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This paper represents a continuation of a previous study on “Analysis of a Sliding Frictional Contact 
Problem with Unilateral Constraint”. This study considers a mathematical model which describes the 
equilibrium of an elastic body in frictional contact with a moving foundation. The contact is modeled 
with a multivalued normal compliance condition with unilateral constraints, associated to a sliding 
version of Coulomb’s law of dry friction. After a description of the model, the variational formulation 
was presented. Then, the dependence of the solution was studied with respect to the data and a 
convergence result was proven. Regularization method was also used to study the existence and 
uniqueness of the contact problem for which a convergence result was presented. Finally, a semi-
discrete scheme was introduced for the numerical approximation of the sliding contact problem. Under 
certain solution regularity assumptions, an optimal order error estimate was derived.  
 
Key words: Elastic material, frictional contact, normal compliance, unilateral constraint, variational formulation, 
weak solution, regularization method, finite element, error estimate.  

 
 
INTRODUCTION 
 
The mathematical literature dedicated to the study of 
physical phenomena of contact is more recent. The 
reason for this is that, accompanied by physical 
phenomena and surface complexes, the contact 
processes are modeled by very difficult nonlinear 
boundary problems. One of the first mathematical 
publications on this subject is that of Signorini (1933), 
where the problem of unilateral contact between a 
linearly elastic body and a rigid foundation is formulated. 
It follows the work of Fichera (1964)  where  the  Signorini 

problem has been solved, using arguments of variational 
inequalities of elliptic type. This being said, we can safely 
say that the mathematical study of contact problems 
begins with the monograph by Duvaut and Lions (1972), 
which has the merit of presenting the variational 
formulation of several contact problems, accompanied 
by1996; Kikuchi and Oden, 1988; Kinderlehrer and 
Stampacchia, 2000; Panagiotopoulos, 1985; Sofonea 
and Matei, 2012). General results on the analysis of the 
variational  inequalities,  including  existence  and  results 
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of existence and uniqueness of the solution. Considerable 
progress has recently been made in the fields of 
modeling, mathematical analysis and numerical simulation 
of various contact processes (Haslinger et al., 1996; 
Kikuchi and Oden, 1988; Kinderlehrer and Stampacchia, 
2000; Panagiotopoulos, 1985; Sofonea and Matei, 2012). 
General results on the analysis of the variational 
inequalities, including existence and uniqueness results, 
were developed in a large number of works (Barboteu et 
al., 2013, 2016; Capatina, 2014; Eck et al., 2013; Han 
and Reddy, 1995, 1999; Rochdi et al., 1998). 

Recently, a more general contact condition, called the 
normal compliance condition restricted by unilateral 
constraint introduced in Jarusek and Sofonea (2008), 
models the contact with an elastic-rigid foundation. The 
mathematical analysis of models involving the frictionless 
contact condition with normal compliance and unilateral 
constraint can be found in Eck et al. (2013; 2015), 
Jarusek and Sofonea (2008) and Sofonea and Matei 
(2012). When friction is considered, the unique solvability 
of the variational problems can be proven by considering 
a smallness assumption of the friction coefficient 
(Barboteu et al., 2016; Sofonea and Souleiman, 2015, 
2016, Sofonea and Xiao 2016). 

In this work, the frictional contact model introduced in 
Sofonea and Souleiman (2015) which describes the 
contact of deformable body with a moving foundation not 
perfectly rigid was considered. Therefore, the contact law 
with normal compliance and unilateral constraint was 
associated to a sliding version of Coulomb’s law of dry 
friction. The frictional contact model are characterized 
condition as a multivalued normal compliance contact 
condition with unilateral constraints. Such kind of rigid-
elastic foundation problems have been considered in 
Sofonea and Souleiman (2015, 2016). 
 
 

PRELIMINARIES 
 

The notation and some preliminary material which will be 
of use later on wer presented. In this paper, the notation 

  was used for the set of positive integer. Let    . 

Then, we denote by    the space of second order 

symmetric tensors on   . The inner product and norm on 

   and    are defined by: 
 

                                
 
                      

                                   
 
                      

 

Here, the indices  ,  ,  ,   run between   and   and 
unless stated otherwise, the summation convention over 
repeated indices is used. 

Let   be a bounded domain                with a 
Lipschitz continuous boundary   and let    be a 

measurable part of   such that            . The 
notation          was used for a typical point in     
and denoted by          the outward unit normal at  .  

 
 
 
 
Also, an index that follows a comma represents the 
partial derivative with respect to the corresponding 

component of the spatial variable, e.g.             . In 

particular, it was recalled that the inner products on the 

Hilbert spaces        and        are given by: 
 

               ∫  
 

                                 

 ∫ 
 

            

  

and the associated norms will be denoted by           and 

         , respectively. Moreover, the spaces are 

considered. 
 

                                      
                               
 

These are real Hilbert spaces endowed with the inner 
products: 
 

 
 

and the associated norms      and     , respectively. 

Here     is the deformation operator given by: 
 

                                 
 

 
                     

        
 

Recall that the completeness of the space          
follows from the assumption            , which allows 
the use of Korn’s inequality. 

For an element            is still written for the trace of 

    on the boundary  . Let    and      br denoted by the 
normal and the tangential component of     on  , 
respectively, defined by                              . 
Let    be a measurable part of  . Then, by the Sobolev 
trace theorem, there exists a positive constant    which 

depends on  ,    and    such that: 
 

                                                                 (1) 
 

For a regular function              and      are 
denoted by the normal and the tangential components of 

the vector        on  , respectively, and recall that 
              and                  . Moreover, the 
following Green’s formula holds: 
 

∫  
 

                 ∫  
 

                ∫  
 

       

                                                                               (2) 
 

This introduction ends with the following abstract 
existence result. 
 
 

Theorem 1   
 

Let                    be   a  real  Hilbert  space,    a closed  

(   ,   ) = ∫  
 

   (   )     (   )   ,    (   ,   ) = ∫  
 

          , 



 
 
 
 

convex subset of   and       a strongly monotone 
Lipschitz continuous operator, that is, there exists     
and     such that: 

 
                    

                            (3) 

 
                                                  (4) 

 
Assume that         is a function which satisfies the 
following conditions: 
 

{
 
 

 
 

                                               
                                             
                                             
                                           
                                                  

              

                                                                                       (5) 
 

Moreover, assume that    . Then, for each     
there exists a unique element     such that: 
 
                                         
                                                                                     (6) 
 
Theorem 1 will be used to prove the existence and 
uniqueness of our model of contact problem regularized. 
Its proof can be found in Sofonea and Matei (2012) and is 
based on the Banach fixed point theorem. 

 
 
FORMULATION OF THE PROBLEM 
 
An elastic body that occupies the bounded domain   with 

 , its boundary was considered. Let     denotes the unit 
outward normal, defined almost everywhere on  . The 

body is clamped on    and, therefore, the displacement 
field vanishes there. A volume force of density      acts in 
 , and surface tractions of density      act on   . On   , 
the body is in frictional contact with a moving obstacle, 
the so-called foundation. Let      denotes the velocity of 

the foundation, that is, its velocity             is assumed 
to be larger than the tangential velocity      on the surface 

contact    (that is,              ), where      
    

      
 

denotes a given unitary vector in the tangential plane and 
the value      is also given. 

Therefore, lets consider the classical formulation of 
frictional contact problem that follows. 

 
 
Problem P 

 
Find a displacement field         and a stress field 

        such that: 
 

                                                                              (7) 
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                                                                          (8) 
 

                                                                                (9) 
 

                                                                              (10) 
 

                                                                        (11) 
 

and there exists        which satisfies: 
 

    

                  

                     

      
                  

               }
 
 

 
 

                       (12) 

 
Here, for simplicity, the dependence of various functions 

on the spatial variable    was not indicated explicitly. 
Now, the physical meaning of Equations 7 to 12 were 
shortly described. Equation 7 represents the elastic 

constitutive law in which   is the elasticity operator, 
assumed to be nonlinear. Equation 8 represents the 
equation of equilibrium and was used here since the 
internal term in the equation of motion was neglected. 
Equations 9 and 10 are the displacement boundary 
condition and the traction boundary condition, 
respectively. Finally, Equations 11 and 12 represent the 
friction Coulomb’s law and the multivalued normal 
compliance contact condition with unilateral constraint 
and crust, respectively. The friction condition of Equation 
11 represents a regularized form of a version of 

Coulomb’s law in slip status where   represents the 
coefficient of friction and   is a operator which depends 
only on the normal displacement    (Sofonea and 
Souleiman, 2015). Equation 12 represents the contact 

condition in which   is a positive Lipschitz continuous 
increasing function which vanishes for a negative 

argument,   is a positive function and    . Note that 
this conditions the model’s contact with a foundation 
made of a rigid material and covered by a layer of soft 
material (asperities) of thickness g with a thin crust 
(Sofonea and Souleiman, 2015). 

Lets turn to the variational formulation of Problem    
and, to this end, the assumptions on the data were listed. 

First, the elasticity operator   and the normal compliance 
function were assumed to satisfy the following conditions: 
 

                                            
                                                                                     (13) 
{
 
 
 
 
 

 
 
 
 
 

( )   :  ×      .

( )   ℎ 𝑟       𝑡     > 0  s  ℎ  𝑡ℎ 𝑡

          (   ,   1)   (   ,   2)         1     2  

                 1,   2    , a.  .       .

( )   ℎ 𝑟       𝑡     > 0  s  ℎ  𝑡ℎ 𝑡

        ( (   ,   1)   (   ,   2))  (   1     2)         1     2  2

                 1,   2    , a.  .       .

( )   ℎ                 ↦  (   ,   )  i        𝑟         ,         .

( )   ℎ               ↦  (   , 0 )  b        𝑡    .
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                                                                                     (14) 
 
The densities of body forces and surface tractions have 
the regularity 
 

                           
                                         (15) 

 

The surface yield and the coefficient of friction satisfy: 
 

                                                                 (16) 
 

                                                                  (17) 
 
Finally, the operator   satisfies: 
 

      
                                                                                     (18) 
 

Next, the set of admissible displacements fields was 
introduced, defined by: 
 
                                                               (19) 
 

Moreover, the operator      , the function       
           and the element       were defined by 
equalities: 
 

           ∫  
  

                                                (20) 

 

          
∫  
  

   
     ∫  

  
                                                            

                                                                                     (21) 
 

          ∫  
 

             ∫  
  

                                                 

 
Here, 𝑟  denotes the positive part of 𝑟, that is, 𝑟  
     𝑟   . 

Assume in what follows that          are sufficiently 
regular functions which satisfy Equations 7 to 12 and let 
     . Green’s formula of Equations 2, 8 to 10 and 
Definition 22 were used to see that: 

 
 
 
 

                                       ∫  
  

         

       ∫  
  

     
    

       ∫  
  

                   

         (23) 
 
Finally, the constitutive law of Equation 7, the variational 
inequality (Equation 23) and Definitions 19 to 21 were 
gathered to obtain the following variational formulation of 

the contact problem   . 
 
 

Problem     
 

Find a displacement field     such that: 
 
                                                

                                (24) 
 

A result of existence and uniqueness for the problem     
was provided in Sofonea and Souleiman (2015). 
 
 
A CONTINUOUS DEPENDENCE RESULT 
 

The dependence of the solution Problem    was studied 
with respect to perturbations of the data. To this end, it 
was assumed in what follows that Equations 13 to 18 

hold, and denoted by     the solution of Problem   . For 
each    , let                    and   , represent 

perturbations of               and   ,  respectively, which 
satisfy conditions of Equations 14 to 17, respectively. 
With these data, the operator        and the functions 

         the element        were defined by 

equalities: 
 

            ∫  
  

                                                     

                                                                                     (25) 
 
           

∫  
  

     
     ∫  

  
                                                           

                                                                                     (26) 
 

           ∫  
 

               ∫  
  

                                                   

                                                                                     (27) 
 

Then, the following perturbation of Problem    was 
considered 
 
 

Problem   
 
   

 
Find a displacement field      such that: 

 
                                               

                                                   (28) 

{
 
 
 
 

 
 
 
 

( )   :  3 ×    +.

( )   ℎ 𝑟       𝑡    > 0     ℎ  𝑡ℎ 𝑡  

          | (   , 𝑟1)   (   , 𝑟2)|     |𝑟1  𝑟2|

              𝑟1, 𝑟2   , a.  .       3.

( )  ( (   , 𝑟1)   (   , 𝑟2))(𝑟1  𝑟2)  0

            𝑟1, 𝑟2   , a.  .       3.

( )   ℎ               ↦  (   , 𝑟)           𝑟           3,   𝑟   .    

( )   (   , 𝑟) = 0  f 𝑟       𝑟  0, a.  .     3.

  

{
  
 

  
 

( )   :  3 ×     +.

( )  There  exists    > 0  such  that

          (   ,   1)   (   ,   2)         1     2  

                 1,   2    , a.  .       3.

    The  mapping       ↦      ,     is  measurable  on  3, f 𝑟    𝑦        .

( )  The  mapping     ↦  (   , 0   )belongs  to   2( 3).

  



 
 
 
 
It follows from Sofonea and Souleiman (2015) that, for 

   , Problem   
 
 has a unique solution     . Consider 

now the following assumptions: 

 

{
 
 

 
 

                           ℎ  𝑡ℎ 𝑡

             𝑟        𝑟         𝑟    

  𝑟                      𝑟     ℎ      

        
   

       

            (29)       

  
                                                                     (30) 

 
                                                                      (31) 

 
                                                                     (32) 

 
                              

                                        (33) 

 
The following convergence result represents the main 
result here. 

 
 
Theorem 2 
 
Assume that Equations 29 to 33 hold, then the solution 

     of Problem   
 
 converges to the solution    of Problem 

  , that is:  
 
                                      (34) 

 
 
Proof  

 
Let    , then        in Equation 28 and          in 

Equation 24 and add the resulting inequalities to obtain: 
 

                                                                                     (35) 
 
Estimating each term in previous inequality using 
Assumption (Equation 13), to deduce that 
 
                                                  

     
                                                                              (36) 

 
To proceed, the Definitions (Equations 20 and 25), the 
monotonicity of the function    and Assumption (Equation 

29) were used to see that: 
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Therefore, using the trace Inequality (Equation 1), after 
some elementary calculus, it was found that: 
 

                              
  

                  
                    (37) 

 
Next, using Definitions (Equations 21 and 26), thus: 
 

 
 
Therefore, writing: 
 
                                                  

 
Assumptions 17 and 18b combined with Equation 1 were 
used to get: 
 

  (38)  

(    (    )      (   ),   (    )     (   ))   

(           ,        ) + (        ,        ) + 

 (   ,    )   (   ,   ) +   (    ,   )    (    ,    )  

(           ,        ) = 

∫  
 3

                                     

∫  
 3

                                   

∫  
 3

                                   

∫  
 3

 ( )(|    | + 1)|           |    

     ,           ,    +        ,            ,     = 

∫  
 3

              
+      

+   + 

∫  
 3

 (  (   )     (    ))    (           )    

     ,           ,    +        ,            ,      

  0        ∞   3      ( 3)
1
2            + 

 0
2      ∞   3            

2 + 

 0        ∞   3           2  3              

 0        ∞   3      ( 3)
1
2            + 

 0
2      ∞   3            

2 + 

 0        ∞   3 ( 0          + 

  (0 )   2 ( 3))             
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Finally, using the Cauchy-Schwartz inequality, we obtain 
that: 
 
                                                  (39)                  

                                                               
Inequalities 35 to 39 were combined to deduce that: 
 

              
                                                                               (40) 
    

Take      in inequality (Equation 28) and using 
inequality (Equation 13c and 13e) to see that: 
 

         
               

 
which implies: 

 

        
 

  
        

 
On the other hand, using Definitions (Equations 32 and 

33), there exists a constant   which does not depend on 
  such that: 

 
          

 
and since      

            , it was deduced that: 

 
                                           

              
 

  
                                   

                                                                             (41) 
 

where   is a positive constant which does not depend on 
 . 

The convergence in Definition 34 is now a 
consequence of the Inequality 41 combined with 
Assumptions 29 to 33. 

In addition to the mathematical interest in the 
convergence results in Definition 34, it is of importance 
from mechanical point of view, since it states that the 
weak solution of problem in Equations 7 to 12 depends 
continuously on the normal compliance function, the 
surface yield, the coefficient of friction and the densities 
of body forces and surface tractions, as well. 

 
 
REGULARIZATION 
 
In  what   follows,   Problem       using  the  regularization  

 
 
 
 

method was studied. To this end, for each    , the 
difference arises from the fact that here the function   
define by Equation 21 with its regularization the function 
         defined by equalities were replaced: 

 
           

∫  
  

           ∫  
  

                                  

                                                                                   (42) 
 
Where         and         are the functions 

differentiable defined by the equalities: 
 

      {
√                   

                                     
                       (43) 

 
and, 
 

      √                                                    (44) 

 
Let    , considering the following lemma. 
 
 
Lemma 3 
 
Let    . The functions    and    defined by Equations 

43 and 44, the following satisfies conditions: 
 

{
 

 
                           ℎ                      

     ℎ    ℎ 𝑦      𝑦                  𝑦    

    ℎ                                            

    ℎ                                                   

                             

                                                                                (45) 
 
 
Proof  
 
(a) Let    . Using Equation 44 of the function  , to see 
that: 
 

         𝑦  √      √𝑦     
     

√      √     
 

   𝑦  
   

√      √     
                                                   (46) 

 
and, since 
 

   

√      √     
                                                           (47) 

 
Combining Equation 46 and inequality (Equation 47) to 
obtain 
 
          𝑦      𝑦                                               48) 

 

Consider    , it follows from the Definitions (Equations 
43 and 44) that: 

(    0
2      ∞   3 )              ( )( 0

2       + 

 0      ( 3)
1
2) +  0        ∞   3      ( 3)

1
2 + 

 0        ∞   3 ( 0          + 

  (0 )   2 ( 3))+            



 
 
 
 
                                                                    (49) 

 
Moreover, from Equations 48 and 49, it is deduced that: 
 
          𝑦             𝑦      𝑦                (50)             

 
which conclude the first part of the proof. 
 

(b) Let    . Noting that for all     it is obtained that: 
 

             √                   

√                                                                       (51) 

 
Moreover, using Equation 49, it is deduced that: 
 

                                                           (52) 

 
which concludes the second part of the proof. 
 
(c) Next, using Equations 43 and 44, it is easy to see 
that: 
 
                                                                    (53) 

 

Therefore, using Equation 50 with 𝑦    and Equation 53, 
it is found that: 
 
                                                                   (54) 

 
Which completes the proof. 
 
For all          and note that, again, the integral in 
Equation 42 is well-defined. 
Using argument similar to those used in the previous 
section, using the previous equality, the following 
variational formulation of the sliding friction contact 
problem regularized was obtained. 

 
 
Problem   

 
  

 
Find      such that: 

 
                                              

                                                    (55) 

 
The following are the existence, uniqueness and 
convergence results. 

 
 
Theorem 4  
 
Under the Assumptions (Equations13 to 18), there exist a 

constant   , which depends only on  ,   ,   ,   and  , 
such that: 
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1) The Problem   
 
 admits a unique solution if: 

 
                                                                          (56) 

 

2) The solution      of Problem   
 
 converges strongly to 

the solution     of the Problem   , that is:  
 
                                                                       (57) 

 

 
Proof 1 
 
To solve the variational inequality (Equation 55), 
Theorem 1 with     and     was used. To this end, 

it is noted that   is a nonempty closed convex subset of 
 . Considering the operators       defined by: 
 
                                                         

                                                                                    (58) 
 
Moreover, using definitions (Equations 13c and 20c) to 
see that: 

 
                                

                                       
                                                                             (59) 
 
On the other hand, using definitions (Equations 13b, 14b) 
and the trace inequality (Equation 1) yield: 
 

                     
                                             

                                                                                 (60) 

 
To see that   is a strongly monotone Lipschitz continuous 

operator on the space  . 
Next, using the functional defined by Equation 42. 

 

           ∫  
  

           ∫  
  

                     

 
Moreover, using Equation 44 to obtain: 

 

           ∫  
  

         ∫  
  

                    

 
Conditions (Equations 13 to 18), inequality (Equation 1) 
and the previous inequality were combined to see that: 
 

                                
              

                                                                        (61) 

 
Therefore, it is easy to see that the functional    satisfies 

Equation 5a. 

Let     ,     ,     ,        using Equations 42 and 48, 
we find that: 
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Then we Definitions (Equations 17 and 18b) and 
Inequality (Equation 1) to see that: 
 

                                                                   
                                                                                     (62) 

 
Let 
 

   
  

  
   

                                                                       (63) 

 
and note that, clearly,    depends only on           and 
 . It follows from Inequality (Equation 62) that    satisfies 

condition (Equation 5b) with     
             and 

    . Assume Inequality (Equation 56),   
    

            which implies that     was obtained, 

which concludes the first part the proof. 
Let    ,        in inequality (Equation 55) and 

         in inequality (Equation 24). Then, adding the 

resulting inequalities to obtain: 
 
                                               

                                                                           (64) (64) 

 
Then by Equations 13c, 21 and 42, 
 

             
                                                  (65) 

 
where 

 

   ∫  
  

     
    

                     

   ∫  
  

                                         

 
Next, using the definitions (Equations 43 and 52) to 
obtain: 

 

   ∫  
  

              
             

      

 ∫  
  

       

 
and, by Equation 13: 

 
 
 
 
                                                              (66) 

 
On the other hand, using the triangle inequality, it follows 
that: 
 

                                           

                  |                      |   

                    

 
Combining definitions (Equations 18a, 18b, 50 and 52) 
and the previous inequality, it is seen that: 
 
                                                     (67) 

 
Finally, using inequalities (Equations 66, 67, 17 and 1) to 
obtain: 
 

            (68) 
  
Assume condition (Equation 56), it follows from 
Inequalities (Equations 65 and 68) that: 
 

                 
                        

               
                                                  (69) 

 

where     
             

 
Using inequality (Equation 69), the elementary inequality: 
 

                                                         
 
As a result it is deduced that: 
 

           
                                                         (70) 

 

Therefore, Equation 70 implies the convergence in 
Equation 57, which concludes the proof. 

The interest in Theorem 4 is twofold: first, it provides 
the existence and uniqueness of the solution to the 
variational inequality (Equation 55); second, it shows that 
the solution of inequality (Equation 24) represents the 
strong limit of the sequence of the solution      of the 

problem of inequality (Equation 55), as    . 
The convergence result in Equation 57 is important 

from the mechanical point of view, since it shows that the 
weak solution of the elastic the sliding frictional contact 
problem with normal compliance, and unilateral constraint 
may be approached as closely as one wishes by the 
solution of the sliding friction contact problem with normal 
compliance,  unilateral  constraint and regularized friction,  

      1 ,   2        1 ,   1 +       2,   1        2,   2 = 

∫  
 3

           1           2           2     1      

∫  
 3

 | |   (   1)   (   2)      2     1      

      1,   2        1,   1 +       2,   1        2,   2   

 0
2      ∞ ( 3)    1     2       1      2     

 1 +  2  2     ∞   3         3 + 

 0
2      ∞   3            

2 + 

 0         ( 3)1/2              



 
 
 
 
with a sufficiently small regularization parameter. 

 
 
NUMERICAL APPROXIMATION 

 
Here, is devoted to the numerical discretization of the 

Problem   . Let      be a linear finite element space 
on the domain, which is vanishing on the boundary   . 
We define the space: 
 

              
                                               (71) 

 

where ℎ    denotes the spatial discretization parameter. 

It is easy to see that the finite dimensional space      

for the polygonal domain. The constraint condition      

on the boundary    is satisfied at nodes, that is,      , 

where    is the linear interpolation of function  . 

The following approximated solution for the Problem    
are discussed. 

 
 
Problem   

   

 
Find a displacement field      such that: 
 

          
                                                                                     (72) 

 
Under the assumptions (by Sofonea and Souleiman, 
2015) and inequality (Equation 56), the discrete system 
of inequality (Equation 72) has a unique solution. 
Focusing on the error analysis between the solutions to 

problems    and   
 .  

 
 
Theorem 5  

 
Assume that conditions (Equations 13 to 18) and 
inequality (Equation 56) hold, then there exists a constant 

  independent of   such that: 
 

                
       

                        
   

  

         
      

   
                                                            (73) 

 

 
Proof 
 
By the assumptions (Equations 13c and 14c), and 

Equations 20 and 58 for any        : 
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                                                                                     (74) 

 
Using the inequality (Equation 24) with          and 
inequality (Equation 72) to find that: 

 

            
                                                                                     (75) 

 
Then by inequalities (Equations 74 and 75): 

 
                        

                          (76) 

 
Where: 

 

 
 
Estimating term by term; for the first term, the same 
inequality as inequality (Equation 13b) is obtained: 

 

                                                          
                                                                                     (77) 

 
For the second term   , it can be viewed as a residual.  
Hence: 

uh   U h, (N  (uh),  (vh)    (uh))Q  +  

(P uh, vh    uh)V +j(uh, vh)   j(uh, uh)    

(f, vh   uh)V   vh   U h 

                    ℎ   
2   

                   ℎ ,                ℎ    

                   ℎ ,                ℎ  + 

∫  
 3

            
ℎ        

ℎ   = 

          ℎ ,       ℎ = 

     –     ℎ ,   –    ℎ +      ,   ℎ     ℎ       ℎ ,   ℎ     ℎ    

     ,   ℎ     ℎ       ℎ ,   ℎ     ℎ   

     ,   ℎ      +      ℎ ,   ℎ   

 (   ℎ ,   ℎ) +  (   ,   ℎ)   (   ,   ) + (   ,       ℎ)   

 1 =           ℎ ,       ℎ  

 2 = (    ,   ℎ     ) +  (   ,   ℎ)   (   ,   )  (   ,   ℎ     )  
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After some elementary calculus based on the 
Assumptions (Equations 13 to 18): 
 

          
                                                                                     (78) 
 

For the term   : 
 

   ∫  
  

                         
           

 

Therefore, using Equations 1, 17 and 18b to obtain: 
 

       
                       

                               (79) 

 
For the last term   , using Equation 18b to obtain: 
 

                           
                                                                                     (80) 
 
Under the hypothesis of Inequality (Equation 56), 

absorbing the third term    of Inequality (Equation 79), 
using the elementary inequality: 
 

       
 

  
        

 

The result of inequality 73 can be proved easily. 
Note we obtain the error estimate by the trace 

inequality on boundary   : 
 

              √    
       

               

 
 
 
 
It is the same order error estimates as presented in 
Inequality (Equation 1) and for the other mathematical 
model and not the optimal order. The optimal error 
estimates under extra regularity for the solution was 
derived. 
 
 
Theorem 6 
 

Under the assumptions of Theorem 5 and             
 ,  

there exists a constant   independent of   such that: 
 

          (81) 
 
 
Proof 
 
The estimate    was done under extra regularity of the 

solution           
 . Green’s formula (Equation 2), 

Equations 7 to 10 and Definition (Equation 22) were used 
to show that: 
 

                                        ∫  
  

       

      ∫  
  

                                                      (82) 

 
By Equation 82: 
 

 
 
Thus, the result of inequality (Equation 81) following the 
proof of Theorem 6 can be obtained. 

To derive an order error estimate, similar theory (cf. 
Han and Sofonea, 2002) was used. Assume: 
 

                     
       

                                       (83) 

 

Let          be the linear finite element interpolant of 
the solution    . As the solution     , that is,     , 

then         . The standard finite element interpolation 
theory yields (cf. Ciarlet, 1978): 
 
               ℎ              

 

                     ℎ               

 
Therefore, under the regularity Assumption (Equation 
83), the optimal error estimate is obtained: 
  

              ℎ 
 

where the constant c is independent of ℎ. 
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