Full Length Research Paper

Some structural compatibilities of pre A*-algebra

A. Satyanarayana^{1*}, J. Venkateswara Rao², K. Srinivasa Rao³ and U. Surya Kumar¹

¹Department of Mathematics, ANR College, Gudivada, Krishna District, Andhra Pradesh, India. ²Mekelle University, Mekelle, Ethiopia.

³Adams Engineering College, Paloncha, Khammam District, Andhra Pradesh, India.

Accepted 18 February, 2009

A pre A*-algebra is the algebraic form of the 3-valued logic. In this paper, we define a binary operation \oplus on pre A*-algebra and show that $\langle A, \oplus \rangle$ is a semilattice. We also prove some results on the partial ordering \leq_{α} which is induced from the semilattice $\langle A, \oplus \rangle$. We derive necessary and sufficient conditions for pre A*-algebra (A, , , , (-)) to become a Boolean algebra in terms of this partial ordering and binary operation and also find the necessary conditions for (A , \leq_{\oplus}) as a lattice.

Key words: Pre A*- algebra, poset, semilattice, centre, Boolean algebra.

INTRODUCTION

In 1948 the study of lattice theory was first introduced by Birkhoff (1948). In a draft paper by Manes (1989), the Equational Theory of Disjoint Alternatives, E. G. Maines introduced the concept of ADA (Algebra of disjoint alternatives) $(A, \land, \lor, (-)', (-)_{\pi}, 0, 1, 2)$ which however differs from the definition of the ADA of his later paper (Manes, 1993); ADAs and the equational theory of if-then-else in 1993. While the ADA of the earlier draft seems to be based on extending the if-then-else concept more on the basis of Boolean algebra and the later concept was based on C-algebra $(A, \land, \lor, ')$ introduced by Fernando and Craig (1994). Rao (1994) was the first to introduce the concept of A*-Algebra $(A, \land, \lor, *, (-), (-)_{\pi}, 0, 1, 2)$ and also studied its equivalence with ADA, C-algebra, ADA's connection with 3-Ring, stone type representation but also introduced the concept of A*-clone, the If-Then-Else structure over A*-algebra and Ideal of A*-algebra. Venkateswara (2000) introduced the concept of pre A*algebra $(A, \land, \lor, (-))$ analogous to C-algebra as a reduct of A*- algebra. Venkateswara and Srinivasa (2009) defined a partial ordering on a pre A*-algebra A and the

Abbreviation: ADA, Algebra of disjoint alternatives.

properties of A as a poset are studied.

PRELIMINARIES

Definition 1

Boolean algebra is algebra $(B, \lor, \land, (-)', 0, 1)$ with two binary operations, one unary operation (called complementation), and two nullary operations which satisfies:

- (i) (B, \lor, \land) is a distributive lattice
- (ii) $x \land 0 = 0, x \lor 1 = 1$ (iii) $x \wedge x' = 0, x \vee x' = 1$

We can prove that x'' = x, $(x \lor y)' = x' \land y'$, $(x \land y)' = x' \lor y'$ for all $x, y \in B$

An algebra $(A, \land, \lor, (-))$ satisfying

- (a) $x^{\sim} = x$, $\forall x \in A$,
- (b) $x \wedge x = x$, $\forall x \in A$,
- (c) $x \wedge y = y \wedge x$, $\forall x, y \in A$,
- (d) $(x \wedge y)^{\sim} = x^{\sim} \vee y^{\sim}, \forall x, y \in A,$
- (e) $X \land (Y \land Z) = (X \land Y) \land Z$, $\forall x, y, z \in A$
- (f) $x \land (y \lor z) = (x \land y) \lor (x \land z), \forall x, y, z \in A$,
- (g) $\mathbf{x} \wedge \mathbf{y} = \mathbf{x} \wedge (\mathbf{x} \vee \mathbf{y}), \forall x, y, z \in A$,

is called a Pre A*-algebra.

^{*}Corresponding author. E-mail: asnmat1969@yahoo.in.

Example 1

3 = {0, 1, 2} with operations \land , \lor , (-) $\tilde{}$ defined below is a pre A*-algebra.

\wedge	0	1	2	\sim	0	1	2	х	x~
0		0			0			0	1
		1			1			1	0
2	2	2	2	2	2	2	2	2	2

Note 1

The elements 0, 1, 2 in the above example satisfy the following laws:

(a) $2^{\sim} = 2$; (b) $1 \land x = x$ for all $x \in 3$; (c) $0 \lor x = x$ for all $x \in 3$; (d) $2 \land x = 2 \lor x = 2$ for all $x \in 3$.

Example 2

2 = {0, 1} with operations \land , \lor , (-) $\tilde{}$ defined below is a Pre A*-algebra.

\wedge	0	1	\vee	0	1	_	х	x~
0	0	0	0	0	1	_	0	1
1	0	1	1	1	1		1	0

Note 2

(i) $(2, \lor, \land, (-\tilde{)})$ is a Boolean algebra. So every Boolean

algebra is a Pre A* algebra.

(ii) The identities $x^{\sim} = x$, $\forall x \in A$ and $(x \land y)^{\sim} = x^{\sim} \lor y^{\sim}$, $\forall x, y \in A$ implies that the varieties of pre A*-algebras satisfies all the dual statements of $x \land x = x$, $\forall x \in A$ to $x \land y = x \land (x^{\sim} \lor y)$, $\forall x, y, z \in A$.

Note 3

Let A be a Pre A*-algebra then A is Boolean algebra iff x \lor (x \land y) = x, x \land (x \lor y) = x (absorption laws holds).

Lemma 1

Every pre A*-algebra satisfies the following laws (Venkateswara and Srinivasa, 2009).

(a) $x \lor (x^{\sim} \land x) = x$ (b) $(x \lor x^{\sim}) \land y = (x \land y) \lor (x^{\sim} \land y)$ (c) $(x \lor x^{\sim}) \land x = x$ (d) $(x \lor y) \land z = (x \land z) \lor (x^{\sim} \land y \land z)$

Definition 1

Let A be a Pre A*-algebra. An element $x \in A$ is called central element of A if $x \lor x = 1$ and the set $\{x \in$ $x \lor x = 1$ of all central elements of A is called the centre of A and it is denoted by B (A). Note that if A is a pre A*algebra with 1, then 1, $0 \in B$ (A). If the centre of pre A*algebra coincides with {0, 1} then we say that A has trivial centre.

Theorem 1

Let A be a pre A*-algebra with 1, then B (A) is a Boolean algebra with the induced operations $\land,\lor,(-)^{\sim}$ (Venkateswara and Srinivasa, 2009).

Lemma 2

Let A be a Pre A*-algebra with 1(Venkateswara and Srinivasa, 2009),

(a) If y ∈ B (A) then x ∧ x ∧ y = x ∧ x , ∀x ∈ A
(b) x ∧ (x ∨ y) = x ∨ (x ∧ y) = x if and only if x, y ∈ B(A)

SEMILATTICE STRUCTURE ON PRE A*-ALGEBRA

Theorem 2

Let A b e a Pre A*-algebra define a binary operation \oplus on A by x \oplus y= $x \lor y$ for all x, y \in A then $\langle A, \oplus \rangle$ is a semi lattice.

Proof

 $\begin{array}{l} x \oplus x = x \lor x = x \text{ for all } x \in A. \\ \text{For } x, \ y \in A \text{ we have } x \oplus y = x \lor y = y \lor x = y \oplus x. \\ x \oplus (y \oplus z) = x \oplus (y \lor z) \\ = x \lor (y \lor z) = (x \lor y) \lor z = (x \oplus y) \oplus z, \text{ for all } x, \ y, \ z \in A. \\ \text{Hence} < A, \oplus > \text{ is a semi-lattice.} \end{array}$

Definition 3

Let A be a pre A*-algebra define a relation \leq_{\oplus} on A by x \leq_{\oplus} y iff $x \oplus y = y$.

Lemma 3

Let A be a pre A*-algebra then $(\mathbf{A}, \leq_{\oplus})$ is a poset.

Proof

Since $x^{\bigoplus} x = x^{\vee} x = x$, $x^{\leq_{\oplus}} x$, for all $x \in A$ Therefore \leq_{\oplus} is reflexive. Suppose $x \leq_{\oplus} y, y \leq_{\oplus} z$, for all x, y, $z \in A$ then $x \oplus y = y$, and $y \oplus z = z$. Now $x \oplus z = x \oplus (y \oplus z) = (x \oplus y) \oplus z = y \oplus z = z$ that is $x \leq_{\oplus} z$, this shows that \leq_{\oplus} is Transitive.

Let $x \stackrel{\leq_{\oplus}}{} y$ and $y \stackrel{\leq_{\oplus}}{} x$ for all $x, y \in A$ then $x \stackrel{\oplus}{} y = y$ and $y \stackrel{\oplus}{} x = x \implies x = y$. This shows that $\stackrel{\leq_{\oplus}}{}$ is anti symmetric. Therefore (**A**, $\stackrel{\leq_{\oplus}}{}$) is a poset.

Note 4

We have $x \leq_{\oplus} y$ iff $x \oplus y = y$, so $x \leq_{\oplus} x \oplus y$ for all $x \in A$. This shows that $x \oplus y$ is the supremum of $\{x, y\}$.

Let A be a Pre A*-algebra with 0, 1, 2 then $0 \leq_{\oplus} x(x \lor 0) = x$ for all $x \in A$) and $x \leq_{\oplus} 2$ ($2 \lor x = 2$ for all $x \in A$). This gives that 2 is the greatest element and 0 is the least element of the poset (A, \leq_{\oplus}). The Hasse diagram of the poset (A, \leq_{\oplus}) is

We have $A \times A = \{ a_1 = (1,1), a_2 = (1,0), a_3 = (1,2), a_4 = (0,1), a_5 = (0,0), a_6 = (0,2), a_7 = (2,1), a_8 = (2,0), a_9 = (2,2) \}$ is a pre A*-algebra under point wise operation and $A \times A$ is having four central elements and remaining are non central elements, among that $a_9 = (2,2)$ is satisfying the property that $a_9 = a_9$. The Hasse diagram is of the poset ($A \times A$, \leq_{\oplus}) as shown:

Observe that $x \leq_{\oplus} a_9 (x \lor a_9 = a_9)$ and $a_5 \leq_{\oplus} x (x \lor a_5 = x)$ for all $x \in A \times A$. This shows that a_9 is the greatest element and a_5 is the least element of $A \times A$.

Lemma 4

The following conditions hold for any elements x and y in a pre A*-algebra A $% \left(A^{*}\right) =0$

Proof

(i) Consider $({}^{x \lor y}) \oplus x = ({}^{x \lor y}) \lor x = {}^{x \lor y}$. Therefore, $x \leq_{\oplus} x \lor y$. (ii) Consider $(x \land y) \oplus (x \land x^{\tilde{}}) = (x \land y) \lor (x \land x^{\tilde{}})$ $= x \land (y \lor x^{\tilde{}}) = x \land y$ (by dual of $x \land y = x \land (x^{\tilde{}} \lor y)$, $\forall x, y, z \in A$)

Therefore $\mathbf{x} \wedge \mathbf{x}^{\sim \leq_{\oplus} x \wedge y}$

Lemma 5

Let A be a Pre A*-algebra then \oplus is distributive over \vee and \wedge that is (i) $x \oplus (y \vee z) = (x \oplus y) \vee (x \oplus z)$. (ii) $x \oplus (y \wedge z) = (x \oplus y) \wedge (x \oplus z)$

Proof

(i)
$$(x \oplus y) \lor (x \oplus z)$$

 $= (x \lor y) \lor (x \lor z)$
 $= x \lor (y \lor z)$
(ii) $(x \oplus y) \land (x \oplus z)$
 $= (x \lor y) \land (x \lor z)$
 $= x \lor (y \land z)$
 $= x \oplus (y \land z)$

Theorem 3

Let A be a Pre A*-algebra for any $x \in A$ then the following holds in the semi-lattice $\langle A, \oplus \rangle$.

(i) $x \lor x^{\tilde{}}$ is the supremum of {x , $x^{\tilde{}}$ } (ii) $x \land x^{\tilde{}}$ is the infimum of {x , $x^{\tilde{}}$ }

Proof

(i) $x \oplus (x \lor x^{\sim}) = x \lor (x \lor x^{\sim}) = x \lor x^{\sim}$

Therefore, $x \leq_{\oplus} x \lor x^{\tilde{}}$. $x \oplus (x \lor x) = x \lor (x \lor x) = x \lor x$. Therefore, $x^{\sim} \leq_{\oplus} x \lor x^{\sim}$. $x \lor x^{\sim}$ is upper bound of $\{x, x^{\sim}\}$. Let k be the upper bound of $\{x, x^{\tilde{}}\}$ $\Rightarrow x \leq_{\oplus} k \text{ and } x^{\sim} \leq_{\oplus} k \text{ that is } x \oplus k = k \text{ and } x^{\sim} \oplus k = k$ \Rightarrow x \lor k= k and x \sim k = k. Now $k \oplus (x \lor x^{\sim}) = k \lor (x \lor x^{\sim}) = (k \lor x) \lor x^{\sim}$ $= \mathbf{k} \vee \mathbf{x} = \mathbf{k}$ $\therefore x \lor x^{\sim} \leq_{\scriptscriptstyle \oplus} k.$ Therefore, $x \lor x^{\tilde{}}$ is least upper bound of $\{x, x^{\tilde{}}\}$. Sup $\{x, x^{\sim}\} = x \lor x^{\sim}$ (ii) $\mathbf{x} \oplus (\mathbf{x} \wedge \mathbf{x}) = \mathbf{x} \vee (\mathbf{x} \wedge \mathbf{x}) = \mathbf{x}$ Therefore $x \land x^{\sim} \leq_{\oplus}$. $\mathbf{x} \oplus (\mathbf{x} \wedge \mathbf{x}) = \mathbf{x} \vee (\mathbf{x} \wedge \mathbf{x}) = \mathbf{x}$ Therefore, $x \wedge x^{\tilde{}} \leq_{\oplus} x^{\tilde{}}$. $x \wedge x^{\sim}$ is lower bound of $\{x, x^{\sim}\}$. Let I be the lower bound of $\{x, x^{\sim}\}$ $\Rightarrow I \leq_{\oplus} x \text{ and } I \leq_{\oplus} x^{\tilde{}} \text{ that is } x \oplus I = x \text{ and } x^{\tilde{}} \oplus I = x^{\tilde{}}$ \Rightarrow I \lor x = x and I \lor x $\tilde{}$ = x $\tilde{}$ Now $I \oplus (x \land x^{\tilde{}}) = I \lor (x \land x^{\tilde{}}) = (I \lor x) \land (I \lor x^{\tilde{}})$ $= x \land x^{\sim} \Longrightarrow I \leq_{\oplus} x \land x^{\sim}$ $\therefore x \land x^{\tilde{}}$ is greatest lower bound of $\{x, x^{\tilde{}}\}$. $\inf \{x, x^{\sim}\} = x \land x^{\sim}.$

Lemma 6

In the poset (A, \leq_{\oplus}) and x, y \in A . If $x \leq_{\oplus} y$ then for $a \in A$. (i) $a \land x \leq_{\oplus} a \land y$ (ii) $a \lor x \leq_{\oplus} a \lor y$

Proof

If $x \leq_{\oplus} y$ then $x \oplus y = y \Longrightarrow x \lor y = y$ (i) $(a \land x) \oplus (a \land y) = (a \land x) \lor (a \land y) = a \land (x \lor y) = a \land y$ $\therefore a \land x \leq_{\oplus} a \land y$ (ii) $(a \lor x) \oplus (a \lor y) = (a \lor x) \lor (a \lor y) = a \lor (x \lor y) = a \lor y$ $\therefore a \lor x \leq_{\oplus} a \lor y$

Lemma 7

Let A be a Pre A*-algebra for any x, $y \in A$, $x \leq_{\oplus} x \lor y$ then, $x \lor y$ is the upper bound of {x, y}.

Proof

Suppose $x \leq_{\oplus} x \lor y$ then $x \lor y$ is upper bound of x

Now $(x \lor y) \oplus y = (x \lor y) \lor y = x \lor y \Longrightarrow y \leq_{\oplus} x \lor y$ Therefore $x \lor y$ is upper bound of y. $\therefore x \lor y$ is the upper bound of $\{x, y\}$.

Theorem 4

Let A be a Pre A*-algebra for any x, $y \in A$ then sup {x, y} = x \lor y in the semilattice $\langle A, \oplus \rangle$.

Proof

 $\begin{array}{l} (x \lor y) \oplus x = (x \lor y) \lor x = x \lor y \\ \therefore x \leq_{\oplus} x \lor y. \\ (x \lor y) \oplus y = (x \lor y) \lor y = x \lor y \\ \Rightarrow y \leq_{\oplus} x \lor y \\ \end{array}$ Therefore x \low y is upper bound of y $\begin{array}{l} \therefore x \lor y \text{ is the upper bound of } \{x, y\} \\ \text{Suppose } m \text{ is the upper bound of } \{x, y\} \\ \Rightarrow x \leq_{\oplus} m \text{ and } y \leq_{\oplus} m \text{ that is } m \oplus x = m \text{ and } m \oplus y = m \\ \Rightarrow m \lor x = m \text{ and } m \lor y = m \\ \text{Now } m \oplus (x \lor y) = m \lor (x \lor y) = (m \lor x) \lor y = m \lor y = m \\ \Rightarrow x \lor y \leq_{\oplus} m \\ \therefore x \lor y \text{ is the least upper bound of } \{x, y\} \\ \therefore \text{ sup } \{x, y\} = x \lor y \end{array}$

Note 5

In general for a pre A*-algebra with 1, $x \lor y$ need not be the greatest lower bound of $\{x, y\}$ in (A, \leq_{\oplus}). For example $2 \lor x = 2 \land x = 2$, $\forall x \in A$ is not a greatest lower bound. However we have the following theorem.

Theorem 5

In a semi lattice $\langle A, \oplus \rangle$ with 1, for any $x, y \in B(A)$ then inf $\{x, y\} = x \land y$

Proof

If $x, y \in B(A)$, then by lemma 2b, $x \lor (x \land y) = x$ and $y \lor (x \land y) = y$ $\Rightarrow x \oplus (x \land y) = x$ and $y \oplus (x \land y) = y$ This shows that $x \land y \leq_{\oplus} x$ and $x \land y \leq_{\oplus} y$

Hence $x \wedge y$ is an lower bound of $\{x, y\}$. Suppose k is an lower bound of $\{x, y\}$, then $k \leq_{\oplus} x, k \leq_{\oplus} y$ $\Rightarrow k \oplus x = x$ and $k \oplus y = y$ $\Rightarrow x \lor k = x, y \lor k = y$ Now $k \oplus (x \land y) = k \lor (x \land y) = (k \lor x) \land (k \lor y) = x \land y$.

Therefore, $k \leq_{\oplus} x \land y$

 $x \wedge y$ is the greatest lower bound of {x , y}. Hence, inf {x, y} = x \wedge y

Theorem 6

If A is a Pre A*-algebra and $x \lor (x \land y) = x$, for all x, $y \in A$ then (A, \leq_{\oplus}) is a lattice.

Proof

By theorem 4 every pair of elements have supremum. If $x \lor (x \land y) = x$ for all x, y ∈ A then by theorem 5 every pair of elements have infimum. Hence (A, \leq_{\oplus}) is a lattice.

Lemma 8

Let A be a pre A*-algebra then:

(i) $x \lor (x \oplus y) = x \lor y$. (ii) $(x \oplus y) \lor x = x \oplus y$.

Proof

(i) $x \lor (x \oplus y) = x \lor (x \lor y) = x \lor y$ (ii) $(x \oplus y) \lor x = (x \lor y) \lor x = x \lor y = x \oplus y$

Now we present a number of equivalent conditions for a pre A*-algebra become a Boolean algebra.

Theorem 7

The following conditions are equivalent for any pre A*-algebra (A, $\wedge,$ \vee (-) $\tilde{})$

(1) A is Boolean algebra

(2) $x \land y \leq_{\oplus} x$ for all $x, y \in A$

(3) $x \land y \leq_{\oplus} y$ for all $x, y \in A$

(4) $x \land y$ is a lower bound of $\{x, y\}$ in (A , \leq_{\oplus}) for all x, $y \in A$

(5) $x \land y$ is a infimum of $\{x, y\}$ in (A, \leq_{\oplus}) for all $x, y \in A$

(6) $x \lor x^{\tilde{}}$ is the least element in (A , \leq_{\oplus}) for every $x \in A$

Proof

(1) \Rightarrow (2) Suppose A is a Boolean algebra.

Now $x \oplus (x \land y) = x \lor (x \land y) = x$ (by absorption law) $\therefore x \land y \leq_{\oplus} x$ (2) \Rightarrow (3) Suppose $x \land y \leq_{\oplus} x$ then $x \oplus (x \land y) = x$. Therefore $x \lor (x \land y) = x$ Now $y \oplus (x \land y) = y \lor (x \land y) = y$. Therefore, $x \land y \leq_{\oplus} y$ (3) \Rightarrow (4) Suppose that $x \land y \leq_{\oplus} y \implies y \oplus (x \land y) = y$ therefore $y \lor (x \land y) = y$ Since $x \land y \leq_{\oplus} y$ then $x \land y$ is lower bound of y Now $x \oplus (x \land y) = x \lor (x \land y) = x$ (by supposition) $\therefore x \land y \leq_{\oplus} x$ \Rightarrow x \land y is a lower bound of x. \therefore x \land y is a lower bound of {x, y}. (4) \Rightarrow (5) Suppose x \land y is a lower bound of $\{x, y\}$ Suppose z is a lower bound of $\{x, y\}$ then $z \leq_{\oplus} x, z$ \leq_{\oplus} y that is x \oplus z = x and y \oplus z = y \Rightarrow x \lor z = x , y \lor z = y Now $z \oplus (x \land y) = z \lor (x \land y) = (z \lor x) \land (z \lor y)$ $= x \wedge y$ Therefore, $z \leq_{\oplus} x \land y$ $x \wedge y$ is the greatest lower bound of $\{x, y\}$ Hence $\inf \{x, y\} = x \land y$ (5) \Rightarrow (6) Suppose $\inf \{x, y\} = x \land y$ then $x, y \in B(A)$ Now $\inf \{x \land x^{\tilde{}}, y\} = x \land x^{\tilde{}} \land y = x \land x^{\tilde{}}$ (by lemma 2a) \Rightarrow x \land x[°] \leq_{\oplus} y. Therefore x \land x[°] is the least element in $(\mathsf{A}, \leq_{\oplus}).$ (6) \Rightarrow (1) Suppose x \land x[~] is the least element in A then $x \land x^{\sim} \leq_{\oplus} y$, for $y \in A$ $\Rightarrow (x \land x^{\tilde{}}) \oplus y = y \Rightarrow (x \land x^{\tilde{}}) \lor y = y$ Now $y \land (x \lor y) = [(x \land x^{\sim}) \lor y] \lor (x \lor y)$ = $[(x \land x^{\sim}) \lor x] \lor y = (x \land x^{\sim}) \lor y = y$ (by supposition).

Therefore by Note 3 we have B is Boolean algebra.

Theorem 8

Let A be a pre A*-algebra $x \lor x^{\tilde{}}$ is the greatest element in (A, \leq_{\oplus}) for every $x \in A$ then A is Boolean algebra.

Proof

Suppose $x \lor x^{\sim}$ is the greatest element in (A, \leq_{\oplus}) then y

 $\leq_{\oplus} x \lor x^{\tilde{}}$ $\Rightarrow (x \lor x^{\tilde{}}) \oplus y = x \lor x^{\tilde{}}$ $\Rightarrow (x \lor x^{\tilde{}}) \lor y = x \lor x^{\tilde{}}$ $Now x \lor (x \land y) = [x \land (x^{\tilde{}} \lor x)] \lor (x \land y)$ $= x \land [(x \lor x^{\tilde{}}) \lor y] = x \land (x \lor x^{\tilde{}}) = x (by supposition)$ $\therefore x \lor (x \land y) = x, absorption law holds$

By Note 3 we have B is Boolean algebra.

REFERENCES

- Birkhoff G (1948). Lattice theory, American Mathematical Society, Colloquium, publishers, New York.
- Fernando G, Craig C (1994). Squir: The Algebra of Conditional logic, Algebra Universalis 27: 88-110.
- Rao KP (1994). A*-algebra and If-Then-Else structures (thesis), Nagarjuna University, A.P., India.
- Manes EG (1989). The Equational Theory of Disjoint Alternatives, personal communication to Prof. N.V.Subrahmanyam.
- Manes EG (1993). ADA and the Equational Theory of If-Then-Else, Algebra Universalis 30: 373-339.
- Venkateswara RJ (2000). On A*- algebras (thesis), Nagarjuna University, A.P., India.
- Venkateswara RJ, Srinivasa RK (2009). Pre A*-algebra as a Poset, Afr. J. Mathe. Comput. Sci. Res. 2: 73-80.