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INTRODUCTION 
 
We consider a differentiable manifold nV  of differentiabi-

lity class C∞  and of dimension n. Let there exist in nV  a 
tensor field F of the type (1, 1), s linearly independent 
vector fields iU , i  = 1, 2… s and s linearly independent 

1-forms iu  such that for any arbitrary vector field X, we 
have  
 

2 ( )i
iX b X cu X U= + ,                                          (1.1)                                                                                                                               

j
i i jU p U=                                         (1.2)                                                                         

Where 
 

F(X)
def

= X and 2b , c are constants 
 

Then the structure {F, iu , iU , j
ip ; i ,j=1,2,……., s} will be 

known as generalised structure and nV  will be known as 
generalised structure manifold of order s where s < n. 
 
 
Agreement 1.1 
 
All the equations which follow hold for arbitrary vector 
fields X, Y, Z, …….,etc. 

Now replacing X by X  in (1.1), we get 
 
 
 
*Corresponding author. E-mail: rajabhaia@gmail.com 

2 ( )i
iX b X cu X U= +                        (1.3)  

 
Operating F in (1.1), we get 
 

2 ( )i
iX b X cu X U= +   

 
Using (1.2) in above, we get 
 

2 ( )i j
i jX b X cu X p U= +                              (1.4) 

     
From (1.3) and (1.4), we have 
 

( ) ( )i j i
ju X u X p=                                (1.5)  

    
Further, operating F in (1.2) and using (1.1) and (1.2), we 
get 
 

(2) 2 ( )i
j j j

i ip b cu Uδ= +                             (1.6)    
 
Where 
 
( ) ( 1)

k
r i r i k

j jp p p−=  
 

On generalised structure manifold nV , let us introduce a 

metric tensor g such that 'F  defined by 

' ( , ) ( , )
def

F X Y g X Y=  is skew-symmetric, then nV  is 



 
 
 
 
 
called generalised metric structure manifold. 

We have on a generalised metric structure manifold 

( , ) ( , ) 0g X Y g X Y+ = . Replacing Y by Y  in above 
equation and using (1.1), we obtain 
 

2( , ) ( , ) ( ) ( ) 0i ig X Y b g X Y cu X u Y+ + =       (1.7) 
   
Where 
 

,( ) ( )i
iu X g U X=                                  (1.8)  

 

Then nV  satisfying (1.7), (1.8) is called generalised me-
tric structure manifold (Mishra, 1984). 
 
 
Agreement 1.2: The generalised metric structure mani-
fold will always be denoted by nV . 
 
Definitions: (Boothby, 1975; Kobayasi and Nomizu, 
1996) 
 
Almost tangent metric manifold: A differentiable 
manifold nM  on which there exists a tensor field F of the 
type (1, 1) such that  
 

2F = 0  (1.9)     
  
is called an almost tangent manifold and {F} is called an 
almost tangent structure on nM . 

On almost tangent manifold, let us introduce a metric g 

such 'F defined by   ' ( , ) ( , )
def

F X Y g X Y=  is alternating. 

Then nM  is called an almost tangent metric manifold 
and structure {F, g} is called an almost tangent metric 
structure. 
 
Almost Hermite manifold: A differentiable manifold nM  
on which there exists a tensor field F of the type (1, 1) 
such that  
 

2F = - nI                                                    (1.10) 
                
is called an almost complex manifold and {F} is called an 
almost complex structure. 

An almost complex manifold endowed with an almost 
complex structure and a metric g such that  
 

( , )g X Y = ( , )g X Y    (1.11)  
 
is called an almost Hermite manifold and structure {F, g} 
is called an almost Hermite structure.               
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Metric π -structure manifold: (Mishra and Singh, 1975; 
Duggal, 1969). A differentiable manifold nM  on which 
there exists a tensor field F of the type (1, 1) such that  
 

2F = - 2λ nI   (1.12)                 
 

where λ is a non zero complex constant. Then {F} is 
called a π - structure or G-F structure and nM  is called 
π - structure manifold or G-F structure manifold. 

On almost tangent manifold, let us introduce a metric g 

such that 'F defined by ' ( , ) ( , )
def

F X Y g X Y= is alter-
nating. Then {F, g} is called metric π - structure or H- 
structure and nM  is called metric π - structure manifold 
or H- structure manifold. 
 

F-Structure Manifold: (Yano, 1963). Let nM  be an n 

dimensional differentiable manifold of class C∞ and let 
there be a tensor field of the type (1, 1) and rank r (1�r�n) 
everywhere such that  
 

3 0F F+ =                                                            (1.13) 
                 
Then {F} is called an F-structure and nM  is called F-
structure manifold. 
 
Almost Grayan manifold: (Sasaki, 1960):  If on an diffe-
rentiable manifold nM  (n = 2m+1) of differentiability 

class 1rC + , there exist a tensor field F of the type (1, 1), a 
1- form u and a vector field U, satisfying  
 

2F = - nI + u ⊗ U                                                   (1.14) 
                
and  
 

U = 0                                                                 (1.15) 
                 
Then nM  is called an almost contact manifold and the 
structure {F, U, u} is said to give an almost contact 
structure to nM . 

On an almost contact manifold, let us introduce a me-

tric g such that 'F defined by ' ( , ) ( , )
def

F X Y g X Y= is 

skew symmetric. Then nM  is called an almost Grayan 
manifold and the structure {F, g, U, u} is called an almost 
Grayan structure. In this manifold it can be easily  calcu-
lated  

( , ) ( , ) ( ) ( ) 0g X Y g X Y u X u Y= − =                     (1.16) 



 
044         Afr. J. Math. Comput. Sci. Res. 
 
 
 
Torsion tensor A vector valued, skew–symmetric, 
bilinear function S defined by  
 

( , )S X Y  
def

=  [ , ]X YD Y D X X Y− −                    (1.17)      
                                                     

is called torsion tensor of a connexion D in a C∞ manifold 

nV . 
For the symmetric or torsion free connexion D, the 

torsion tensor vanishes. 
 
Curvature tensor: The tensor K of the type (1, 3) defined 
by  
 

( , , )K X Y Z  
def

=  [ , ]X Y Y X X YD D Z D D Z D Z− −     (1.18) 
  
is called the curvature tensor of the connexion D. 
 
 
Remark 1.1 
 

It may be noted that nV  gives an almost tangent metric 
manifold ,an almost Hermite manifold, metric π -structure 
manifold, F- structure manifold, an almost Grayan mani-
fold and {F, g , 1u , 2u , 1U , 2U } structure manifold 

according as ( 2b = 0,c = 0) ; ( 2b = -1, c = 0) ; ( 2b = rλ , c 

= 0) ;( 2b = -1, j
ip  = 0) ;( 2b = -1, c = 1, i , j  = 1, 1

1p  = 0) 

and ( 2b = -1, c = 1, j i
i jp p+  = 0 ; i , j  = 1,2) respectively. 

 

Affine Connexion D: Let us consider in nV  an affine 
connexion D satisfying (Duggal, 1971; Mishra, 1984) 
 

( ) 0XD F Y =                                              (2.1)a 
                     
and we call it as F-connexion.  
 
(2.1)a is equivalent to 
 

X XD Y D Y=                                             (2.1)b   
 

Replacing Y by Y  and using (1.1), (2.1)a in above, we 
get 
 

c[ ( ) ( )( ) ] 0i i
X i X iu Y D U D u Y U+ =             (2.1)c       

 
 

Theorem (2.1): In nV , we have 
 

2 (2)( ) ( ) ( )( )( )i
i j j j i

X i i Xcu Y u D U b p D u Yδ= − −      (2.2) 

 

 
 
 

2 (2)( ) ( )( )i
j j j

X i j i X jcu D U U b p D Uδ= − −             (2.3)  

 
 
Proof 
 

Operating ju  in (2.1)c and using (1.6), we get (2.2). 
Putting iU  for Y in (2.1)c and using (1.6), we obtain (2.3). 
 
 
Theorem 2.2 
 

In nV , we have 
  

2( , ) ( , ) ( ( , )) ( , ) ( , )i
iS X Y b S X Y cu S X Y U S X Y S X Y+ + − −  

 = 2[ , ] [ , ] ([ , ]) [ , ] [ , ]i
iX Y b X Y cu X Y U X Y X Y− − − + +      (2.5)     

 
 
Proof 
 
From (2.1)b, we get 
 

X X
D Y D Y= , 

Y Y
D X D X= , X XD Y D Y= , 

Y YD X D X=                 (2.6)                
 
Now in view of (1.1), we have 
 

2( , ) ( , ) ( ( , )) ( , ) ( , )i
iS X Y b S X Y cu S X Y U S X Y S X Y+ + − −          

= ( , )S X Y + ( , )S X Y ( , ) ( , )S X Y S X Y− −  
 
Using (1.17) and (2.6) in right hand side of above, we get 
(2.5). Now, we consider in nV  a scalar valued bilinear 
function µ , vector valued linear function υ  and a 1-form 
σ  given by, 

( , )X Yµ
def

=  

( )( ) ( )( ) ( )( ) ( )( )i i i i
Y X Y X

D u X D u Y D u X D u Y− + −  (2.7)
   

υ (X) 
def

=  ( )( ) ( )( )
iU X i iX

D F X D F U D U− −           (2.8) 

     
and 
 

σ (X) 
def

=  ( )( ) ( )( )
i

j j
X i UD u U D u X−                       (2.9) 

                 
i , j=1, 2,……., s. 
 
 
Theorem (2.3) 
 

In nV , we have 

 



 
 
 
 
 2 (2)( ) ( , )i

j j
ib p X Yδ µ− = 

[ ( ) ( ) ( ) ( ) ( )( ) ( )( ) ]i j i j i j i j
i i Y i X iY X

c u X u D U u Y u D U u X D u U u Y D u U− − +    

 
(2.10)a 

2 (2)( ) ( , )i
j j

ib p X Yδ µ− =

[ ( ) ( ( )) ( ) ( ( )) ( )( ) ( )( ) ]i j i j i j i j
Y i X ic u X u Y u Y u X u X D u U u Y D u Uυ υ− − + −   

 
(2.10)b 

and    
 

2 (2)( ) ( , )i
j j

ib p X Yδ µ− =
[ ( ){ ( ) ( )( )} ( ){ ( ) ( )( )} ( )( ) ( )( ) ]

i i

i j i j i j i j
U U Y i X ic u X X D u X u Y Y D u Y u X D u U u Y D u Uσ σ− + − + − +   

 
(2.10)c  

 
 
Proof 
 

Replacing Y by Y  in (2.2), we get 
 

2 (2)( ) ( ) ( )( )( )i
i j j j i

X i i Xcu Y u D U b p D u Yδ= − −     (2.11) 

              

Replacing X by X  in (2.2), we get 
  

2 (2)( ) ( ) ( )( )( )i
i j j j i

i iX X
cu Y u D U b p D u Yδ= − −   (2.12) 

               
Further by using (2.11), (2.12) in (2.7), we get (2.10)a. 
Using (2.1)a in (2.8), we get 
 

υ (X)= ( )iX
D U−                                                    (2.13) 

                             
Using (2.13) in (2.10)a, we get (2.10)b. Replacing X by 

X  in (2.9), we get 
 

( ) ( ) ( )( )
i

j j
i UX

u D U X D u Xσ− = +                      (2.14)  
         
 
Using (2.14) in (2.10)a, we get(2.10)c. 
 
 
Theorem 2.4 
 
In nV , we have 

2( , , ) ( , , ) ( ( , , ))i
iK X Y Z b K X Y Z cu K X Y Z U= +  

           (2.16)a 
2 (2) 2( ( , , )) ( ( , , )) ( ) ( ( , , ))i

j i j j j i
i ip u K X Y Z b u K X Y Z p b u K X Y Zδ= + −

 
        (2.16)b 

and 
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2[ ( , , ) ( , , ) ( , , )]b K X Y Z K Y Z X K Z X Y+ +
[ ( ) ( , , ) ( ) ( , , ) ( ) ( , , )]i i i

i i ic u Z K X Y U u X K Y Z U u Y K Z X U= − + +  
(2.16)c 

 
 
Proof 
 

Replacing Z by Z in (1.18) and using (2.1)b, we get 
 

( , , )K X Y Z = ( , , )K X Y Z  (2.17)                             
 
Operating F in (2.17) and using (1.1), we obtain (2.16)a. 
Operating ju  on both sides of (2.16)a and using (1.5) 
and (1.6), we get(2.16)b. Bianchi’s first identity of 
symmetric connexion D is given by 
 

( , , ) ( , , ) ( , , ) 0K X Y Z K Y Z X K Z X Y+ + =  (2.18) 
                        
Operating F in (2.18), we get 
 

( , , ) ( , , ) ( , , ) 0K X Y Z K Y Z X K Z X Y+ + =  (2.19) 
                           

Using (2.17) in (2.19), we get 
 

( , , ) ( , , ) ( , , ) 0K X Y Z K Y Z X K Z X Y+ + =      (2.20)  
 

Replacing X by X , Y by Y & Z by Z  in (2.20) and using 
(1.1), we get (2.16)c. 
 
 

Affine connexion 
~

D : Let us consider in nV  an affine 

connexion  
~

D  satisfying 

 
~ ~

( ) ( ) ( )( ) 0i i
X i X iu Y D U D u Y U+ =                     (3.1) 

 
                    
Theorem 3.1 
 

In nV , we have 
 

~ ~ ~
2( )[ ( ) ( ) ] ( )( ) 0i j i j k

X i X i j X i j ku Y b D U cu D U U D u Y p p U+ + =    

            (3.2)a 

(2) 2( )i
j j

ip b δ−  div jU =
~

( )
j

j
U icu D U  (3.2)b 

                            
Where 
 

div X  
def

=  1
1( )C X∇                                 (3.3)    and 

( )X Y∇  
def

=  
~

( )YD X                              (3.4)    
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Proof 
 

Operating 2F in (3.1) and using (1.1) and (1.2), we get 
(3.2)a. Now contracting (3.1) with respect to X and using 
(3.3) and (3.4), we get  
 

~

( ) ( )( ) 0
i

i i
i Uu Y divU D u Y+ =                         (3.5) 

  

Replacing i  by j, then Y by iU  in (3.3) and using (1.6), 
we get (3.2)b.  
 
 
Theorem 3.2 
 

In nV , we have 
 

~ ~
(2) 2( ) ( ) ( )( )( ) 0i

i j j j i
X i i Xcu Y u D U p b D u Yδ+ − =  (3.6)a                                    

~ ~ ~ ~
(2) 2( )( )( ) ( ) ( ) ( )( )( )i

j j i j i j j
i X Z i Z j X jp b D u Y u D U cu Y u D U D u Uδ− =

              (3.6)b 
 
Proof 
 

By operating ju  on (3.1) and using (1.6), we obtain 
(3.6)a.  

Multiplying  (3.2)c  with
~

( )j
Z ju D U , we get (3.2)d. 

 
 

Affine connexion D
o

 
 

Let us consider in nV  an affine connexion   D
o

 satisfying 

( )( ) ( )( ) 0i i
X i X iu Y D U D u Y U+ =

o o

                    (4.1)a                                         
 
And 
 

( )( ) ( )( ) 0X YD F Y D F X+ =
o o

                          (4.1)b   
 
It may be noted that all the results of the section above 

hold for D
o

. In addition we have the following results: 
 
 
Theorem 4.1 
 

In nV , we have 
 

2 ( ) [ ( ) ( )]i i
X Y X Y X Y iD Y D X b D Y D X c u D Y u D X U+ − + = +

o o o o o o
 

          (4.2)a 
 

 
 
 

2 ( ) ( )i
Y Y Y Y Y iD X b D X D X D X cu D X U− = − +

o o o o o
   (4.2)b
              

And 
 

2 ( ) [{ ( ) ( )} ( ) ]i i i
Y Y Y Y Y Y Yi iD X b D X D X D X c u D X u D X U u D X U+ − − = − +

o o o o o o o

                                                                                 (4.2)c 
 
 
Proof 
 
The equation (4.1)b is equivalent to 
 

X Y X YD Y D X D Y D X+ = +
o o o o

                           (4.3) 
                            
Operating F in (4.3) and using (1.1), we get (4.2)a. 

Replacing Y by Y  in (4.3) and using (1.1), (4.3), we get 
(4.2)b. Further, Operating F (4.2)b and using (1.1), we 
get (4.2)c. 
 
 

Affine connexion 
*

D :  
 

Let us consider in nV  an affine connexion  
*

D  satisfying 
 

* *

( )( ) ( )( ) 0i i
X i X iu Y D U D u Y U+ =                                           

(5.1)a 
 
And 
 

* *

( )( ) ( )( ) 0X XD F Y D F Y+ =                                (5.1)b                          
 
It may be noted that all the results of the section three 

hold for
*

D . In addition we have the following results: 
 
 
Theorem 5.1 
 

In nV , we have 
 

* * * * *
2 ( ) ( )i

X X X X X iD Y D Y D Y b D Y cu D Y U+ − = +  
            (5.2)a 

* * * *
2( ) ( ) ( )j j j j

i
U iU U UD Y D F Y b D Y cu D Y U+ = +  

            (5.2)b 
 
Proof 
 
(5.1)b is equivalent to 
 



 
 
 
 

* * * *

X X X XD Y D Y D Y D Y+ = +                             (5.3)   
 

Using (1.1) in (5.3), we get (5.2)a. Replacing X by iU  in 
(5.3), we get 
 

* * * *
2( ) [ ( ( ) ] ( )i j ji

j i j
U U Ui i iUD Y D Y p D b Y cu Y U p D Y− + + =

              (5.4) 
 

Replacing X by iU in (5.2)b, we get 
 

* * *

( ) ( )ii i

j
U iU UD Y D Y p D F Y− = −                           (5.5)  

  
From (5.4) and (5.5), we get 
 

* * *
2( ) [ ( ( ) ] ( )j ji

j j i j
U Ui i i iUp D F Y p D b Y cu Y U p D Y− + + =

              (5.6) 
 
Using (5.1)a in (5.6), we get (5.1)b. 
 
 
Theorem 5.2 
 

In nV , we have 
 

* * *
2 4( ) ( )X X XD Y b D Y b D Y− + =

* * * * *
2 2( ) ( )[ {( ) ( ) } ( )]i i i

i i j
X X U U Ui jD Y cb u D Y U cu X b D Y u D Y U D Y− + + +

                                                                                    (5.7) 
 
 
Proof 
 

Replacing X by X  in (5.3) and using (1.1), (5.1), we get 
(5.7). 
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