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Principal component procedure has been widely used in factor analysis as a data reduction procedure. 
The estimation of the covariance and correlation matrix in factor analysis using principal component 
procedure is strongly influenced by outliers. This study investigates the robustness of principal 
component procedure in factor analysis by generating random variables from five different 
distributions which are used to determine the common and specific factors in factors analysis using 
principal component procedure. The results revealed that the variance of the first factor was widely 
distributed from distribution to distribution ranging from 0.6730 to 5.9352. The contribution of the first 
factor to the total variance varied widely from 15 to 98%. We conclude that the principal component 
procedure is not robust in factor analysis. 
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INTRODUCTION 
 
Factor analysis performs a decomposition of the data 
matrix into a matrix of loadings which describes the con-
nections between the variables and the new co-ordinate 
system and a matrix of factors scores which consists of 
the variable values in the new co-ordinate system 
(Filzmoser, 1999). Factor analysis has been used in 
empirical researches as a statistical tool that can be used 
to analyze interrelationships among a large number of 
variables and to explain these variables in terms of their 
common understanding dimensions (factors) with a 
minimum loss of information. Factor analysis can be used 
to refer to a class of models that include ordinary 
principal components, weighed principal components, 
maximum likelihood factors analysis, certain multi 
dimensional scaling models and others. 

Factors analysis has been used in recent works by 
several authors such as Budweiser et al. (2005), who 
used factor and discriminant analysis to find the long term 
reduction of hyperinflation in stable chronic obstructive 
pulmonary disease (COPD) by non invasion nocturnal 
and factor analysis which are sensitive to outliers. 

Dutter (1987) has shown a lot of possibilities to robust 
classical multivariate methods and has also applied these 
techniques to the analysis of geostatistical variables. He 
went further to show that the estimation of the covariance 
and correlation matrix are strongly influenced by outliers. 
As a consequence,  the  estimation   of   Eigen  vectors   and  

Eigen values is also strongly dependent on outliers in the 
data. Further errors might appear with the estimation of 
the mean vector which is necessary for both the 
centering of the data and the calculation of the classical 
covariance matrix. 

This study investigates the robustness of principal com-
ponent method in factor analysis by using artificial data 
generated independently from five distributions namely: 
normal, uniform exponential, Laplace and Gamma 
distributions. Robustness is the quality of being able to 
withstand stresses, pressures or changes in procedure or 
circumstance. A system, organization or design may be 
said to be robust if it is capable of coping well with 
variations (Sometimes unpredictable variations) in its 
operating environment with minimal damage. 

A robust statistical techniques is one that performs well 
even if its assumptions are somewhat isolated by the true 
model from which the data is generated (Wikipedia, 
2009). There are different degrees of robustness. A 
measure for the determination of the robustness of an 
estimator is given by the breakdown value (Donoho and 
Huber, 1983). It is defined as the minimum proportion of 
contaminated data which causes the estimator to give 
arbitrary values. Nwabueze et al. (2009) investigated the 
robustness of the maximum likelihood method of estima-
tion in factor analysis. Their findings showed that maxi-
mum likelihood method of  estimation  is  robust  in  factor 
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analysis.  
 
 
METHODOLOGY/ EXPERIMENTAL DESIGN  
 
Correlation and factor loadings 
 
Random variates were generated independently from the five 
distributions used in the study. Five response variables were 
generated using a sample size of 200. The experiment was 
replicated fifty times for each of the five distributions. These random 
variates were used to calculate the correlation matrix for the five 
distributions. These correlation matrices were used to calculate 
matrix of constants (factor loadings) and the ith specific factor which 
is only associated with the ith response for each of the five 
distributions. The contribution of total sample variance due to the 
first and second factors was also obtained. 
 
 
Factor analytical model 
 
The factor analytic model is given by  
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Which in matrix form is equivalent to: 
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Where; X is the observable random vector with p components, µ  
is the mean of X, L is the loading of the ith variable on the jth factor. 
F and m are unobservable random variable called the common 
factors while δ  are p additional sources of variation called error or 
sometimes specific factors. 
 
 
Principal component (principal factor) method 
 
In factor analysis using principal component procedure, the 
correlation matrix can be factored out using the spectral 
decomposition theorem. 
 

ppp ������ ′++′+′=� λλλ ..222111        (3)                                                                   

                                                       

�=  ( )pp��� λλλ ...2211       

'

'
22

'
11

pp�

�

�

λ

λ

λ

                

                                                                    (4) 
 
Where �  is the covariance matrix of the compositions, ( )11�λ  

                                                                          
                                                                                       
 
 
is the eigenvalue-eigenvector pair of  �  and 

0....21 ≥≥≥≥ pλλλ . 

Eigen values are the new variances gotten when the un-rotated 
or old variances have been rotated and are termed component 
loadings which are used to calculate the component scores. When 
the specific factors are included in the model and their variables are 
taken to be the diagonal elements, the approximation becomes: 
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Where   �i is the variances or error from the compositions which is 
the specific variance and L is the matrix of the factor loadings. The 
proportion of total sample variance S11 + S22 + .. + Spp = trS from 
the first and common factor is then: 
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Since the eigenvector i�  has unit length, in general, the proportion 

of total sample variance due to the jth factor is   
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for a factor analysis of S. 
 
 
DISTRIBUTIONS USED IN THE STUDY  
 
Normal distribution 
 
A random variable is said to follow a normal distribution with mean 

µ  and variance 
2σ  if the probability density function is given by: 
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Exponential distribution 
 
An exponential distribution with parameter λ  has the probability 
function given as: 
  

( ) XXf λλ −= � , X > 0. 
 
 
Uniform distribution 
 
A continuous random variable has a uniform distribution if and if its 
probability density is given by: 
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Table 1. Correlation matrix R1 from the normal distribution. 
 

 X1 X2 X3 X4 X5 
X1 1     
X2 0.1980 1    
X3 -0.1808 -0.0880 1   
X4 -0.3360 -0.5839 -0.0262 1  
X5 -0.2272 0.1745 -0.0106 0.2070 1 

 
 
 

Table2.  Correlation matrix R2 from exponential distribution. 
 

 X1 X2 X3 X4 X5 
X1      
X2 -0.1840 1    
X3 -0.3127 0.0585 1   
X4 0.2070 0.0992 0.0846 1  
X5 0.1125 -0.1032 -0.0880 0.5839 1 

 
 
 

Table 3.  Correlation matrix R3 from uniform distribution. 
 

 X1 X2 X3 X4 X5 
X1 1     
X2 0.0585 1    
X3 -0.1840 0.1980 1   
X4 0.1125 -0.5839 -0.2503 1  
X5 -0.0688 0.1745 -0.0391 0.0393 1 

 
 
 
Gamma distribution 
 
A random variable X has a Gamma distribution if its probability 
density is given by: 
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Where 0>α  and 0>β . 
 
 
Laplace distribution 
 
A random variable has a Laplace ( µ , b) distribution if its 
probability function is given by: 
 
 
ANALYSIS OF DATA 
 
The analysis of the data generated from the distribution using 
Monto Carlo was preformed using MINITAB statistical software. The 
correlation matrix for the five distributions were obtained and 
displayed on Tables 1 - 5. 
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Table 4. Correlation matrix R4 from gamma distribution. 
 

 X1 X2 X3 X4 X5 
X1 1     
X2 0.1543 1    
X3 0.6370 0.2637 1   
X4 0.1170 0.4370 0.2781 1  
X5 0.1830 0.5432 0.2190 0.5043 1 

 
 
 
Table 5. Correlation matrix R5 from Laplace distribution. 
 
 X1 X2 X3 X4 X5 

X1 1     
X2 0.0872 1    
X3 0.2774 0.0576 1   
X4 0.3987 0.0593 0.0992 1  
X5 -0.0861 -0.1629 0.2070 -0.01189 1 

 
 
 
RESULTS AND DISCUSSION 
 
Table 1 shows the correlation matrix from the random 
variates generated from the normal distribution. It is 
observed that the variable X1 is negatively correlated with 
other variables except X2. The highest negative correlation 
of 58% was recorded between X2 and X4 while a highest 
positive correlation of 21% was recorded between X4 and 
X5. The correlation matrix between the variables drawn 
from the exponential distribution is displayed on Table 2. 
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The variable X1 is negatively correlated with X2 and X3 
while it positively correlated with X4 and X5. The variable 
X2 positively correlated with X3 and X4 but negatively 
correlated with X5. A significant negative correlation 
coefficient of 58% was recorded between the variables X4 
and X5. Table 3 showed that correlation matrix calculated 
from the random variates generated from the uniform 
distribution. A least positive correlation coefficient of 6% 
was recorded between X1 and X2 while X1 recorded a 
highest negative correlation of 18% between X1 and X3. 
The variable X3 is negatively correlated with both X4 and 
X5 while X4 is positively correlated with X5. 

The correlation matrix of the random variates drawn 
from the Gamma distribution is displayed on Table 4. The 
variables generated from the Gamma distribution showed 
positive correlation between the variables. Variable X1 
recorded the  highest  positive  correlation coefficient of 64% 
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Table 6. Rotated factor loading for the five distributions. 
 

Variable 
Normal Exponential Uniform Gamma Laplace 

1 2 1 2 1 2 1 2 1 2 
X1 0.9324 0.4321 0.5434 0.2462 0.9763 0.3654 0.5321 0.0346 0.6511 0.1834 
X2 0.7265 0.8734 -0.4326 0.0183 0.8996 0.4392 0.6361 0.0381 -0.5372 0.0674 
X3 -0.7632 0.4326 0.2342 -0.3589 -0.7693 0.1245 0.7231 0.0219 -0.3515 0.0321 
X4 0.6500 -0.3214 -0.1056 0.7234 0.9672 0.0568 0.0632 0.0451 0.3688 0.0986 
X5 0.4631 -0.2143 0.2645 -0.4683 0.8163 0.0334 0.0792 0.0321 0.7614 0.1326 
Variance 1.8321 0.8542 0.6730 0.3657 0.1832 0.2615 5.9352 2.3452 2.3333 0.8264 
% Contribution of variance 0.9752 0.4983 0.5957 0.8981 0.6920 0.0605 0.1474 0.0008 0.4911 0.0210 

 
 
 
with X3 and the least positive correlation coefficient of 
12% with X4. Variable X2 had the highest positive 
correlation of 74% with X4 and a least positive correlation 
coefficient of 26% with X3. X3 had a positive correlation 
coefficient of 28 and 22% with X4 and X5, respectively. 

The correlation matrix calculated from the random 
variates generated from Laplace distribution is shown in 
Table 5. The variable X1 positively correlated with 
variables X2, X3 and X4 while it negatively correlated with 
X5. 

Rotated Factor loading for the five distributions pre-
sented in Table 6 contained the entire rotated component 
matrix. The idea of rotation is to reduce the number of 
factors to only these factors on which the variables under 
investigation   have   high   loading.  For  the  purpose   of   
comparison of the five distributions, the first two factors 
are retained for each of the distribution. In the normal 
distri-bution (Table 6), factor 1 is made up of variables X1, 
X2 and X3 because of their high loadings while factor 2 is 
made up mainly of variables X2 because of its high factor 
loading. In the exponential distribution the first factor is 
made up of mainly variable X1 while factor 2 is made up 
mainly of variable X4.  

The five variables in the uniform distribution contributed 
significantly for factor 1. Variables X1, X2 and X3 contri-
buted significantly to factor 1 in the Gamma distribution. 
Factor 1 of the Laplace distribution was made up mainly 
of variables X1, X2 and X5. Table 6 also showed the 
percentage contribution of the variance f each factor in 
the five distributions. 

Using the variance for each factor and the factor 
loadings the contribution of the total sample variance due 
to each of the factors was obtained for the distributions. 
For the normal distribution, contribution of total sample 
variance due to the first factor is: 
  

0.93242 + 0.72652 +0.76322 +0.65002 + 0.46312               100                  

                   1.8321 + 0.8542                                              1 

 

× =  98 %

 
 
The contribution of total sample variance due to second 
factor for the normal distribution is: 

0.43212 + 0.87342 + 0.43262 + 0.32142 + 0.31432               100                      

                         1.8321 + 0.8542                       1 
=   50 % × 

 
 
The contribution of the total sample variance due to first 
and second factors in the other distribution were obtained 
and displayed in Table 6. 

For factor 1, the contributions of the total variance are 
98, 90, 69, 15 and 49% for normal exponential, uniform, 
Gamma and Laplace distributions, respectively.  For 
factor 2, the contributions of the total variance are 50, 60, 
6, 1 and 2% for normal, exponential, uniform, Gamma 
and Laplace distributions, respectively. The result of the 
analysis showed that the contribution of the first and 
second factors to the total variance differ much from 
distribution to distribution. These contributions from the 
five distributions were widely distributed and do not fall 
within the range. 
 
 
Conclusion  
 
The contributions of the first and second factors to the 
total sample variance using principal component 
procedure differ from distribution to distribution very 
widely. The results are sensitive to the distributions used 
in the study. We conclude that the principal component 
procedure on factor analysis is not robust to all the 
distribution considered. 
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