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INTRODUCTION
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Moreover, if there exists a strictly increasing function 
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for all 
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We will deal with the continuous linear monotone operator 
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Given on a closed subset 
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. The interest and importance of constructing the solution of such operator equation (4) stem mainly from the fact that it may be applied in many areas where problems could be reduced to finding solutions to equilibrium problems, such as in the initial value problems of mathematical physics of the type:
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(Browder, 1964, 1967; Kato, 1970), and in projected dynamical systems, (where 
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These equilibrium problems can be formulated as variational inequalities problem involving a continuous linear monotone map:
Find a point 
[image: image45.wmf]K

x

Î

*

 such that


[image: image46.wmf](

)

K

y

x

y

b

Tx

K

T

VI

Î

"

-

-

*

*

,

:

,



          (6)

The fundamental relationship between (4) and (6) is given by

Theorem 1
Let 
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It is known that if 
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, has a unique solution (Chidume, 1996; Xu et al., 2003; Xu et al., 1992). Consequently, most of the research efforts on construction of iterative methods for approximating equilibrium point, using the famous Mann, Ishikawa and some other iterative processes, have been traditionally devoted to the case where 
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But when 
[image: image55.wmf]T

 is not necessarily uniformly or strongly monotone, some of the well known iterative schemes, such as Mann and Ishikawa iterative processes do not provide satisfactory results because the solution may not be unique. In this case some researchers have constructed approximations generated by regularization algorithms which converge strongly to the solution of 
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 (see, for example, Alber et al., 2005; Iusem et al., 1995; Kammerer et al., 1972).
In many practical situations one wants to obtain an approximation of x* from experimental observations, and since deliberate introduction of uncertainty often provides a more accurate way of investigation, one is led to think of a stochastic approximation method.
Our purpose in this paper is to present a stochastic iteration process which converges strongly to the unique solution of (4) and consequently to that of (6), where 
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 is 
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a continuous linear monotone operator in Hilbert space. This work comes as a natural extension to infinite-dimensional Hilbert space of the work in the Euclidean space (Okoroafor, 2006; Okoroafor et al., 2006).
Here we recast the operator equation as a new uniquely solvable gradient operator equation. Con-sequently the gradient operator is approximated using a least squares approximation method.
The stochastic sequence arising from this approach is shown to converge strongly to the unique solution of the Equation (4).

PRELIMINARIES
We assume that 
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Consequently, the gradient mapping 
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which is the unique minimizer of the convex function 
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A problem of great practical importance is how to find 
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converges strongly to a zero of 
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This form of stochastic approximation has been extensively studied, and is known to converge to the local minimum of the loss function f under various conditions. (Ljung, 1992) and references therein.
If the gradient 
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But it is well known (Spall, 2004) that deliberate introduction of randomness into an iteration process speeds convergence and makes the algorithm less sensitive to modeling errors.
The essential part of (10) is the gradient approximation 
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Although, like some other methods, our method uses only objective function measurements and requires minimizing a continuous and convex function.
Here we consider a sequence of random vectors 
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Definition 1: The sequence of random vectors 
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and consistent with 
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Here 
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This is expected to lead to the stationary solution 
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CONVERGENCE THEOREM FOR THE ITERATIVE SCHEME
Theorem 2
Assume that the sequence 
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Converges strongly to the unique solution 
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If 
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Taylor theorem implies that, for every 
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which is identifiable with (15).
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which is the least squares approximation with minimum norm, computed from different data points 
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Then the stochastic iterative scheme generated by the stochastic sequence 
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CONCLUDING REMARK
In this paper, we have considered a stochastic iteration method which converges strongly to the solution of a variational inequality problem in the Hilbert space.
This method is similar to that in the finite dimensional case, but has been developed for the problems in the Hilbert space setting.
The inequality problem is converted to a root-finding problem of finding the zero of a monotone operator in the Hilbert space.
Though classical deterministic techniques for approximating the zeros of monotone operators are effective for a range of problems, this stochastic method is able to handle many of the problems for which deterministic techniques are inappropriate.
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