomy of the cycloid curve. The free accessible mathematics 
software GeoGebra, has been chosen as a dynamic software. 
GeoGebra is one of the easiest software that can make the relation 
between algebraic and graphical representations clearer (Edwards 
and Jones, 2006). 
 
 
Construction of the process 

 

First, we need a generator circle with radius r on the x-axis. The 
variable r, will control the radius and should be constructed as a 
slider  changing  from  0  to  5 on GeoGebra. The coordinates of the  
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Table 1. Description of visual model (In terms of GeoGebra).  
 

Construction of 
objects 

Name of objects 
on GeoGebra 

Description 

r=1 Slider r radius of generator circle with the initial value of 1 

M=(0,r) Point M Center point of generator circle (should be hidden) 

Circle[M, r] Circle c Generator circle with the center of M and radius r (should be hidden) 

   

A=Point[c] Point A 
Leg point for the rotating point on generator circle (should be hidden). Initial position is 
making 0 angles with x-axis. 

   

t=1 Slider t Angle t that controls the rotation in terms of radian 

B=Rotate[A,t,M] Point B Rotated point according to point A on generator circle (should be trace on) 

 
 
 

Table 2. Description of visual model (In terms of GeoGebra).  
 

Objects of visual model Mathematical model (parametric equation of the trace) 

Construction of 
Objects 

Description Equation Equation command on GeoGebra 

    

M=(0, r) 
The movement of generator circle will 
be controlled by this point. 

x=r*cos(u), y=r*sin(u) 
+ r 

Curve[r cos(u), r sin(u) + r, u, 0, t] 

    

B=Rotate[A, t, M] 

This point is generating the curve by 
rotating on the circle whose center is 
M. Parameter (slider) t controls the 
rotation. 

  

 
 
 
circle must be (0, r). Then, we need a point (named as A) rotating 

on the generator circle with the circular angle t. t will be a parameter 
controlling the rotation size in terms of radian. Lastly, the point A 
must be rotated by angle the t. The trace of this rotated point will 

generate the cycloid curve. The generator point will be named as A 
by GeoGebra automatically. The name is changed as B to utilize 
the descriptions in Table 1. When the slider t is animated, the 
generator point B will trace a curve. Hereafter, we focused on the 
shaded rows of Table 1 and inserted a column to identify the 

mathematical model corresponding to the visual model. The 
mathematical model was also checked by the command “Curve” 
which is a GeoGebra command producing parametric curve and its 
syntax is Curve[x-component, y-component, parameter, initial 
value, end value]. 

More so, we obtained the curve represented by the equation 
independent from its visual model. So we see both the trace of 
generator point and the curve. When the end value is defined as 
same as slider t, the curve will be plotted synchronously with the 

curve obtained by the trace.  
Table 2 shows a summary of the mathematical meaning of visual 

GeoGebra objects. We have a circle with radius r and center M. 
The center point M is free of the slider t which only controls the 
rotation of the point B. While pondering on a famous parametric 
equation {x=rcos(u), y=rsin(u)}, where u is the counter clockwise 
angle on the origin with the x-axis representing the unit circle and in 

the interval [0, 2]; the visual model means the circle which is 
centered at (0, r).  

Therefore, our new equation must be {x=rcos(u), y=rsin(u)+r} 
where u is changing  from   0  to  t.  That  is,  when   the  slider  t   is 

animated, the point B generates the circle as in Figure 2. While the 

point B is rotating around the circle, the circle also should move on 
x-axis horizontally, in order that the center point’s coordinates must 
be controlled by the slider t with the new coordinates as (t, r). 
According to this change on visual construction, the x component of 
parametric equation, must also be revised as x=r*cos(u) + u to 
translate the circle horizontally by the slider t as seen in Table 3.  

Now, we have a premature cycloid curve as seen in Figure 3. 
This curve does not start from origin and the rotation is not a natural 
rolling on axis as a true cycloid should be. This can be understood 
better by displaying the generator circle and the reference point A 
you will easily see that the rotation is not a real rolling.  To obtain 
the real rolling move, firstly, we need to fix the rotation direction of 
the point B and the rotation angle should be set as –t.  Second, the 
starting point of the rotation should be changed to the origin. To 
provide this, we can easily drag the point A, which generates the 
point B by rotation, to the (0, 0) as it is on the beginning position of 
generating circle. Table 4 summarizes the changes producing the 

basic cycloid curve. 
Now, we are sure that the trace of the point B generates the 

basic cycloid. To obtain the curve mathematically (the curve 
obtained by the curve command), we have to focus on the role of 
variables in the parametric equation. We can abstract that, the 
independent variable u in the trigonometric function controls the 
rotation, while the other independent variable u controls the 
horizontal translation. Therefore, the mathematical arrangement 

should be on the angle of the trigonometric function as (-u-/2). 
After this editing, we will have the cycloid both visually (trace) and 
mathematically (curve) as seen in Figure 4. 
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Figure 2. Obtaining the circle. 

 
 
 

Table 3. Changes on the model towards cycloid. 

 

Objects of visual model 
(In terms of GeoGebra) 

Mathematical model (parametric equation of the 
trace) 

Construction of 
Objects 

Description Equation 
Equation command on 
GeoGebra 

    

M=(t, r) 
Generator circle is being moved 
horizontally with the center (t, r) 

x=r*cos(u) + u 
y=r*sin(u) + r 

Curve[r cos(u)+u, r sin(u) + 
r, u, 0, t] 

    

B=Rotate[A,t,M] 
The generator point is rotating 
counterclockwise with the angle t 

  

 
 
 

 
 
Figure 3. Premature cycloid. 
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Table 4. Changes producing the basic cycloid. 
  

Objects of visual model 

(In terms of GeoGebra) 

Mathematical model (parametric equation of the 
trace) 

Construction of 
objects 

Description Equation 
Equation command on 
GeoGebra 

    

M=(t, r) 
Generator circle is being moved horizontally with 
the centre (t, r) 

x=r*cos(-u-/2) + u 

y=r*sin((-u-/2) + r 

Curve[r cos(-u - π / 2) + u, r 
sin(-u - π / 2) + r, u, 0, t] 

    

B=Rotate[A,-t, 
M] 

The generator point is rotating counterclockwise 
with the angle -t 

  
  

Starting 
position of point 
B should be 
changed 

Drag the point A, which generates the point B by 
rotation to the (0,0) at the initial position of the 
circle 

 
 
 

 
 
Figure 4. The basic cycloid.  

 
 
 

Lastly, let’s learn the effect of the generator circle’s radius to the 
cycloid curve. When the parameter r changed into a different value 
than 1, the following curve will be obtained as seen in Figure 5. In 
the Figure 5, the cycloid tends to create a knot. This problem needs 
to be solved. The size of horizontal translation of the center of the 
generator circle and the size of rotation of the generator point are 

not equal. We need to enlarge the horizontal translation by r. So 
coordinates of the center must be (rt, r) and the horizontal 

component of the equation must be x=r*cos(-u-/2) + r*u. Finally, 
we will have the basic cycloid even if the radius of generator circle 
is different from 1 as seen again like in Figure 4. 
 
 
Abstraction of the formal equation 

 
So far, we reached the following parametric equation by writing with 
a little algebraic arrangement as follows: 

(   cos(-(  / 2)))
(1)

(1  sin(-(  / 2)))

x r u u

y r u

  

  




                                                    (1)

 

 
Since cosine and sine functions are even and odd functions 
respectively, the Equation (1) can be revised as thus: 

 

( cos(  / 2))
(2)

(1 - sin(  / 2))

x r u u

y r u

  

 




                                                           (2)

 

 
Now, consider the unit circle to make a revision on sine and cosine 
function of the Equation (2) as seen in Figure 6. Note that, the 

length of the line segment AC can be stated as cos(u+/2) or sin(u). 
Because of the sign of the cosine function in the second quadrant, it 
must be multiplied by the negative unit.  
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Figure 5. Effect of the radius to the curve. 

 
 
 

 
 
Figure 6. Analyzing the trigonometric arrangement. 

 

 
 

Furthermore, the length of  the line segment AB can be stated as 

sin (u+/2) or cos (u). 
After this last revision, you will have the parametric Equation (3), 

which is completely same with the formal equation of the cycloid: 
 

( sin( ))
(3)

(1 cos( ))

x r u u

y r u

 

 
                                                                       (3) 

It is expected that we completely understood the equation and 
visual construction of the cycloid. So, we can make desired 
manipulations to obtain other types of cycloids. Before proceeding, 
we should understand the Equation (3) in terms of visual effect. 
Both x and y components have two summative terms. When these 
terms are written as ordered pairs correspondingly, the first and 

second terms will be (ru, r) and (-rsin(u), -rcos(u)), respectively. The 
ordered pair (ru, r) controls the generator circle’s center, so the 
parameter  r  means  the   circle’s   radius   and   the   ordered   pair  
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Figure 7. Strange epicycloid. 

 
 
 
(-rsin(u), -rcos(u)) controls the rotation of the generator point on the 
generator circle. 
 
 
Hypocycloid and epicycloids 

 
If the generator circle is rotated on or under another circle, the 
curve obtained this way is named as Epicycloids and Hypocycloid 

respectively. This means that the center of the generator circle must 
make a circular movement. Since the ordered pair (ru, r) controls 
the linear translation of the center, we need to think on the 
arrangement on that ordered pair to make the movement circular. 
As well known, (rcos(u), rsin(u)) creates a circle centered at origin. 
Therefore, the coordinates of the generator circle’s center should 
be (rcos(t), rsin(t)) and the corresponding parametric equation 
should be as follows: 

 

(cos( ) sin( ))
(4)

(sin( ) cos( ))

x r u u

y r u u

 

 
                                                                  (4) 

 
After this arrangement, the following curve is obtained both visually 
and mathematically. This however, looks strange. After thinking on 
the role of summative terms in the equation, it can be easily 
concluded that the center’s rotation radius and the generator 

circle’s radius are equal. So the generator circle is turning around 
just a point which is (0, 0) (Figure 7). 

We need to create a new slider to control the radius of orbit of the 
generator circle. Let’s name it as R and rearrange the generator 
circle’s coordinates as (Rcos(t), Rsin(t)).  

Correspondingly, the parametric equation must be {Rcos(u)-
rsin(u), Rsin(u)-rcos(u)}. This arrangement also does not produce a 
regular epicycloids or hypocycloid (Figure 8).  

To understand the situation clearly, let’s display the circles under 

and on the generator circle.  We can create the circles centered at 
origin and with radiuses R-r and R+r with the commands Circle [(0, 
0), R-r] and Circle[(0,0), R+r] respectively. This provides  us  to  see 

that we need to re-edit the rotation speed of the generator circle as 
R/r times of the rotation speed of its center. So, we need to re-write 
the command controlling the generator circle’s rotation as Rotate 
[A,-t*R/r,M], while the parametric equation is re-edited as follows: 

 

 

 

cos( ) sin /
(5)

sin( ) cos /

x R t r Rt r

y R t r Rt r

 

 
                                                                  (5)     

 
After this editing, the following curve, which is oblique according to 
a regular hypocycloid, is obtained as seen in Figure 9. To obtain the 
regular hypocycloid, which is named as Asteroid for the R=3 and 
r=1, it is enough to drag the point A as 90° on the generator circle in 
a counterclockwise direction. 

Correspondingly the equation must be changed as follows to 
produce the regular asteroid curve (Figure 10): 

 

 

 

cos( ) sin ( / 2) /
(6)

sin( ) cos ( / 2) /

x R t r R t r

y R t r R t r

  

  




                                            (6) 

 
After a trigonometric arrangement the asteroid curve’s parametric 
equation can be stated as follows: 

 

 

 

cos( ) cos /
(7)

sin( ) sin /

x R t r Rt r

y R t r Rt r

 

 
                                                                   (7) 

 
Finally, to obtain a hypocycloid, we need to make the generator 
circle, rolling on a circle. To give this effect to the generator circle it 
is enough to change the rotation direction, shown in Figure 11. That 
is, we need to re-state command as Rotate[A,t*R/r,M], which 
produces the generator point, by removing the minus sign.  

Consequently, the parametric equation should be restated with 
required trigonometric arrangements also: 
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Figure 8. Antother strange epicycloid. 

 
 
 

 
 

Figure 9. Oblique hypocycloid. 
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Figure 10. Regular asteroid. 

 
 
 

 
 
Figure 11. Epicycloid (Cardioid for R=2 and r=1). 



 

 
 
 
 

 

 

cos( ) cos /
(9)

sin( ) sin /

x R t r Rt r

y R t r Rt r

 

 
                                                (8) 

 
 

RESULTS AND DISCUSSION 
 

In view of the expressive modeling approach, given the 
task of “constructing the cycloid curve without using its 
formal equation”, the students may be more thorough in 
this, than presenting a ready cycloid graph, even if the 
ready graph is also dynamic. Students may encounter 
some problems, most of which are mathematical, while 
designing the task and in the process of solving them the 
students may have several learning opportunities for 
some special cases that are sometimes unexpected. 

Somehow, we can construct the dynamic cycloid curve 
with any dynamic geometry software. But, thanks to an 
eligible synthesis of algebra and geometry in GeoGebra, 
we can assess an innovative abstraction processes even 
for advanced mathematics concepts. The proposal in this 
paper is just one of the cases.  

In summarizing teaching and learning possibilities, 
which are presented by this case, we have seen that the 
Cartesian coordinates is not sufficient to define the point, 
moving on the circle. This is also an opportunity to point 
out that we need an alternative definition of a point on the 
coordinate system like parametric definition. Thanks to 
the parametric definition of a point as an ordered paired. 
We can use a parameter to define different manipulations 
like rotation and translation. Especially, easy construction 
of the equation of the cycloid along y-axis with parametric 
equation is a good additional example of why we need 
parametric equations rather than Cartesian, because, this 
vertical cycloid is not actually a function y or x. It is more 
than one y correspond for all x in its domain. 

The epicycloids and hypocycloid curves’ parametric 

equations are given as {(R-r)cos+rcos((R-r)/r), (R-

r)sin-rsin((R-r)/r)} and {(R+r)cos-rcos((R+r)/r), 

(R+r)sin-rsin((R+r)/r)} respectively while R represents 
the base circle radius and r represents the generator 
circle radius (url, 2012). It can be easily seen that these 
are completely same with the Equations (7) and (8) by 
taking into account that the R and r represent the radius 
of the orbit of the generator circle center and the radius of 
the generator circle and some trigonometric identities. 

An additional learning opportunity, which is appearing 
in the construction process of the cycloid model, is 
supporting the comprehension of the radian unit, which is 
a way of measuring an angle. Radian is the measure of 
an angle M, which is corresponding to the length of 
circular arc of a unit circle, whose center is M. When you 
have to be sure that the circular distance of the point 
rotating on the circle and the horizontal distance of the 
movement of the circle is equal, you will have a chance to 
strengthen the meaning of the radian in your mind. 

This study  also  showed  that  trying to explain even an  
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advanced mathematical concept by using technology and 
multiple representations approach can provide a chance 
to understand the connections as it is stated in the 
literature (Even, 1998; Hiebert and Carpenter, 1992). 
Furthermore, the teaching model is an operable example 
of the suggestions of Duval (1998) and Presmeg (1986) 
about visualization and the use of dynamic tools. 

Besides using GeoGebra as an expressive modeling 
tool, it has a great potential of reflecting the iterative and 
cyclic view of modeling (Doerr and Pratt, 2008). While the 
modeling process is defined as an examination of the 
relationship between a model and a real world 
experiment, modeling has two different epistemological 
perspectives. First, it is separate from the world to be 
modeled; second, modeling is a cyclic process. The 
cyclic process view of a model refers to co-construction 
of the real world and model world by the ways in which 
models are projected back into the real world. By this 
point of view, the formal equations of the curves can be 
seen as a mathematical real world. The capability of 
enlightening the relationship between algebraic 
representation and geometric representation of 
GeoGebra allows us to discover the anatomy of the 
parametric equation of the cycloid as Edwards and Jones 
(2006) also determined; and Gorgorio and Jones (1996) 
determined the same approach by the use of Cabri-
Geometry. There is only one parameter, named as t, 
used to define both x and y components in the cycloid 
equation. Our struggle of controlling two different 
movements by a unique slider on GeoGebra reveals that 
parameter t has two different meaning. Decoding this 
meaning of the equation allows us to create new kinds of 
cycloids. Accordingly, the cycloid model, modeled by 
GeoGebra with its algebraic capabilities, has constructed 
the cycloids’ equation in mathematical real world. This 
construction can be advanced to the other dynamic 
curves like epicycloids, hypocycloid or asteroid by 
creative manipulations on coordinates of the center of 
generating circle, and the rotation of the point on this 
circle. 
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