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This paper developed a measure of the strength of the association between populations based on ranks 
appropriate for the analysis of mixed effects model typed data with one observation per cell. We 
developed a test statistic for the proposed measure. From the result of the analysis, it was observed 
that  the proposed method is comparable to Kendal’s coefficient of concordance which assume the 
value zero (0) when there is perfect association and the value one (1) when there is no association 
whatsoever between the variables of interest. 
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INTRODUCTION 
 
When the assumptions of normality and homogeneity for 
the use of a parametric two way analysis of variance for 
data analysis are not satisfied, use of a non-parametric 
equivalence becomes preferable. One of the methods 
often used is the Friedman’s two-way analysis of 
variance by ranks (Gibbons, 1971, 1993). 

In this paper, we propose to develop a measure of the 
strength of the association between populations 
appropriate for the analysis of mixed effects model typed 
data with one observation per cell and to develop an 
alternative test statistic for the proposed measure. 
 

 

THE PROPOSED MEASURE 
 

As in Friedman’s test, suppose a random sample of k 
assessors, judges, observers or teachers are each to 
observe or assess and rank each of “c” candidates, 
patients, conditions or situations. As in Friedman’s test, 
this data if treated as a two-way analysis of variance 
would correspond to a mixed effect model without 
replication (Oyeka et al., 2010; Hollander and Wolfe, 
1999; Siegel, 1956). This means that the data are 
presented in the form of k × c table with say the column 
corresponding to one factor with c treatments or 
respondents which are considered fixed and the row 
corresponding to a second factor with k blocks, levels or 
observers which are considered random and there is only 
“1”  observation  per cell. The data are therefore arranged  
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in a table with c columns and k-rows just as for the 
corresponding two way analysis of variance with one 
observation per cell. As in the analogous analysis of 
variance, the null hypothesis to be tested is that the “k” 
judges or observers are in agreement or do not differ in 
their assessment of c conditions or treatments versus the 
alternative hypothesis that the assessors do in fact differ. 
Interest here is also in finding a common measure of 
association, agreement or concordance between the “k” 
assessors in their assessment of the c conditions or 
respondents. 

To answer these questions using a non-parametric 
approach, we first rank the observations in each row 
(observer) from the smallest to the largest or from the 
largest to the smallest. That is, within each row 
(observer) the rank of 1 is assigned to the smallest 
(largest) value. The rank of 2 is assigned to the next 
smallest (largest) value and so on until the rank of c is 
assigned to the smallest (largest) value. 

Now, let  be the rank assigned by the  observer 

or assessor to the  condition, subject or object for I = 

1, 2, …; j = 1, 2, …,c. Then the  row is a permutation 

of the numbers 1, 2, …, c in the absence of ties and the 

 column represents the ranks assigned to the  

subject by the observers. The ranks in each column are 
then indicative of the agreement between observers 

since if the  object has the same magnitude relative to 

all other objects in the opinion of each of the k observers; 

all  ranks  in  the  column will be the same. Thus, if the  



 
 
 
 
null hypothesis is true, we would expect the occurrence 
of the ranks 1, 2, …, c to be equally likely in each column 
(object) across all rows (observers). This implies that we 
would expect the column sums of ranks to be the same 
under the null hypothesis. If the observed sums of 
column ranks are so discrepant that they are not likely to 
be a result of equal probabilities, then this constitutes an 
evidence against randomness and hence against the null 
hypothesis. 

If however all the k observers agree perfectly in their 
ranking of each of the c objects, then the respective 

column totals , , …,  will be some permutation 

of the numbers 1k, 2k, …, ck. Now since the average 

column total is , for perfect agreement between the 

k observers or their ranking of the c objects, the sum of 
squares of deviations of column totals from the average 

column total, we have its maximum value, which is 

a constant given as: 
 

 =  

 

That is, 
 

c                                                (1) 

 

However, in general, the actual sum of squared 

deviations of observed column totals , from the 

average column total namely  is: 

 

=  

 

That is,  =                                      (2) 

 

Note that since  and  are both the sums of 

squares, they are both non- negative. However since k 

and c are both positive integer,  0  but 

 0 and is equal to 0 if the ranking of the “c” objects 

by the k observers is completely at random such that  

=  for all j = 1, 2, …, c if the observers are in 

complete agreement in their ranking of the c objects, then 

 =  . 

Therefore, a good measure D of the strength of 
association between observers in their ranking of objects 
is the difference: 
 

D =  -               (3) 

 
Note that the smallest value that D can assume is 0 

when  =  =  when there is perfect association  
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or agreement between the judges or assessors in their 
assessment of the subjects, treatments or conditions. 

The largest value D can assume is , when  = 0 

meaning there is independence or no association 
between the judges. The smaller the value of D, the 
stronger the association; and the larger the value of D, 
the stronger the disagreement between the judges. 

It however seems more illuminating to have an index of 
association that is normed between 0 and 1with say, 0 
indicating perfect association or agreement and 1 
indicating independence. To achieve this objective, we 

divide D by  obtaining: 

 

Q =  =  

 
That is, 
  
Q = 1 - W                                      (4) 
 

Where W =                          (5) 

 
Is the so called Kendal’s coefficient of concordance 
(Gibbons, 1971). 
 
 
SIGNIFICANCE TEST STATISTIC FOR Q 
 

Now the total sum of squared deviations of  from their 

mean  is  =  

 

=  

 

=  

 

Note that  = k.                                                  (6) 

 

Now the total sum of squares  may be partitioned into 

its three component parts as: 
 

 

 

 

 =  

 

 

= 𝑟𝑖𝑗 − 𝑟𝑖. − 𝑟.𝑗 + 𝑟 + 𝑟𝑖. − 𝑟 + 𝑟.𝑗 − 𝑟
2

𝑐
𝑗=1

𝑘
𝑖=1  

= c 𝑟𝑖. − 𝑟 2 + 𝑘. 𝑟.𝑗 − 𝑟
2 

+ 𝑟𝑖𝑗 − 𝑟𝑖. − 𝑟.𝑗 + 𝑟
2𝑐

𝑗=1
𝑘
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𝑘
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Where  
 

 = 0 is the sum of squares due to row 

factor namely observer; 
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Table 1. Weight gains (in grams) of hogs fed with certain diets. 
Ranks of weights shown in brackets. 
 

Hogs 
(blocks) 

Diets (treatment) 

Diet 1 Diet 2 Diet 3 Diet 4 Rank total 

1 1 (2) 4 (3) 8 (4) 0 (1) 10 

2 2 (2) 3 (3) 13 (4) 1 (1) 10 

3 10 (3) 0 (1) 11 (4) 3 (2) 10 

4 12 (3) 11 (2) 13 (4) 10 (1) 10 

5 1 (2) 3 (3) 10 (4) 0 (1) 10 

6 10 (3) 3 (1) 11 (4) 9 (2) 10 

7 4 (1) 12 (4) 10 (2) 11 (3) 10 

8 10 (4) 4 (2) 5 (3) 3 (1) 10 

9 10 (4) 4 (2) 9 (3) 3 (1) 10 

10 14 (4) 4 (2) 7 (3) 2 (1) 10 

11 3 (2) 2 (1) 4 (3) 13 (4) 10 

Total  30 24 38 18 110 

 
 
 

 

 

 
 = k = 

                                                   (7) 

 
is the sum of squares treatments or conditions due to 
column factor namely subjects, or judges where 

 

 =  

 
Finally,  

 

And SSE =  is the 

error sum of squares. 
Note that, 

 

                                                                      (8) 

 
And 

 

                                         (9) 

 
It can be shown that these three sums of squares are 

independently distributed and that  has a Chi-square 

distribution with kc-1 degrees of freedom (Hogg and 

Craig, 1971);  has a Chi-square distribution with k-1 

degrees of freedom;  has a Chi-square distribution 

with  c-1  degrees  of  freedom,  and  has a Chi-square  

 
 
 
 
distribution with  

degrees of freedom. 
 

Hence the statistic F =  =                   (10) 

 

has an F distribution with c-1 and  

degrees of freedom. Using Equations 8 and 9 in Equation 
10, we have that: 
 

F =  =  

 

That is, 
 

F =  

 

has an F distribution with c-1 and  

degrees of freedom which can be used to test the null 
hypothesis Ho: W = 0 (or Q = 1). That is, the null 
hypothesis of no association between judges or of 
independence of judges in their assessment of subjects, 
treatments or conditions. 
 
 
ILLUSTRATIVE EXAMPLE 
 
An experiment was conducted to determine the effects of 
four different types of diets on hogs. The hogs were 
grouped into eleven blocks in such a way that each block 
of four had identical environmental conditions. Each block 
has its four hogs assigned at random to one of the four 
experimental diets. 

Shown in Table 1 are the weights gains (in grams) of 
each of the 44 hogs. The ranks assigned to the weight 
gains from the smallest (1) to the largest (4) within each 
block (hog) are shown in brackets. Interest is in 
determining whether hogs are different in the weight 
gains to the various diets and to determine the level of 
association between diets and weight gain by hogs. 
Now from Equation 1, we have: 

 

 =  =  = 605 

 
And from Equation 2, we have that: 

 

 =  +  + 

= 900+ 576 + 1444 + 324 = 

3244 –  = 3244 - 3925 = 219;  = 219 



 
 
 
 
Hence from Equation 3, we have that: 
 
D = 605 - 219 = 386 
 

The relatively smaller value of D compared with  

would seem to suggest the existence of an association. 
 
However, from Equation 4 
 

Q = 1 -  = 1 - 0.362 = 0.638 

 
Hence from Equation 12; the test statistic for testing Ho: 
Q = 1.0 is: 
 

F =  =  =  = 2.3096 

 
which has an F distribution with 3 and 30 degrees of 

freedom. At α = 0.05,  = 2.92. 

Since the calculated F = 2.310 < 2.92 = F tabulated, we 
fail to reject the null hypothesis Ho: Q = 1.0(W = 0). That 
is the null, hypothesis of independence or no association 
between hogs and types of diets. We may therefore 
conclude that hogs differ significantly in their response to 
the four types of diet. Furthermore, since Q is relatively 
large (Q = 63.8%), we may conclude that the association 
between hogs and types of diet is small. Note that for the 
present data, the Kendal’s coefficient of concordance 

from Equation 5, W = = 0.362 = 1 - 0.638 = 1 - Q. 
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Conclusion 
 
This paper developed a measure of the strength of the 
association between populations based on ranks 
appropriate for the analysis of mixed effects model typed 
data with one observation per cell. We also developed a 
test statistic for the proposed measure. 

From the aforementioned result, the proposed method 
is shown to be comparable to Kendal’s Coefficient of 
Concordance and assume the value zero (0) when there 
is perfect association and the value one (1) when there is 
no association whatsoever between the variables of 
interest. The method is illustrated with some data. 
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