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A pre A*-algebra is the algebraic form of the 3-valued logic. In this paper, we define a binary operation 
⊕  on pre A*-algebra and show that ,A< ⊕ >  is a semilattice. We also prove some results on the partial 
ordering ⊕≤ which is induced from the semilattice ,A< ⊕ > . We derive necessary and sufficient 
conditions for pre A*-algebra (A,∧∧∧∧,∨∨∨∨, (-)~) to become a Boolean algebra in terms of this partial ordering 
and binary operation and also find the necessary conditions for (A , ⊕≤ )  as a lattice. 
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INTRODUCTION 
 
In 1948 the study of lattice theory was first introduced by 
Birkhoff (1948). In a draft paper by Manes (1989), the 
Equational Theory of Disjoint Alternatives, E. G. Maines 
introduced the concept of ADA (Algebra of disjoint 
alternatives) ( , , , ( ) , ( ) ,0,1,2)A π′∧ ∨ − − which however differs 
from the definition of the ADA of his later paper (Manes, 
1993); ADAs and the equational theory of if-then-else in 
1993. While the ADA of the earlier draft seems to be 
based on extending the if-then-else concept more on the 
basis of Boolean algebra and the later concept was 
based on C-algebra ( , , , )A ′∧ ∨  introduced by Fernando 
and Craig (1994). Rao (1994) was the first to introduce 
the concept of A*-Algebra ( , , ,*, ( ), ( ) ,0,1, 2)A π∧ ∨ − −� and 
also studied its equivalence with ADA, C-algebra, ADA’s 
connection with 3-Ring, stone type representation but 
also introduced the concept of A*-clone, the If-Then-Else 
structure over A*-algebra and Ideal of A*-algebra. 
Venkateswara (2000) introduced the concept of pre A*-
algebra ( , , , ( ))A ∧ ∨ −�  analogous to C-algebra as a reduct 
of A*- algebra. Venkateswara and Srinivasa (2009) 
defined a partial ordering on a pre A*-algebra  A  and  the   
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Abbreviation: ADA, Algebra of disjoint alternatives. 

properties of A as a poset are studied. 
 
 
PRELIMINARIES 
 
Definition 1  
 
Boolean algebra is algebra ( , , , ( ) , 0, 1)B ′∨ ∧ −  with two 
binary operations, one unary operation (called 
complementation), and two nullary operations which 
satisfies:   
 
(i) ( , , )B ∨ ∧  is a distributive lattice 
(ii) 0 0,  1=1x x∧ = ∨  
(iii) 0,  =1x x x x′ ′∧ = ∨  
 
We can prove that ,  ( ) = yx x x y x′′ ′ ′ ′= ∨ ∧ , ( y) = yx x′ ′ ′∧ ∨  
for all ,x y B∈  

An algebra (A, ∧, ∨, (-)~) satisfying 
(a)   x~~ = x , ∀ x∈A ,      
(b)  x ∧ x = x , ∀ x∈A,   
(c)  x ∧ y = y ∧ x ,  ∀ x, y ∈A, 
(d)   (x ∧ y)~ = x~ ∨ y~ , ∀ x, y ∈A,   
(e)  x ∧ (y ∧ z) = (x ∧ y) ∧ z ,  , ,x y z A∀ ∈  
(f)    x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) , , ,x y z A∀ ∈ ,   
(g)  x ∧ y = x ∧ (x~ ∨ y) , , ,x y z A∀ ∈ ,  
 
is called a Pre A*-algebra. 



 
 
 
 
Example 1 
 

3 = {0, 1, 2} with operations∧,∨, (-) ~ defined below is a 
pre A*-algebra. 
 

  ∧ 0 1 2      ∨ 0 1 2  x x~ 
0 0 0 2  0 0 1 2  0 1 
1 0 1 2  1 1 1 2  1 0 
 2 2 2 2  2 2 2 2  2 2 
 
 
Note 1 
 

The elements 0, 1, 2 in the above example satisfy the 
following laws: 
 
(a) 2~ = 2; (b) 1 ∧ x = x for all x ∈ 3; (c) 0 ∨ x = x for all x 
∈ 3;  (d) 2 ∧ x = 2 ∨ x = 2 for all x ∈ 3. 
 
 
Example 2 
 

2 = {0, 1} with operations ∧, ∨, (-) ~ defined below is a Pre 
A*-algebra. 
 

∧ 0 1  ∨ 0 1  x x~ 
0 0 0  0 0 1  0 1 
1 0 1  1 1 1  1 0 
 
 
Note 2 
 

(i) ( )2, , , ( )∨ ∧ −�  is a Boolean algebra. So every Boolean 

algebra is a Pre A* algebra. 
(ii) The identities x~~ = x , ∀ x∈A and (x ∧ y)~ = x~ ∨ y~ , ∀ 
x, y ∈A implies that the varieties of pre A*-algebras 
satisfies all the dual statements of x ∧ x = x , ∀ x∈A to x ∧ 
y = x ∧ (x~ ∨ y) , , ,x y z A∀ ∈ . 
 
 
Note 3 
 
Let A be a Pre A*-algebra then A is Boolean algebra iff x 
∨ (x ∧  y) = x, x ∧  (x ∨  y) = x (absorption laws holds). 
 
 
Lemma 1 
 

Every pre A*-algebra satisfies the following laws 
(Venkateswara and Srinivasa, 2009). 
 

(a)  (  ) x x x x∨ ∧ =�  
(b) (  ) y ( ) (  )x x x y x y∨ ∧ = ∧ ∨ ∧� �  
(c) (  )x x x x∨ ∧ =�     
(d) ( ) ( ) (  y z)x y z x z x∨ ∧ = ∧ ∨ ∧ ∧�  
 
 
Definition 1 
 

Let A be a Pre A*-algebra. An element x ∈ A is called 
central   element   of   A   if    =1x x∨ �   and   the   set  {x ∈  
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 =1x x∨ � } of all central elements of A is called the centre 
of A and it is denoted by B (A). Note that if A is a pre A*-
algebra with 1, then 1, 0∈B (A). If the centre of pre A*-
algebra coincides with {0, 1} then we say that A has trivial 
centre. 
 
 
Theorem 1 
 
Let A be a pre A*-algebra with 1, then B (A) is a Boolean 
algebra with the induced operations 

 ~(-) ,  , ∨∧ (Venkateswara and Srinivasa, 2009). 
 
 
Lemma 2 
 
Let A be a Pre A*-algebra with 1(Venkateswara and 
Srinivasa, 2009), 
 
(a) If y ∈B (A) then  y  , Ax x x x x∧ ∧ = ∧ ∀ ∈� �  
(b) ( ) ( )x x y x x y x∧ ∨ = ∨ ∧ =  if and only if , (A)x y B∈  
 
 
SEMILATTICE STRUCTURE ON PRE A*-ALGEBRA 
 
Theorem 2 
 
Let A b e a Pre A*-algebra define a binary operation ⊕  on 
A by x ⊕  y= x y∨  for all x, y∈A then ,A< ⊕ >  is a semi 
lattice. 
 
 
Proof  
       
x ⊕  x = x ∨ x = x for all x∈A.  
For x, y∈A we have x ⊕ y = x y∨  = y ∨ x = y ⊕ x.  
x ⊕  (y ⊕ z) = x ⊕  (y ∨ z)  
= x ∨  (y ∨ z) = ( x y∨ ) ∨ z = (x ⊕ y) ⊕ z, for all x, y, z∈A. 
Hence ,A< ⊕ >  is a semi-lattice. 
 
 
Definition 3 
 
Let A be a pre A*-algebra define a relation ⊕≤  on A by x 

⊕≤  y iff x ⊕ y = y.  
 
 
Lemma 3 
 
Let A be a pre A*-algebra then (A, ⊕≤ )   is a poset. 
 
 
Proof   
 

Since x ⊕ x = x ∨ x = x, x ⊕≤  x, for all x∈A  

Therefore ⊕≤ is reflexive. 
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Suppose x ⊕≤  y, y ⊕≤  z, for all x, y, z∈A then x ⊕  y = y, 
and y ⊕ z = z. Now x ⊕  z = x ⊕ (y ⊕ z) = (x ⊕  y) ⊕ z = 

y ⊕ z = z that is x ⊕≤  z, this shows that ⊕≤  is Transitive. 

Let x ⊕≤ y and y ⊕≤  x for all x, y∈A then x ⊕  y = y 

and y ⊕  x = x �  x = y. This shows that ⊕≤ is anti 

symmetric. Therefore (A, ⊕≤ )   is a poset. 
 
 
Note 4 
 

We have x ⊕≤ y iff x ⊕  y = y, so x ⊕≤ x ⊕  y for all x∈A. 
This shows that x ⊕ y is the supremum of {x, y}. 

Let A be a Pre A*-algebra with 0, 1, 2 then 0 ⊕≤ x(x ∨ 0 

= x for all x∈A) and x ⊕≤ 2 (2 ∨  x = 2 for all x∈A). This 
gives that 2 is the greatest element and 0 is the least 

element of the poset (A, ⊕≤ ). The Hasse diagram of the 

poset (A, ⊕≤ ) is 
 
 
2 

1 

0                                                      
 
 

We have A A×  = { 1 (1,1)a = , 2 (1,0)a = , 3 (1,2)a = , 
4 (0,1)a = , 5 (0,0)a = , 6 (0,2)a = , 7 (2,1)a = , 8 (2,0)a = , 
9 (2,2)a = } is a pre A*-algebra under point wise operation 

and A A×  is having four central elements and remaining 

are non central elements, among that 9 (2,2)a =  is 

satisfying the property that 9 9 = a a� .  The Hasse diagram 

is of the poset ( A A× , ⊕≤ ) as shown: 
 

 

 
 
 
 

Observe that x ⊕≤ a9 ( 9 9x a a∨ = ) and 5a x⊕≤ ( 5x a x∨ = ) 
for all x A A∈ × . This shows that a9 is the greatest element 
and a5 is the least element of A A× . 
 
 
Lemma 4 
 
The   following conditions hold for any elements x and y 
in a pre A*-algebra A 
                       

(i) x ⊕≤  x ∨  y                    

(ii) x ∧  x~  ⊕≤  x y∧  
 
 
Proof      
 

(i) Consider ( x y∨ ) ⊕ x = ( x y∨ )∨ x = x y∨ . Therefore, x 
⊕≤   x ∨  y.                    

(ii) Consider (x ∧ y) ⊕  (x ∧  x~) = (x ∧ y) ∨  (x ∧  x~)            
  =   x ∧  (y ∨  x~) = x ∧  y (by dual of x ∧ y = x ∧ (x~ ∨ y) , 

, ,x y z A∀ ∈ )                    

Therefore x ∧   x~ ⊕≤ x y∧  
 
 
Lemma 5 
 

Let A be a Pre A*-algebra then ⊕  is distributive over ∨  
and ∧  that is (i) x ⊕  (y ∨  z) = (x ⊕  y) ∨  (x ⊕ z). (ii) x 
⊕  (y  ∧ z) = (x ⊕  y) ∧  (x ⊕  z) 
 
 
Proof      
 

(i) (x ⊕  y) ∨  (x ⊕  z)  
= ( x y∨ ) ∨  (x ∨z)  
= x ∨  (y ∨ z)  
= x ⊕  (y ∨ z) 
(ii) (x ⊕  y) ∧  (x  ⊕ z)  
= ( x y∨ ) ∧  (x ∨ z) 
= x ∨  (y ∧  z) 
= x ⊕  (y ∧ z) 
 
 
Theorem 3 
 
Let A be a Pre A*-algebra for any x∈A then the following 

holds in the semi-lattice ,A< ⊕ > .  
   
(i) x ∨  x~ is the supremum of {x , x~} 
(ii) x ∧ x~  is the infimum of {x  , x~}      
 
 
Proof 
 
(i)  x ⊕  (x ∨  x~) = x ∨  (x ∨  x~) = x ∨  x~ 



 
 
 
 
Therefore, x ⊕≤  x ∨  x~. 
x~ ⊕  (x ∨  x~) = x~ ∨  ( x ∨  x~)= x ∨  x~. 
Therefore, x~ 

⊕≤  x ∨  x~. 
x ∨  x~ is upper bound of {x, x~}. 

Let k be the upper bound of {x, x~} 
                 �  x  ⊕≤ k and x~ 

⊕≤  k that is x ⊕ k = k and x~  ⊕ k= k 

                 �  x ∨  k= k and x~ ∨  k = k. 

Now k ⊕  (x ∨  x~) = k ∨  (x ∨  x~) = (k ∨  x) ∨  x~  

= k ∨  x~ = k 
∴ x ∨  x~  

⊕≤ k. 
Therefore, x ∨ x~ is least upper bound of {x, x~}. 
Sup {x, x~} = x ∨  x~ 
               
(ii)  x ⊕  (x ∧  x~)= x ∨  ( x ∧   x~) =   x. 

Therefore x ∧   x~ 
⊕≤ . 

x~ ⊕  ( x ∧  x~)= x~ ∨  ( x ∧  x~) =  x~. 

Therefore, x ∧ x~
⊕≤  x~. 

x  ∧  x~    is lower bound of {x, x~}. 
Let l be the lower bound of {x, x~} 

�  l ⊕≤  x and l ⊕≤  x~
 that is x ⊕  l=x and x~ ⊕  l= x~  

� l ∨  x = x and l ∨  x ~ = x~ 
Now l ⊕ (x ∧  x~) = l ∨  (x ∧  x~) = (l ∨   x) ∧  (l ∨  x~)  
 = x  ∧  x~ 

� l ⊕≤  x ∧  x~ 
∴ x ∧  x~    is greatest lower bound of {x, x~}. 
Inf {x, x~} = x ∧  x~. 
 
 
Lemma 6 
 
In the poset (A, ⊕≤ ) and x, y∈A .If x y⊕≤ then for a∈A.  
(i) a ∧  x ⊕≤  a ∧  y   
(ii) a ∨  x ⊕≤  a ∨  y 
 
 
Proof 
 
If x ⊕≤ y then x ⊕ y=y� x y∨ =y 
(i)   (a ∧ x) ⊕  (a ∧ y)=(a ∧ x) ∨  (a ∧ y) = a ∧  (x ∨ y)=a ∧ y 
∴   a ∧ x ⊕≤  a ∧ y  
(ii)  (a ∨ x) ⊕  (a ∨ y) = (a ∨ x) ∨  (a ∨ y) = a ∨  ( x y∨ ) = 
a ∨ y 
∴ a ∨ x ⊕≤ a ∨ y 
 
 
Lemma 7 
 
Let A be a Pre A*-algebra for any x, y∈A, x ⊕≤ x ∨  y 
then, x ∨  y is the upper bound of {x, y}. 
 
 
Proof 
 
Suppose x ⊕≤ x ∨y then x ∨  y is upper bound of x 
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Now (x ∨  y) ⊕ y =(x ∨  y) ∨  y = x ∨  y � y ⊕≤  x ∨  y         
Therefore x ∨  y is upper bound of y. 
 ∴ x ∨  y is the upper bound of {x , y}. 
 
 
Theorem 4 
 
Let A be a Pre A*-algebra for any x, y∈A then sup {x, y} 
= x ∨ y in the semilattice ,A< ⊕ > . 
 
 
Proof 
 
(x ∨ y) ⊕ x = (x ∨ y) ∨ x= x ∨ y 
∴ x ⊕≤  x ∨ y.         
(x ∨  y) ⊕ y =(x ∨ y) ∨ y = x ∨ y   
� y ⊕≤  x ∨ y         
Therefore x ∨ y is upper bound of y 
 ∴ x ∨ y is the upper bound of {x, y}        
 Suppose m is the upper bound of {x, y} 
 � x ⊕≤ m and   y ⊕≤ m that is m ⊕ x = m and m ⊕ y = m 
 �m ∨ x = m and m ∨ y = m 
 Now m ⊕  (x ∨ y) = m∨ (x ∨ y) = (m ∨  x) ∨ y= m ∨  y=m 
�  x ∨ y ⊕≤  m 
 ∴  x ∨  y is the least upper bound of {x, y} 
 ∴ sup {x, y}= x ∨ y 
 
 
Note 5 
 
In general for a pre A*-algebra with 1, x y∨  need not be 
the greatest lower bound of { , }x y  in (A, ⊕≤ ). For 
example  2 2 2,  Ax x x∨ = ∧ = ∀ ∈  is not a greatest lower 
bound. However we have the following theorem. 
 
 
Theorem 5 
 
In a semi lattice <A, ⊕ > with 1, for any , ( )x y B A∈ then 
inf{ , }= x y x y∧   
 
 
Proof 
 
If , ( )x y B A∈ , then by lemma 2b, ( )x x y x∨ ∧ = and 

( )y x y y∨ ∧ =  
�    x ⊕  (x ∧  y)=x and y ⊕  (x ∧ y)=y 
This shows that x ∧  y ⊕≤  x and x ∧  y ⊕≤ y 
 
Hence x y∧ is an lower bound of {x, y}. 

Suppose k is an lower bound of {x, y}, then k ⊕≤ x, k ⊕≤ y  
 �  k ⊕ x = x and k ⊕ y = y 
�   x ∨  k = x , y ∨  k = y 
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Now k ⊕ (x ∧  y) = k ∨  (x ∧  y) = (k ∨  x) ∧  (k ∨  y) = 
x ∧ y. 
Therefore, k ⊕≤  x ∧  y 
 x ∧  y is the greatest lower bound of {x , y}. Hence, inf {x, 
y} = x ∧  y 
 
 
Theorem 6 
 
If A is a Pre A*-algebra and ( )x x y x∨ ∧ = , for all x, y∈A 

then (A, ⊕≤ ) is a lattice. 
 
 
Proof 
 
By theorem 4 every pair of elements have supremum. If 

( )x x y x∨ ∧ =  for all x, y∈A then by theorem 5 every pair 

of elements have infimum.  Hence (A, ⊕≤ ) is a lattice. 
 
 
Lemma 8 
 
Let A be a pre A*-algebra then:  
 
(i) x ∨  (x ⊕  y) = x ∨  y. 
(ii) (x ⊕  y) ∨ x= x ⊕  y. 
 
 
Proof 
 
(i) x ∨  ( x ⊕  y) =  x ∨  (x ∨  y) = x ∨  y 
(ii) (x ⊕  y) ∨  x = (x ∨  y) ∨  x = x ∨  y= x ⊕ y 
 
Now we present a number of equivalent conditions for a 
pre A*-algebra become a Boolean algebra. 
 
 
Theorem 7 
 
The following conditions are equivalent for any pre A*-
algebra (A, ∧, ∨  (-)~) 
 
(1) A is Boolean algebra 
(2) x ∧  y ⊕≤  x for all x, y∈A 

(3) x ∧  y ⊕≤  y for all x, y∈A 

(4) x ∧  y is a lower bound of { , }x y in (A , ⊕≤ ) for all x, 
y∈A 
(5) x ∧  y is a infimum of { , }x y in (A , ⊕≤ ) for all x, y∈A 

(6) x ∨  x~ is the least element in (A , ⊕≤ ) for every x∈A 
 
 
Proof    
 
(1) � (2) Suppose A is a Boolean algebra. 

 
 
 
 
Now x ⊕  (x ∧  y) = x ∨  (x ∧   y) = x (by absorption law)  
∴  x ∧  y ⊕≤  x 

(2) � (3) Suppose x ∧  y ⊕≤ x then x ⊕  (x ∧  y) = x. 
Therefore x ∨  (x ∧  y) = x 
Now y ⊕  (x ∧  y) = y ∨  (x ∧  y) = y. Therefore, x ∧  y ⊕≤ y 

(3) � (4) Suppose that x ∧ y ⊕≤ y   �  y ⊕  (x ∧ y) = y 
therefore y ∨  (x ∧  y) = y 
 Since x ∧  y ⊕≤  y   then x ∧  y is lower bound of y 

 Now x ⊕  (x ∧  y) = x ∨  (x ∧  y) = x (by supposition) 
          ∴  x ∧  y ⊕≤  x 
�  x ∧  y is a lower bound of x. 
∴ x ∧  y is a lower bound of { , }x y . 
(4) �  (5) Suppose x ∧  y is a lower bound of 
{ , }x y Suppose z is a lower bound of{ , }x y  then z ⊕≤ x, z 

⊕≤  y that is x ⊕  z = x and y ⊕ z = y 
�  x ∨  z = x ,  y ∨ z = y 
Now z ⊕  (x ∧  y) = z ∨  (x  ∧  y) = (z ∨  x) ∧  (z ∨  y)                                                                                                           
= x ∧  y 
Therefore, z ⊕≤  x ∧  y 
x ∧  y is the greatest lower bound of { , }x y  
Hence Inf { , }x y = x ∧  y 
(5) � (6) Suppose Inf { , }x y = x ∧  y     then , ( )x y B A∈  
 Now Inf {x ∧  x~ , y} = x ∧ x~ ∧  y = x ∧  x~ (by lemma 2a)                                    
 �  x ∧  x~  

⊕≤  y. Therefore x ∧  x~ is the least element in 
 (A, ⊕≤ ). 
(6) �  (1) Suppose x ∧  x~ is the least element in A then 
  x ∧  x~  

⊕≤  y, for y∈A 
�   (x ∧  x~) ⊕  y = y   �   (x  ∧  x~ ) ∨  y = y 
 Now y ∧  ( x ∨  y) = [ (x ∧  x~ ) ∨  y ] ∨  (x ∨  y ) 
= [ (x ∧  x~ ) ∨  x ] ∨  y= (x ∧  x~) ∨ y = y (by supposition). 
 
Therefore by Note 3 we have B is Boolean algebra. 
 
 
Theorem 8 
 
Let A be a pre A*-algebra x ∨ x~ is the greatest element in   
(A, ⊕≤ ) for every  x∈A  then A is Boolean algebra. 
 
 
Proof  
 
Suppose x ∨  x~ is the greatest element in (A, ⊕≤ ) then y 

⊕≤  x ∨  x~ 
� (x ∨  x~) ⊕  y =   x ∨  x~ 
�  (x ∨  x~) ∨ y = x ∨  x~ 

Now x ∨  (x ∧  y) = [x [( x)]  xx∧∨�
∧  (x~ ∨  x)] ∨  (x ∧  y)  

= x ∧  [(x ∨  x~) ∨  y] = x ∧  (x ∨  x~) = x (by supposition) 
∴ x ∨  (x ∧  y)=x, absorption law holds 

 
By Note 3 we have B is Boolean algebra. 
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