Full Length Research Paper

Some affine connexions in a generalized structure manifold

R. P. Singh and S. D. Singh
Department of Mathematics, Faculty of Science, Banaras Hindu University, Varanasi-221005.

Accepted 13 January, 2009

Abstract

In this paper we have studied some affine connexions in a generalised structure manifold. Certain theorems are have also been proved, which are of great geometrical importance.

Key words: C^{∞}-manifold, generalised structure, generalised metric structure, F - structure, π - structure, AMS Subject Classification Number: 53.

INTRODUCTION

We consider a differentiable manifold V_{n} of differentiability class C^{∞} and of dimension n. Let there exist in V_{n} a tensor field F of the type (1,1), s linearly independent vector fields $U_{i}, i=1,2 \ldots$ s and s linearly independent 1 -forms u^{i} such that for any arbitrary vector field X , we have

$$
\begin{align*}
& \overline{\bar{X}}=b^{2} X+c u^{i}(X) U_{i}, \tag{1.1}\\
& \overline{U_{i}}=p_{i}^{j} U_{j} \tag{1.2}
\end{align*}
$$

Where
$\mathrm{F}(\mathrm{X}) \stackrel{\text { def }}{=} \bar{X}$ and b^{2}, c are constants
Then the structure $\left\{\mathrm{F}, u^{i}, U_{i}, p_{i}^{j} ; i, \mathrm{j}=1,2, \ldots \ldots ., \mathrm{s}\right\}$ will be known as generalised structure and V_{n} will be known as generalised structure manifold of order s where $s<n$.

Agreement 1.1

All the equations which follow hold for arbitrary vector fields X, Y, Z, \qquad etc.
Now replacing X by \bar{X} in (1.1), we get

[^0]\[

$$
\begin{equation*}
\overline{\bar{X}}=b^{2} \bar{X}+c u^{i}(\bar{X}) U_{i} \tag{1.3}
\end{equation*}
$$

\]

Operating F in (1.1), we get

$$
\overline{\bar{X}}=b^{2} \bar{X}+c u^{i}(X) \overline{U_{i}}
$$

Using (1.2) in above, we get

$$
\begin{equation*}
\overline{\bar{X}}=b^{2} \bar{X}+c u^{i}(X) p_{i}^{j} U_{j} \tag{1.4}
\end{equation*}
$$

From (1.3) and (1.4), we have

$$
\begin{equation*}
u^{i}(\bar{X})=u^{j}(X) p_{j}^{i} \tag{1.5}
\end{equation*}
$$

Further, operating F in (1.2) and using (1.1) and (1.2), we get

$$
\begin{equation*}
{ }^{(2)} p_{i}^{j}=b^{2} \delta_{i}^{j}+c u^{j}\left(U_{i}\right) \tag{1.6}
\end{equation*}
$$

Where

$$
{ }^{(r)} p_{j}^{i}={ }^{(r-1)} p_{k}^{i} p_{j}^{k}
$$

On generalised structure manifold V_{n}, let us introduce a metric tensor g such that F defined by
$' F(X, Y) \stackrel{\text { def }}{=} g(\bar{X}, Y)$ is skew-symmetric, then V_{n} is
called generalised metric structure manifold.
We have on a generalised metric structure manifold $g(\bar{X}, Y)+g(X, \bar{Y})=0$. Replacing Y by \bar{Y} in above equation and using (1.1), we obtain

$$
\begin{equation*}
g(\bar{X}, \bar{Y})+b^{2} g(X, Y)+c u^{i}(X) u^{i}(Y)=0 \tag{1.7}
\end{equation*}
$$

Where

$$
\begin{equation*}
u^{i}(X)=g\left(U_{i,} X\right) \tag{1.8}
\end{equation*}
$$

Then V_{n} satisfying (1.7), (1.8) is called generalised metric structure manifold (Mishra, 1984).

Agreement 1.2: The generalised metric structure manifold will always be denoted by V_{n}.

Definitions: (Boothby, 1975; Kobayasi and Nomizu, 1996)

Almost tangent metric manifold: A differentiable manifold M_{n} on which there exists a tensor field F of the type $(1,1)$ such that
$F^{2}=0$
is called an almost tangent manifold and $\{\mathrm{F}\}$ is called an almost tangent structure on M_{n}.
On almost tangent manifold, let us introduce a metric g such ' F defined by $\quad F(X, Y) \stackrel{\text { def }}{=} g(\bar{X}, Y)$ is alternating. Then M_{n} is called an almost tangent metric manifold and structure $\{\mathrm{F}, \mathrm{g}\}$ is called an almost tangent metric structure.

Almost Hermite manifold: A differentiable manifold M_{n} on which there exists a tensor field F of the type $(1,1)$ such that

$$
\begin{equation*}
F^{2}=-I_{n} \tag{1.10}
\end{equation*}
$$

is called an almost complex manifold and $\{F\}$ is called an almost complex structure.
An almost complex manifold endowed with an almost complex structure and a metric g such that

$$
\begin{equation*}
g(\bar{X}, \bar{Y})=g(X, Y) \tag{1.11}
\end{equation*}
$$

is called an almost Hermite manifold and structure $\{\mathrm{F}, \mathrm{g}\}$ is called an almost Hermite structure.

Metric π-structure manifold: (Mishra and Singh, 1975; Duggal, 1969). A differentiable manifold M_{n} on which there exists a tensor field F of the type $(1,1)$ such that

$$
\begin{equation*}
F^{2}=-\lambda^{2} I_{n} \tag{1.12}
\end{equation*}
$$

where λ is a non zero complex constant. Then $\{\mathrm{F}\}$ is called a π-structure or G-F structure and M_{n} is called π - structure manifold or G-F structure manifold.
On almost tangent manifold, let us introduce a metric g such that ' F defined by $' F(X, Y) \stackrel{\operatorname{def}}{=} g(\bar{X}, Y)$ is alternating. Then $\{\mathrm{F}, \mathrm{g}\}$ is called metric π - structure or H structure and M_{n} is called metric π-structure manifold or H - structure manifold.

F-Structure Manifold: (Yano, 1963). Let M_{n} be an n dimensional differentiable manifold of class C^{∞} and let there be a tensor field of the type $(1,1)$ and rank $r(1 \leq r \leq n)$ everywhere such that

$$
\begin{equation*}
F^{3}+F=0 \tag{1.13}
\end{equation*}
$$

Then $\{\mathrm{F}\}$ is called an F -structure and M_{n} is called Fstructure manifold.

Almost Grayan manifold: (Sasaki, 1960): If on an differentiable manifold $M_{n}(\mathrm{n}=2 \mathrm{~m}+1)$ of differentiability class C^{r+1}, there exist a tensor field F of the type (1, 1), a 1 - form u and a vector field U, satisfying

$$
\begin{equation*}
F^{2}=-I_{n}+\mathrm{u} \otimes \mathrm{U} \tag{1.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{U}=0 \tag{1.15}
\end{equation*}
$$

Then M_{n} is called an almost contact manifold and the structure $\{F, \mathrm{U}, \mathrm{u}\}$ is said to give an almost contact structure to M_{n}.
On an almost contact manifold, let us introduce a metric g such that ' F defined by $F(X, Y) \stackrel{\text { def }}{=} g(\bar{X}, Y)$ is skew symmetric. Then M_{n} is called an almost Grayan manifold and the structure $\{\mathrm{F}, \mathrm{g}, \mathrm{U}, \mathrm{u}\}$ is called an almost Grayan structure. In this manifold it can be easily calculated

$$
\begin{equation*}
g(\bar{X}, \bar{Y})=g(X, Y)-u(X) u(Y)=0 \tag{1.16}
\end{equation*}
$$

Torsion tensor A vector valued, skew-symmetric, bilinear function S defined by

$$
\begin{equation*}
S(X, Y) \stackrel{\text { def }}{=} D_{X} Y-D_{Y} X-[X, Y] \tag{1.17}
\end{equation*}
$$

is called torsion tensor of a connexion D in a C^{∞} manifold V_{n}.
For the symmetric or torsion free connexion D , the torsion tensor vanishes.

Curvature tensor: The tensor K of the type (1, 3) defined by

$$
\begin{equation*}
K(X, Y, Z) \stackrel{\text { def }}{=} D_{X} D_{Y} Z-D_{Y} D_{X} Z-D_{[X, Y]} Z \tag{1.18}
\end{equation*}
$$

is called the curvature tensor of the connexion D.

Remark 1.1

It may be noted that V_{n} gives an almost tangent metric manifold ,an almost Hermite manifold, metric π-structure manifold, F - structure manifold, an almost Grayan manifold and $\left\{\mathrm{F}, \mathrm{g}, u^{1}, u^{2}, U_{1}, U_{2}\right\}$ structure manifold according as $\left(b^{2}=0, \mathrm{c}=0\right) ;\left(b^{2}=-1, \mathrm{c}=0\right) ;\left(b^{2}=\lambda^{r}, \mathrm{c}\right.$ $=0) ;\left(b^{2}=-1, p_{i}^{j}=0\right) ;\left(b^{2}=-1, \mathrm{c}=1, i, \mathrm{j}=1, p_{1}^{1}=0\right)$ and ($b^{2}=-1, \mathrm{c}=1, p_{i}^{j}+p_{j}^{i}=0 ; i, \mathrm{j}=1,2$) respectively.

Affine Connexion D: Let us consider in V_{n} an affine connexion D satisfying (Duggal, 1971; Mishra, 1984)

$$
\begin{equation*}
\left(D_{X} F\right) Y=0 \tag{2.1}
\end{equation*}
$$

and we call it as F -connexion.
(2.1)a is equivalent to

$$
\begin{equation*}
D_{X} \bar{Y}=\overline{D_{X} Y} \tag{2.1}
\end{equation*}
$$

Replacing Y by \bar{Y} and using (1.1), (2.1)a in above, we get

$$
\begin{equation*}
\mathrm{c}\left[u^{i}(Y) D_{X} U_{i}+\left(D_{X} u^{i}\right)(Y) U_{i}\right]=0 \tag{2.1}
\end{equation*}
$$

Theorem (2.1): $\ln V_{n}$, we have

$$
\begin{equation*}
c u^{i}(Y) u^{j}\left(D_{X} U_{i}\right)=-\left(b^{2} \delta_{i}^{j}-{ }^{(2)} p_{i}^{j}\right)\left(D_{X} u^{i}\right)(Y) \tag{2.2}
\end{equation*}
$$

$$
\begin{equation*}
c u^{j}\left(D_{X} U_{i}\right) U_{j}=-\left(b^{2} \delta_{i}^{j}-{ }^{(2)} p_{i}^{j}\right)\left(D_{X} U_{j}\right) \tag{2.3}
\end{equation*}
$$

Proof

Operating u^{j} in (2.1)c and using (1.6), we get (2.2). Putting U_{i} for Y in (2.1)c and using (1.6), we obtain (2.3).

Theorem 2.2

In V_{n}, we have

$$
\begin{align*}
& S(\bar{X}, \bar{Y})+b^{2} S(X, Y)+c u^{i}(S(X, Y)) U_{i}-\overline{S(\bar{X}, Y)}-\overline{S(X, \bar{Y})} \\
& =-[\bar{X}, \bar{Y}]-b^{2}[X, Y]-c u^{i}([X, Y]) U_{i}+[\overline{\bar{X}}, Y]+\overline{[X, \bar{Y}]} \tag{2.5}
\end{align*}
$$

Proof

From (2.1)b, we get

$$
\begin{gather*}
D_{\bar{X}} \bar{Y}=\overline{D_{\bar{X}} Y}, D_{\bar{Y}} \bar{X}=\overline{D_{\bar{Y}} X}, \overline{D_{X} \bar{Y}}=\overline{\overline{D_{X} Y}}, \\
D_{Y} \bar{X} \tag{2.6}\\
=\overline{\overline{D_{Y} X}}
\end{gather*}
$$

Now in view of (1.1), we have
$S(\bar{X}, \bar{Y})+b^{2} S(X, Y)+c u^{i}(S(X, Y)) U_{i}-\overline{S(\bar{X}, Y)}-\overline{S(X, \bar{Y})}$
$=S(\bar{X}, \bar{Y})+\overline{\overline{S(X, Y)}}-\overline{S(\bar{X}, Y)}-\overline{S(X, \bar{Y})}$
Using (1.17) and (2.6) in right hand side of above, we get (2.5). Now, we consider in V_{n} a scalar valued bilinear function μ, vector valued linear function v and a 1 -form σ given by,
$\mu(X, Y) \stackrel{\text { def }}{=}$
$\left(D_{Y} u^{i}\right)(\bar{X})-\left(D_{X} u^{i}\right)(\bar{Y})+\left(D_{\bar{Y}} u^{i}\right)(X)-\left(D_{\bar{X}} u^{i}\right)(Y)$
$v(\mathrm{X}) \stackrel{\text { def }}{=}\left(D_{U_{i}} F\right)(X)-\left(D_{X} F\right)\left(U_{i}\right)-D_{\bar{X}} U_{i}$
and

$$
\begin{equation*}
\sigma(\mathrm{X}) \stackrel{\operatorname{def}}{=}\left(D_{X} u^{j}\right)\left(U_{i}\right)-\left(D_{U_{i}} u^{j}\right)(X) \tag{2.9}
\end{equation*}
$$

$i, j=1,2, \ldots \ldots ., s$.

Theorem (2.3)

$\ln V_{n}$, we have
$\left(b^{2} \delta_{i}^{j}-{ }^{(2)} p_{i}^{j}\right) \mu(X, Y)=$
$c\left[u^{i}(X) u^{j}\left(D_{\bar{Y}} U_{i}\right)-u^{i}(Y) u^{j}\left(D_{\bar{X}} U_{i}\right)-u^{i}(\bar{X})\left(D_{Y} u^{j}\right) U_{i}+u^{i}(\bar{Y})\left(D_{X} u^{j}\right) U_{i}\right]$
(2.10)a
$\left(b^{2} \delta_{i}^{j}-{ }^{(2)} p^{j}{ }_{i}\right) \mu(X, Y)=$
$-c\left[u^{i}(X) u^{j}(v(Y))-u^{i}(Y) u^{j}(v(X))+u^{i}(\bar{X})\left(D_{Y} u^{j}\right) U_{i}-u^{i}(\bar{Y})\left(D_{X} u^{j}\right) U_{i}\right]$
(2.10)b
and
$\left(b^{2} \delta_{i}^{j}-{ }^{(2)} p_{i}^{j}\right) \mu(X, Y)=$
$-c\left[u^{i}(X)\left\{\sigma(\bar{X})+\left(D_{u_{i}} u^{j}\right)(\bar{X})\right\}-u^{i}(Y)\left\{\sigma(\bar{Y})+\left(D_{u_{i}} u^{j}\right)(\bar{Y})\right\}-u^{i}(\bar{X})\left(D_{y} u^{j}\right) U_{i}+u^{i}(\bar{Y})\left(D_{\chi} u^{i}\right) U_{i}\right]$
(2.10) c

Proof

Replacing Y by \bar{Y} in (2.2), we get
$c u^{i}(\bar{Y}) u^{j}\left(D_{X} U_{i}\right)=-\left(b^{2} \delta_{i}^{j}-{ }^{(2)} p_{i}^{j}\right)\left(D_{X} u^{i}\right)(\bar{Y})$

Replacing X by \bar{X} in (2.2), we get
$c u^{i}(Y) u^{j}\left(D_{\bar{X}} U_{i}\right)=-\left(b^{2} \delta_{i}^{j}-{ }^{(2)} p_{i}^{j}\right)\left(D_{\bar{X}} u^{i}\right)(Y)$

Further by using (2.11), (2.12) in (2.7), we get (2.10)a. Using (2.1)a in (2.8), we get
$v(\mathrm{X})=-\left(D_{\bar{X}} U_{i}\right)$
Using (2.13) in (2.10)a, we get (2.10)b. Replacing X by \bar{X} in (2.9), we get
$-u^{j}\left(D_{\bar{X}} U_{i}\right)=\sigma(\bar{X})+\left(D_{U_{i}} u^{j}\right)(\bar{X})$

Using (2.14) in (2.10)a, we get(2.10)c.

Theorem 2.4

$\ln V_{n}$, we have
$\overline{K(X, Y, \bar{Z})}=b^{2} K(X, Y, Z)+c u^{i}(K(X, Y, Z)) U_{i}$
(2.16) a
$p_{i}^{j} u^{i}(K(X, Y, \bar{Z}))=b^{2} u^{j}(K(X, Y, Z))+\left({ }^{(2)} p_{i}^{j}-b^{2} \delta_{i}^{j}\right) u^{i}(K(X, Y, Z))$
and

$$
\begin{array}{r}
b^{2}[K(\bar{X}, \bar{Y}, Z)+K(\bar{Y}, \bar{Z}, X)+K(\bar{Z}, \bar{X}, Y)] \\
=-c\left[u^{i}(Z) K\left(\bar{X}, \bar{Y}, U_{i}\right)+u^{i}(X) K\left(\bar{Y}, \bar{Z}, U_{i}\right)+u^{i}(Y) K\left(\bar{Z}, \bar{X}, U_{i}\right)\right] \tag{2.16}
\end{array}
$$

Proof

Replacing Z by \bar{Z} in (1.18) and using (2.1)b, we get

$$
\begin{equation*}
K(X, Y, \bar{Z})=\overline{K(X, Y, Z)} \tag{2.17}
\end{equation*}
$$

Operating F in (2.17) and using (1.1), we obtain (2.16)a. Operating u^{j} on both sides of (2.16)a and using (1.5) and (1.6), we get(2.16)b. Bianchi's first identity of symmetric connexion D is given by

$$
\begin{equation*}
K(X, Y, Z)+K(Y, Z, X)+K(Z, X, Y)=0 \tag{2.18}
\end{equation*}
$$

Operating F in (2.18), we get
$\overline{K(X, Y, Z)}+\overline{K(Y, Z, X)}+\overline{K(Z, X, Y)}=0$
Using (2.17) in (2.19), we get
$K(X, Y, \bar{Z})+K(Y, Z, \bar{X})+K(Z, X, \bar{Y})=0$
Replacing X by \bar{X}, Y by \bar{Y} \& Z by \bar{Z} in (2.20) and using (1.1), we get (2.16)c.

Affine connexion D : Let us consider in V_{n} an affine connexion \tilde{D} satisfying

$$
\begin{equation*}
u^{i}(Y)\left(\tilde{D}_{X} U_{i}\right)+\left(\tilde{D}_{X} u^{i}\right)(Y) U_{i}=0 \tag{3.1}
\end{equation*}
$$

Theorem 3.1

In V_{n}, we have

$$
\begin{equation*}
u^{i}(Y)\left[b^{2}\left(\tilde{D_{X}} U_{i}\right)+c u^{j}\left(\tilde{D_{X}} U_{i}\right) U_{j}\right]+\left(\tilde{D_{X}} u^{i}\right)(Y) p_{i}^{j} p_{j}^{k} U_{k}=0 \tag{3.2}
\end{equation*}
$$

$\left({ }^{(2)} p^{j}-b^{2} \delta_{i}^{j}\right) \operatorname{div} U_{j}=c u^{j}\left(\tilde{D_{U_{j}}} U_{i}\right)$ (3.2)b
Where
$\operatorname{div} \mathrm{X} \stackrel{\operatorname{def}}{=}\left(C_{1}^{1} \nabla X\right)$
(3.3) and
$(\nabla X) Y \stackrel{\text { def }}{=}\left(\tilde{D}_{Y} X\right)$

Proof

Operating F^{2} in (3.1) and using (1.1) and (1.2), we get (3.2)a. Now contracting (3.1) with respect to X and using (3.3) and (3.4), we get
$u^{i}(Y) \operatorname{div} U_{i}+\left(D_{U_{i}} u^{i}\right)(Y)=0$

Replacing i by j , then Y by U_{i} in (3.3) and using (1.6), we get (3.2)b.

Theorem 3.2

$\ln V_{n}$, we have
$c u^{i}(Y) u^{j}\left(\tilde{D}_{X} U_{i}\right)+\left({ }^{(2)} p_{i}^{j}-b^{2} \delta_{i}^{j}\right)\left(\tilde{D_{X}} u^{i}\right)(Y)=0$ (3.6) a $\left({ }^{(2)} p_{i}^{j}-b^{2} \delta_{i}^{j}\right)\left(\tilde{D}_{X} u^{i}\right)(Y) u^{j}\left(\tilde{D}_{Z} U_{i}\right)=c u^{i}(Y) u^{j}\left(\tilde{D}_{Z} U_{j}\right)\left(\tilde{D_{X}} u^{j}\right)\left(U_{j}\right)$

Proof

By operating u^{j} on (3.1) and using (1.6), we obtain (3.6)a.

Multiplying (3.2) ${ }_{c}$ with $u^{j}\left(D_{Z} U_{j}\right)$, we get (3.2)d.

Affine connexion $\stackrel{\circ}{D}$

Let us consider in V_{n} an affine connexion $\quad \stackrel{\circ}{D}$ satisfying

$$
\begin{equation*}
u^{i}(Y)\left({\stackrel{\mathrm{o}}{D_{X}}}^{U_{i}}\right)+\left(\stackrel{\mathrm{o}}{D_{X}} u^{i}\right)(Y) U_{i}=0 \tag{4.1}
\end{equation*}
$$

And

$$
\begin{equation*}
\left(\stackrel{\circ}{D}_{X} F\right)(Y)+\left(\stackrel{\circ}{D}_{Y} F\right)(X)=0 \tag{4.1}
\end{equation*}
$$

It may be noted that all the results of the section above hold for $\stackrel{\circ}{D}$. In addition we have the following results:

Theorem 4.1

In V_{n}, we have

$$
\begin{equation*}
\stackrel{\circ}{D}_{\bar{Y}} \bar{X}-b^{2}\left(\stackrel{\circ}{D}_{Y} X\right)=\overline{\stackrel{\circ}{D}_{\bar{Y}} X}-\overline{\stackrel{\circ}{D}_{Y} \bar{X}}+c u^{i}\left(\stackrel{\circ}{D}_{Y} X\right) U_{i} \tag{4.2}
\end{equation*}
$$

And
$\stackrel{\circ}{D_{\bar{Y}}} \bar{X}+b^{2}\left(\stackrel{\circ}{D}_{Y} \bar{X}-\stackrel{\stackrel{\circ}{D}_{Y} X}{ }-\stackrel{\circ}{D_{\bar{Y}}} X\right)=c\left[\left\{u^{i}\left(\stackrel{\circ}{D_{\bar{Y}}} X\right)-u^{i}\left(\stackrel{\circ}{D}_{Y} \bar{X}\right)\right\} U_{i}+u^{i}\left(\stackrel{\circ}{D}_{Y} X\right) \overline{U_{i}}\right]$

Proof

The equation (4.1)b is equivalent to
$\stackrel{\circ}{D}_{X} \bar{Y}+\stackrel{\circ}{D}_{Y} \bar{X}=\stackrel{\circ}{D}_{X} Y+\stackrel{\circ}{D}_{Y} X$

Operating F in (4.3) and using (1.1), we get (4.2)a. Replacing Y by \bar{Y} in (4.3) and using (1.1), (4.3), we get (4.2)b. Further, Operating F (4.2)b and using (1.1), we get (4.2)c.

Affine connexion D :

Let us consider in V_{n} an affine connexion D satisfying

$$
\begin{equation*}
u^{i}(Y)\left({\stackrel{*}{D_{X}}}^{*} U_{i}\right)+\left(D_{X}^{*} u^{i}\right)(Y) U_{i}=0 \tag{5.1}
\end{equation*}
$$

And

$$
\begin{equation*}
\left(\stackrel{*}{D}_{X} F\right)(Y)+\left(\stackrel{*}{D}_{\bar{X}} F\right)(\bar{Y})=0 \tag{5.1}
\end{equation*}
$$

It may be noted that all the results of the section three hold for $\stackrel{*}{D}$. In addition we have the following results:

Theorem 5.1

$\ln V_{n}$, we have

$$
\begin{equation*}
\overline{D_{X} Y}+\stackrel{*}{D_{\bar{X}} \bar{Y}}-\stackrel{*}{D}_{X} \bar{Y}=b^{2}\left({ }^{*} \bar{X} Y\right)+c u^{i}\left({ }^{*} \bar{X} Y\right) U_{i} \tag{5.2}
\end{equation*}
$$

$\stackrel{*}{D}_{U_{j}} \bar{Y}+\left(\stackrel{*}{D}_{U_{j}} F\right) \bar{Y}=b^{2}\left(\stackrel{*}{D}_{U_{j}} Y\right)+c u^{i}\left({ }^{*} D_{U_{j}} Y\right) U_{i}$

Proof
(5.1)b is equivalent to

Using (1.1) in (5.3), we get (5.2)a. Replacing X by U_{i} in (5.3), we get

$$
\begin{equation*}
\left({\stackrel{*}{D_{U_{i}}}}^{\bar{Y}}-\overline{D_{U_{i}} Y}\right)+p_{i}^{j}\left[\stackrel{*}{D}_{U_{j}}\left(b^{2} Y+c u^{i}(Y) U_{i}\right]=p_{i}^{j}\left(\overline{D_{U_{j}} \bar{Y}}\right)\right. \tag{5.4}
\end{equation*}
$$

Replacing X by U_{i} in (5.2)b, we get

$$
\begin{equation*}
\left(D_{U_{i}} \bar{Y}-\stackrel{*}{D_{U_{i}} Y}\right)=-p_{i}^{j}\left({ }^{*} D_{U_{i}} F\right) \bar{Y} \tag{5.5}
\end{equation*}
$$

From (5.4) and (5.5), we get

$$
\begin{equation*}
-p_{i}^{j}\left(D_{U_{i}} F\right) \bar{Y}+p_{i}^{j}\left[D_{U_{j}}\left(b^{2} Y+c u^{i}(Y) U_{i}\right]=p_{i}^{j}\left({\stackrel{*}{D_{U_{j}}} \bar{Y}}_{)}\right.\right. \tag{5.6}
\end{equation*}
$$

Using (5.1)a in (5.6), we get (5.1)b.

Theorem 5.2

In V_{n}, we have
$\stackrel{*}{D}_{\bar{X}} \bar{Y}-b^{2}\left(\stackrel{*}{D_{X}} \bar{Y}\right)+b^{4}\left(\stackrel{*}{D}_{X} Y\right)=$

Proof

Replacing X by \bar{X} in (5.3) and using (1.1), (5.1), we get (5.7).

REFERENCES

Boothby WM (1975). An introduction to differentiable manifolds and Riemannian geometry, Academic Press.
Duggal KL(1971). On differentiable structures defined by algebraic equations, II,F-connexion, Tensor N.S., 22: 238-242.
Duggal KL(1969). Singular Riemannian structures compatible with π structures, Can., Math. Bull. 12: 705-719.
Kobayasi S and Nomizu K (1996). Foudation of differential geometry, Vol. I, Reprint of the 1963 original, Willely Classical Library, John Wiley \& Sons, Inc., New York.
Mishra RS (1984). Structure on a differentiable manifold and their application, Chandrma Prakashan, Allahabad, India.
Mishra RS (1973). Almost contact manifold with a specified affine connexion II, J. Math. Sci, 8: 63-70.
Mishra RS and Singh SD (1975). On G-F structure, Indian J. Pure and App.Math. 6(1): 1317-1325.
Sasaki S (1960). On differentiable manifolds with certain structure which is closely related to almost contact structures I, Tohoku. Math. J. 12: 459-476.
Yano K (1963). On a structure defined by a tensor field f of the type (1, 1) satisfying $f^{3}+f=0$, Tesor N.S., 1499-109.

[^0]: *Corresponding author. E-mail: rajabhaia@gmail.com

