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The aim is to develop computational techniques for studying aerodynamic interactions between 
multiple objects when an object exits and separates from an aircraft. The object could be a paratrooper 
jumping out of a transport aircraft or a package of emergency aid dropped from a cargo plane. In all 
these cases, the computational challenge is to predict the dynamic behavior and path of the object, so 
that the separation process is safe and effective. This is a very complex problem because it has an 
unsteady, 3D nature and requires the solution of complex equations that govern the fluid dynamics of 
the object and the aircraft together, with their relative positions changing in time. In advection-
dominated flows, the numerical boundary layer is excessively thick and not physically real. 
Computational methods used to solve such problems much address this as a numerically thick 
boundary layer can artificially affect the dynamics and trajectory of moving objects. In the presented 
research, numerically thick boundary layers were reduced for 3D flows specifically focusing on 
paratrooper-aircraft separation. Slip formulations were found to provide an excellent numerical 
approximation of a thin boundary layer for this application. A real paratrooper trajectory was 
numerically simulated. 
 
Key words: Mesh resolution, boundary layer, mesh generation, boundary layer resolution, boundary layer 
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INTRODUCTION 
 
Here large-scale 3D Fluid-Object interactions (FOI) bet-
ween multiple objects are numerically explored. All 
objects will be treated as rigid bodies. The example of a 
paratrooper jumping from a cargo aircraft illustrates a 
new application. Such a problem requires 3 solution com-
ponents, the fluid dynamics (FD) simulation, the Newton 
particle-force calculations and the mesh moving calcula-
tions. 

The gravitational and aerodynamic forces acting on the 
object determine its dynamic behavior and path. The 
aerodynamic forces greatly depend on the unsteady flow 
field around the aircraft. The computational tools deve-
loped, here are based upon the simultaneous solution of 
the 3D time-dependent Navier-stokes equations govern-
ing the incompressible airflow around the aircraft and the 
separating object, as well as the equations governing the 
motion of that object. These computational methods 
include suitable mesh update techniques to be used in 
conjunction with a computational technique, the 

deforming-spatial-domain/stabilized space-time (DSD/ 
SST) formulation (Tezduyar, 1991; Tezduyar et al., 
1992a, 1992b). 

Previously, techniques such as Arbitrary Lagrangian-
Eulerian formulation were used for moving problems with 
finite difference modeling, finite volume modeling (Noh, 
1964; Franck and Lazarus, 1964; Trulio, 1966; Hirt et al., 
1974) and finite element modeling (Donea et al., 1977; 
Belytschko and Kennedy, 1978; Belytschko and Liu, 
1985; Hughes et al., 1981). Because the relative posi-
tions of the aircraft and the separating object are chang-
ing in time, the Navier-stokes equations governing the 
motion of the surrounding air need to be solved over a 
computational domain that changes in shape and time. 
The DSD/SST formulation is written over the correspond-
ing space-time domain of the problem and can, therefore, 
automatically handle the changes in the spatial domain. 
Recently, this method has been tested on many 
problems,   including  those  involving  3D  domains,  high 
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Figure 1. 3D Surface mesh of air force cargo aircraft. 

 
 
 
Mach numbers and high Reynolds number flows and 
moving boundaries and interfaces (Aliabadi and 
Tezduyar, 1992; Behr and Tezduyar, 1994; Johnson and 
Tezduyar, 1994). In this work, the formulation is applied 
to mesh moving problems with fluid object interaction 
applications. 

Whether using the DSD/SST method with mesh moving 
(Udoewa, 2005) or using a mesh moving alternative like 
fluid object interaction subcomputation technique (FOIST) 
(Udoewa, 2009), there still remains the problem of the 
thick numerical boundary layer around objects. This thick 
numerical boundary layer is not physical, but rather a 
result of poor resolution on the surface of the objects over 
which the flow is being calculated, such as an air force 
cargo aircraft. When calculating the flow around such an 
object alone, this boundary layer is less important. How-
ever, in combination with a small, separating object like a 
cargo payload or a jumping paratrooper, a non-physical, 
excessively thick numerical boundary layer can artificially 
affect the path of such an object. 

In the actual test jumps in the field with certain cargo 
aircraft, paratroopers sometime experience crossover-the 
crossing of paths of 2 paratroopers who simultaneously 
jump from opposite doors of the same aircraft. In order to 
design computer-aided geometry changes to the aircraft 
to beneficially affect the paratrooper trajectories and 
eliminate crossover, we must first accurately simulate a 
real paratrooper trajectory. To do this, the boundary layer 
must be resolved. 

Boundary layer elements are an important topic in the 
modeling area of computational fluid dynamics (CFD). In 
solid dynamics, whenever there are areas of relatively 
high displacement or high displacement gradients or 
velocities, increased refinement is required to resolve 
those areas properly. The same is true in fluid dynamics. 
When there are areas of high circulation or vorticity, for 
example, more elements are needed to capture such a 
flow with high velocity gradients. 

As research has shown, to resolve the boundary layer, 

usually, one must utilize elements of the proper size or 
scale (Soinne, 2000; Gerdes et al., 1991). Sometimes, 
depending on the method, one must choose the proper 
scale factor for certain spaces of functions (Noack and 
Eckelmann, 1991). As an alternative to increasing the 
number of elements or decreasing the size of the ele-
ments, one may choose to increase the order of elements 
(Soinne, 2000). Higher order elements are better able to 
capture high order flows or flows with high gradients of 
the unknown. 

However, if one wishes to employ a lower order of ele-
ments and solve the problem through refinement, there 
are also options. You can increase the number of ele-
ments indirectly through multiple grids or overset grids 
(Korpus, 2005). This allows one to obtain the accuracy of 
a structured grid while maintaining a simple unstructured 
one for complex geometries. Here, the attempt to solve 
the problem utilizes only one mesh, or one grid. 
   Increasing refinement within one grid presents a pro-
blem for current 3D mesh generators. The algorithm used 
by most 3D mesh generators distributes increased refine-
ment throughout a 3D space in an uneven way. To 
clarify, imagine a domain in the shape of a rectangular 
prism. Inside the domain is an air force cargo aircraft. 
Let's assume a 3D surface mesh has been created on 
both the aircraft and the domain walls, so each is filled 
with triangular elements and nodes. The goal is to create 
a 3D fluid mesh between the aircraft and the domain 
walls. If the refinement on the walls is equal to the 
refinement on the aircraft, then the tetrahedra in the 3D 
space will roughly be the same everywhere between the 
aircraft and the domain walls. If increased tetrahedra are 
desired only on the surface of the aircraft, the refinement 
on the surface of the aircraft can be increased, as seen in 
Figure 1 contrasting with the larger refinement on the 
surface of the domain box shown in Figures 2, 3, and 4. 

The mesh generator will use the increased refinement 
on the aircraft to create many smaller tetrahedra on the 
surface of the aircraft. The  logical  deduction  is  that  the  
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Figure 2. (A) Aircraft with Wire Frame (B) 3D Surface mesh of aircraft and domain box: front 
view. 

 
 
 

 
 
Figure 3. 3D Surface Mesh of Aircraft and Domain Box: 
Side View 

 
 

 
 
Figure 4. 3D Surface mesh of highlighted aircraft 
and domain Box: side view. 

 
 

size of the tetrahedra will change roughly linearly bet-
ween the small tetrahedra on the surface of the aircraft 
and the large tetrahedra bordering the domain walls. 
However, most automatic 3D mesh generators  will  favor 

 
 
Figure 5. Color plot of velocity in boundary layer on 2D 
cross-section of aircraft 

 
favor the large tetrahedra corresponding to the larger 
refinement on the domain walls. In other words, in the 3D 
fluid mesh between the aircraft and the domain walls, 
more of the tetrahedra will be closer to the size governed 
by the refinement on the domain walls than that governed 
by the refinement on the aircraft. 
   Another problem with a simple refinement increase on 
the object with a boundary layer is that many times the 
refinement elsewhere in the mesh is perfectly acceptable 
. Only the number of elements at the surface of the object 
need be increased. When increasing refinement on the 
object in question, the increased elements throughout the 
fluid mesh can be wasteful as only the extra elements in 
close proximity to the surface of the particular object are 
desired. Using an automatic 3D mesh generator with the 
given refinement shown in Figure 1, the resulting nume-
rical boundary layer was produced in Figure 5. Yet, after 
doubling the refinement and incurring extra elements  



 
 
 
 
 

 
 
Figure 6. Color Velocity Plot in Boundary Layer with 
Double Refinement on the Aircraft Surface 

 
 
 

 
 
Figure 8. Dichotomous velocity picture: blue-free-
stream value  vs red < 100% Free stream value. 

 
 
 

 
 
Figure 9. Dichotomous velocity picture: Blue � 
95% freestream value vs red < 95% freestream 
value. 

 
away from the surface of the aircraft, little change can be 
seen from this general increased effort (Figure 6). 

Boundary elements are both useful and cost efficient in 
that they provide increased elements only at the surface 
or boundary needing refinement. Developed  by  Johnson  

Udoewa              145 
 
 
 

 
 
Figure 10. Dichotomous velocity picture: blue � 90% free-
stream value vs Red < 90% freestream value. 
 
 
 

 
 
Figure 11. Dichotomous velocity picture: blue � 85% freestream 
value vs Red < 85% freestream value. 
 
 
 

 
 
Figure 12. Dichotomous velocity picture: blue � 80% free-
stream value vs Red < 80% freestream value 
 
 
 
(1995), the automatic 3D mesh generator used here, 
does not have the capability to create boundary layer 
elements. It is possible to manually create boundary 
layers on boundaries aligned with the Cartesian coordi-
nate system, but the creation of boundary layers on arbi-
trary geometries is a tough area of research in which 
Johnson and others are still currently working. Figures 8 – 13 
explicate how the  thickness  of  the  numerical  boundary  
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Figure 13. Dichotomous velocity picture: Blue � 75% free-
stream value vs Red < 75% freestream value 

 
 
 
layer affects the speed of the air hitting the paratrooper. 
For this reason, slip conditions are used for this new 
application of a jumping paratrooper. Slip conditions have 
been applied in numerous applications in 2D simulations 
such as flow around turbomachinery blades (Wooley and 
Hatton, 1973). It has been shown that slip conditions can 
simulate or approximate real behavior well (Jensen, et. al., 
1980; Beetstra et al., 2007) When it is an appropriate 
approximation, using slip conditions is another option to 
resolve the boundary layer. To safely assume slip condi-
tions, the boundary layer must be very thin relative to the 
object around which there is flow. 

In this work, we commence with the governing equa-
tions for fluid flow. The fluid flow is governed by the 
Navier-stokes equations for incompressible flow. Section 
II is a presentation of those equations with the constitu-
tive relations and the boundary and initial conditions. 
Instead of directly resolving the turbulent flow features 
present at the Reynolds numbers of the problems pre-
sented in this research, turbulence affects are accounted 
by using a zero-equation Smagorinsky turbulence model 
(Smagorinsky, 1963). The finite element formulations for 
the FD governing equations are highlighted in Section III. 
In this section, for the fluid-dynamics, the DSD/SST me-
thod is outlined. In the following sections, the boundary 
layer of an air force cargo aircraft is minimized and elimi-
nated through 2 methods. In section IV the addition of 
boundary layer elements to the 3D mesh generator will 
be presented and its effect will be analyzed. In section v 
physically thin boundary layers will be approximated 
through three dimensional slip conditions newly imple-
mented and applied to the 3D paratrooper-aircraft simula-
tion. 

Unless otherwise stated, computations were carried out 
on a CRAYT3E parallel supercomputer. All photo-graphs 
were obtained by permission of the US army and US air 
force either directly or through their web sites. 

A finalizing overview of contributions and implications 
are made in the concluding section. This is followed by 
proposed areas for future research. 

 
 
 

MATERIALS AND METHODS 
 
Navier-stokes equations of incompressible flows 
 
The fluid is assumed to be incompressible and will be 
modeled with the Navier-stokes equations of income-
pressible flow. Let sdn

t R⊂Ω  be the spatial fluid mecha-

nics domain and ),0( T be the temporal domain, where 

nsd is the number of space dimensions, letting tΓ denote 

the boundary of the spatial domain .tΩ The subscript “t” 
evinces the time-dependence of the spatial domain and 
its boundary. The spatial and temporal coordinates are 
denoted by ),,( zyx=x and ).,0( Tt ∈ The Navier-
stokes equations of incompressible flow can be written 
as: 
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Where ρ is the constant fluid density, f is an external 
force term such as gravity and σ is the stress tensor. 
Equation 1 ensures the conservation of momentum for 
the fluid system; equation 2, the conservation of mass. 
The flow variables that are being calculated are the 
velocity, u(x,t), and pressure, p(x,t), which is embedded 
in the stress tensor defined in the next section. 
 
 
Stress and strain definitions 
 
Considering Newtonian fluids, one assumes a linear 
relationship between the fluid stress and rate-of-strain 
tensors. The stress tensor is written as the sum of its 
isotropic and deviatoric parts: 
 

),(2),( uIu µεσ +−= pp        (3) 
 
Where µ is the dynamic viscosity coefficient, I is the 
identity tensor, p is pressure, and ε(u) is the strain rate 
tensor: 
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Boundary and initial conditions 
 
To appropriately represent the fluid dynamics, proper 
boundary conditions must be imposed on the outer boun-
daries of the fluid domain and on any inner surfaces, 
ensuring an accurate fluid environment. Both the (essen-
tial) Dirichlet and (natural) Neumann-type  boundary  con-  



 
 
 
 
 
ditions are accounted for and are represented as 
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Where gt )(Γ and ht )(Γ are complementary subsets of the 

boundary tΓ related to the Dirichlet and Neumann-type 
boundary conditions, respectively. 

In time-dependent problems, an initial condition is 
required. The initial condition on the velocity is specified 
as 00 on  )0,( Ω= uxu , where u0 is divergence free. 
 
 
Finite element formulations 
 
To handle the time-variant spatial domains encountered 
in aerodynamic separation problems, the deforming-
spatial-domain/stabilized space-time (DSD/SST) formula-
tion is used. 

In order to construct the finite element function spaces 
for the space-time method, the time interval ),0( T must 

be partitioned into subintervals ),,( 1+= nnn ttI  
where nt and 1+nt belong to an ordered series of time 

levels .0 10 Tttt n =<<<= Λ Letting
ntn Ω=Ω and 

,
ntn Γ=Γ the space-time slab Qn is defined as the domain 

enclosed by the surfaces �n, �n+1, and Pn , where Pn is 
the surface inscribed by the boundary Γt as t traverses In. 
The space-time concept is depicted in Figure 7 for the 
space-time slab Qn.  

The surface Pn is decomposed into (Pn)g and (Pn)h with 
respect to the type of boundary condition (Dirichlet or 
Neumann, respectively) being imposed. For each space-
time slab, the corresponding finite element function 
spaces ((Sh)u)n, ((V

h)u)n, ((S
h)p)n, and ((Vh)p)n are defined 

as follows: 
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Here H1h(Qn) is the finite-dimensional function space over 
the space-time slab Qn. First-order polynomials in both 
space and time are used to form the element domain. 

The interpolation functions, however, are continuous in 
space but discontinuous in time. 
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Figure 7. Space-time concept for a 2D spatial domain 
value. 

 
 
 

The stabilized space-time formulation for deforming 
domains is now written as follows: given (uh)n

- , find uh ∈  
((Sh)u)n, and ph ∈  ((Sh)p)n such that ∀ wh∈  (Vh)u)n and 
qh∈((Vh)p)n,  
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This process is applied sequentially to all the space-time 
slabs Q0, Q1, Q2, . . . , QN-1. The explanation of certain 
notation in Equation 9 follows: 
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The computations start with 
 

.)( 00 uu =−h              (13) 
 
In   the  variational  formulation  given  by  Eq. 9,  the  first  
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three terms, the sixth term, and the right-hand-side com-
prise the Galerkin formulation of the problem, the mo-
mentum balance equation and the mass balance 
equation. The 6th term weakly enforces continuity of the 
velocity field across the space-time slabs, since the 
interpolation functions are discontinuous in time, and 
since the equation is solved one space-time slab at a 
time. Due to numerical instabilities that occur in 
advection-dominated flows and from oscillations that 
occur when different combinations of interpolation func-
tions for velocity and pressure are used, stabilizing terms 
are included. The first series of element-level integrals in 
Eq. 9 are least-squares terms based on the momentum 
equation. This term stabilizes the standard Galerkin form. 
The second series of element-level integrals are added to 
the formulation for numerical stability at high Reynolds 
numbers. These are least-squares terms based on the 
continuity equation. The stabilization coefficients τ and δ 
are defined at the element level. Both stabilization terms 
are weighted residuals, and therefore maintain the 
consistency of the formulation. For an exact solution, they 
converge to zero. Further discussions of these stabili-
zation terms, including their derivations, can be found in 
literature (Mittal, 1992; Behr, 1992). 
 
 
Boundary layer mesh generation 
 
The objective is to model a multi-body separation pro-
blem, but the excessively thick numerical boundary layer 
prevents the calculation of a realistic trajectory. To illu-
trate, look at Figures 8-13. They demonstrate the thick-
ness of the numerical boundary layer through which a 
model paratrooper must jump. These 6 images are dicho-
tomous pictures dividing the flow, colored by velocity, into 
two colors. Velocity above a certain magnitude receives a 
blue color. Velocity vectors with magnitudes less than the 
specified value receive a red color. In the first picture, 
Figure 8, the velocity is divided into the free-stream value 
(blue), denoted as 1 and any velocity with magnitude 
below the free-stream value (red). So in the 2D plane that 
slices through the model paratrooper body and the 
fuselage of the aircraft, we can observe a large area 
experiencing a magnitude of velocity less than 1, or less 
than the free stream value. 
   Moreover, we can still see a large boundary layer by 
examining Figure 9. Here the blue represents all magni-
tudes 95% of the free stream value and higher. Red 
represents all velocity magnitudes less than 95% of the 
free stream value (normalized to 1). The red area still 
appears very large. Figure 10 uses the same process to 
divide the flow through the plane into the portion con-
taining velocity magnitudes that are 90% of the free 
stream value and higher (blue) and those that are less 
than 90% of the free stream value (red). Even here the 
red boundary layer is still thick. We continue in this  same  

 
 
 
 

 
 
 Figure 14. Colored cargo aircraft surface mesh. 

 
 
 

 
 
Figure 15. Colored cargo aircraft surface mesh 
posterior view. 

 
 
 
fashion until we reach a percentage for which the para-
trooper has completely exited from the red boundary 
layer within the observed 2D plane (Figures 11 and 12). 
This point is not reached until we divide the flow field 
through the plane using 75% of the free stream value as 
the division point (Figure 13). Surprisingly, from Figures 
14-16, the paratrooper does not exit the numerical boun-
dary layer flows effectively until 75% of the free stream 
velocity magnitude and higher magnitudes are consi-
dered free stream velocity magnitudes. This means there 
are parts of the paratrooper body that feel reduced drag, 
reduced by up to 25%. 
   It is clear why the paratrooper does not feel the proper 
air drag. The numerical boundary layer is too unrealis-
tically thick. It is not physical. This nonphysical numerical 
boundary layer must be reduced. The first attempt was to 
do it through mesh generation and the creation of boun-
dary layer elements through increased refinement. 

Here, 2 new companion programs were created to act 
on 3D meshes after they have been generated by the 
automatic 3D mesh generator. These programs add 3D 
boundary layer tetrahedra to arbitrarily shaped boun-
daries, representing 2 variants of boundary layer crea-
tion. Few programs can produce tetrahedral boundary 
layer elements. It is difficult to find programs that produce 
such boundary layer elements on arbitrarily shaped 
surface geometries. Usually if  such  a  tetrahedral  boun- 



 
 
 
 
 

 
 
Figure 16. Paratrooper model with parachute pack. 

 
 
 
dary layer mesh is needed on an arbitrarily shaped sur-
face, it must be generated manually. These two programs 
do this automatically. A layer of tetrahedral elements 
must first be defined. A layer of tetrahedral elements on a 
surface or boundary is defined as all tetrahedral having a 
face or a point on the specified boundary or surface. A 
layer above that initial layer would include all tetrahedra 
bordering any tetrahedra in the first layer. They may 
border by a point or a face. The effects of both variant 
programs on the boundary layer will be observed. 

The first program creates even sized layers of the 
same refinement. For example, one can create 2, 4, or 8 
layers of tetrahedral boundary elements, but all layers are  
the same size. One must also remember that with each 
added layer of boundary elements, the computational 
costs increase. This motivated a second program. This 
program creates layers of tetrahedra with a growth factor 
of 2. In other words, there is a first layer of tetrahedral 
attached to the surface of the object. The second layer, 
attached to the first layer, will have elements that are 
roughly twice the size of those in the first layer; therefore 
it is less refined. Likewise, the third layer would have 
elements, on average, twice the size of those in the 
second layer and 4 times the size of those in the first 
layer. This was an attempt to save costs as the finite ele-
ment program computed velocities and pressures farther 
away from the surface of the boundary in question. 
Results for both programs can be seen in section III. 
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3D slip formulation 
 
Employing slip boundary conditions allows the fluid parti-
cles to slip, stress-free, across the arbitrarily shaped 
boundary. The numerical boundary layer should thus be 
severely reduced or eliminated. The effects should be 
more pronounced then the use of boundary layer ele-
ments. First, the implementation will be discussed refe-
rencing Le Beau's work (LeBeau, 1990) and following his 
structure, applied here in 3D for incompressible flows. 
Then its effectiveness on the numerical boundary layer of 
the cargo aircraft will be examined in section III. A slip 
boundary condition arises when the normal component of 
the velocity of a boundary is set to zero and the tangent-
tial components are assigned stress-free conditions. We 
wish to utilize this formulation to eliminate the boundary 
layer of the cargo aircraft. In the past, this was first done 
explicitly. The “killing” (setting to zero) of the normal com-
ponent of velocity was attempted. The rotation of velocity 
vectors while maintaining the kinetic energy of the fluid 
particles was also implemented explicitly. The drawback 
is the decrease in the stability of the algorithm due to this 
explicit “killing” of the normal component. In order to 
maintain the stability of the algorithm, an implicit method 
is chosen here. Following Le Beau's structural outline for 
2D slip boundary conditions using the Euler equations 
(LeBeau, 1990),  recall that, in the finite element 
formulation, velocity within an element is the sum of the 
value of the shape functions for each node multiplied by 
the velocity value for the corresponding nodes. Thus, the 
velocity can be represented by 
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Where UB and NB represent the velocity and shape func-
tion values at node B, respectively, and n represents the 
number of elemental nodes. For a 3D tetrahedral ele-
ment, this can be expanded in vector form to show 
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where the superscripts represent the degrees of freedom 
of the unknown. Those unknowns are the 3 components 
of velocity, u, v, and w, in the cartesian directions and 
pressure p. 

When velocities or stresses are specified on the boun-
dary (Dirichlet or Neumann boundary conditions), some-
times the shape of the boundary is arbitrary and it is not 
aligned with the cartesian coordinate frame. In such 
cases,   a  nodal  vector  is  defined  within  the  reference  
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frame formed by normal and tangential vectors at that 
point such as 
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Where u represents velocity, n signifies the normal com-
ponent at that node, and χ �and ϕ are the orthogonally 
tangential components at the given node. Now that the 
coordinate system is in the local frame of the node, 
velocity values can be set directly for Dirichlet boundary 
conditions. In practice, the normal component, un, is typi-
cally assigned a value for such conditions. 

The problem lies in having multiple nodes, each with a 
velocity vector in its own local coordinate system. Any 
nodes on slip boundaries with arbitrary shapes will all 
have vectors of unknowns in their local coordinate sys-
tems. In order to solve the global system of equations for 
the unknown velocity vectors, it is necessary to have all 
nodal vectors in the same coordinate frame. Thus there is 
a need to transform the nodal vectors in various local 
coordinate systems to the cartesian coordinate frame. 
Then the governing equations can be solved for the 
unknowns. Equation 15 can be written to show  
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Where nodes 3 and 4 lie on the boundary and Ti repre-
sents a rotation matrix that rotates the local coordinate 
frame of node i to the Cartesian coordinate reference. In 
3D, the rotation matrix T should be a matrix including 
rotations about multiple axes to align the local coordinate 
axes with the Cartesian axes. There will usually be multi-
ple angles of rotation. Rewriting equation 14 for boundary 
nodes we find 
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This rotation must also effect the test functions in the 
same manner, generally defining the test function, W, as 
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For slip boundary nodes on arbitrary surfaces, the equa-
tion is modified to include the rotation matrix; thus, 
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These new definitions in equations 18 and 20 can be 
generalized so that for nodes c and d are already in the 
cartesian coordinate reference frame. With that generali-
zation that are not on slip surfaces, the matrix T repre-
sents the identity matrix and the vectors one can substi-
tute those definitions in the DSD/SST finite element for-
mulation found in equation 9. Ignoring the stabilization 
terms for now, we obtain 
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Where the superscript i, j, and k refer to degrees of free-
dom within each nodal block, while dB and pB represent 
the velocity and pressure components of the unknown 
vector, respectively. Since the cA's are arbitrary, this can 
be rewritten as 
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The nonlinear advective term will be solved in separate 
sub-terms where one unknown is frozen and treated as 
known while the other is treated as a variable unknown. 
So in practice, the two summations would not be comple-
ted in the nonlinear advective term. 

Interestingly, such rotations could considerably 
increase the computational costs, so reduction of rotatio-
nal costs becomes important in such slip boundary pro-
blems. Since the many nodes in a given simulation are 
not slip boundary nodes, the rotations do not need to be 
employed for every element. Utilizing the rotations only 
when needed is the first cost-saving method. Secondly, 
the rotations need not occur until after the entire forma-
tion. The rotations can be moved outside the summa-
tions, outside the entire element level loop, to avoid rotat-
ing   every  term  inside  the  elemental  and  inner  shape 
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Figure 17. Velocity color plot: boundary layer around 
fuselage of cargo. 

 
 
function loops. This saves time and also allows for the 
vectorization of the element level loops. 

It should also be noted that another new implemen-
tation of the slip boundary condition using Navier-stokes 
equation for incompressible flow is in the calculation of 
the 3D point-normals. At a particular point that is the 
intersection of multiple triangles (sides of tetrahedra) in 
space, the normal is usually calculated by weighting the 
normals of the various touching triangles (faces). The 
weighting factor of a normal of a particular triangle is 
usually 
 

,
t

f A
A

w =               (23) 

 
Where A is the area of the triangular side and At is the 
total cumulative area of all triangular sides at that point. 
In this implementation, a different weighting factor based 
on the angle at that point is used. So regardless of the 
area of a triangle, if the angle of the triangle at a consi-
dered point is large, the angle increasingly affects the 
direction of the point-normal. This presents a new weight-
ing factor equation, 

,
t

fw
α
α=               (24) 
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Where α is the angle made by the corner of the triangle in 
question at the specific point and αt is the total sum of all 
angles made at that point by bordering triangles. On a 
slip surface, the normals at a particular point are then cal-
culated by summing the weighted normals of the bor-
dering triangles.              
 
 
RESULTS AND DISCUSSION 
 
For all methods, flow around a cargo aircraft was simu-
lated in order to analyze the boundary layer and even-
tually model a paratrooper falling from the cargo aircraft. 

In modeling the cargo aircraft, symmetry was assumed 
with respect to the plane passing through the middle of 
the aircraft. Only half of the aircraft was modeled for this 
simulation of a jumping paratrooper exiting the cargo 
aircraft. 
Three-dimensional triangular surface meshes were then 
created from the models and then a 3D tetrahedral 
volume mesh was generated for the fluid dynamics 
solution using these surface meshes. The volume mesh 
consisted of 129,090 nodes and 728,902 tetrahedral ele-
ments. The modeling software, 3D surface mesh genera-
tor and automatic 3D mesh generator were all developed 
by Johnson (Johnson and Tezduyar, 1997). 
 
 
Even boundary layers 
 
The first variation of the boundary layer program created 
evenly sized layers of tetrahedra on the surface of the 
specified boundary. Of course, the costs increase with 
increased number of elements. It is infeasible to conti-
nually increase the layers of boundary elements without 
end, as the aircraft is a very large object with a very small 
refinement on its surface. Three different trials were 
attempted. 

Those 3 trials were a 2-layer tetrahedral boundary 
layer, a 4-layer tetrahedral boundary layer and an 8-layer 
tetrahedral boundary layer. The resulting boundary layers 
are viewable in Figures 17 and 18. Upon first inspection, 
it seems that the boundary layer elements make little or 
no difference. There is a small decrease in the size of the 
boundary layer, but the decrease seems imperceptible. 
Decreasing the thickness of the numerical boundary layer 
around the cargo aircraft becomes a difficult task 
because as you move from the nose of the aircraft to the 
tail, the perimeter and effective diameter of the fuselage 
increase as extensions or protrusions to the fuselage are 
encountered. This creates areas of decreased velocity as 
the air flow must come to a stop or point of zero velocity 
at additional stagnation points. So the small decrease in 
the thickness of the numerical boundary layer is affected 
by the enlarging shape of the fuselage. Otherwise, boun-
dary layer elements have been proven to effectively 
increase the resolution of  the  boundary  layer  when  the 
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Figure 18. Velocity color 3D plot: Boundary layer 
around fuselage of cargo aircraft: Side view. 
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Figure 19. Boundary layer velocity surface around fuselage 
of cargo aircraft. 
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  8 Layers  
 
Figure 20. Boundary layer velocity surface around 
fuselage of cargo aircraft: Side view. 

 
 
 
physical flow actually experiences only a very thin layer, 
(Schlichting, 1979; Johnson and Tezduyar, 1995). Addi-
tionally, the cargo aircraft is flying at an angle of attack of 
8°, so separation occurs sooner on the top side of the 
cargo aircraft than if it were flying at a 0° angle of attack. 
This creates a slightly larger boundary layer on the top 
side of the fuselage than on the bottom side. Finally, with 
unlimited resources and refinement, the boundary layer 
could be reduced perceptibly. However our goal is to 
minimize it with reasonable refinement and limited re-
sources. 
 
 
Boundary layers with internal growth 
 
The second program created layers of tetrahedra with a 
growth factor of 2 moving away from the aircraft into the 
fluid mesh towards the domain walls. If the first layer of 
boundary elements were attached to the surface of the 
cargo aircraft, then elements in the second layer of boun-
dary elements had roughly twice the element length or 
size of those in the first layer of boundary elements. 

In Figures 19 and 20, the same problems occur. A con-
siderable decrease in the size of the numerical boundary 
layer is not observed. The same explanations apply, too. 
We expect boundary layers elements to resolve the 
boundary well on objects with constant diameter such  as  



 
 
 
 
 

 
 
 Figure 21. Velocity in free-stream direction about ball 
with slip conditions. 

 
 
a 3D cylinder. The same difficulties arrive in the boundary 
layer of aircraft in which there is fuselage diameter 
growth. 
   Remember, with unlimited computer memory, the boun-
dary layer can be resolved with increasingly higher num-
bers of elements. As long as the average element size on 
the surface of the aircraft is less than the thickness of the 
boundary layer, it can be resolved. Again, our goal is to 
resolve the boundary layer with limited elements and 
resources. In cases when the boundary layer is expected 
to be very thin, thinner than the numerical results show, 
and the Reynolds number is very high, one may appro-
ximate the flow with slip conditions on the specified 
object. This provides another option or means of reducing 
and possibly eliminating the numerical boundary layer. 
 
 
Slip formulation 
 
The effects of the 3D slip condition on an arbitrary boun-
dary must be validated. Before observing its influence on 
the boundary layer of the cargo aircraft, we observed its 
effect on the flow around a ball. Using a slip boundary 
condition on the surface of the ball, Figure 21 clearly 
displays the boundary layer observed around the ball. It 
is nonexistent or, at least, imperceptible. This is what is 
expected. The accuracy was also be tested. Compared 
with an analytical solution for inviscid flow about a 
sphere, the norm of the error vector (vector containing 
the error for every node in the simulation) was 0.001. 
Ostensibly, the slip code approximated an inviscid simu-
lation about a sphere very well. The observed error is 
simply due to imperfection of the modeling of the sphere 
and the lack of symmetry. If the refinement is increased, 
the error decreases. Repeating the same simulation with 
twice  the  refinement  gave an  error  norm   of   0.00001. 
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Figure 22. Velocity in free-stream direction about cargo 
aircraft with slip conditions. 

 
 
 
This is an improvement that demonstrates the source of 
the error is as conjectured. Now that the slip boundary-
condition code is validated, its effectiveness was tested 
on the cargo aircraft problem in order to see if it helped 
resolve the thick boundary layer. In Figure 22, there is no 
noticeable boundary layer, the boundary layer was 
resolved. Such a slip implementation can be used with 
objects separating from the aircraft to avoid the negative 
interaction with a false, numerically thick boundary layer. 

Looking at Figure 23, we observe that the trajectory 
computed using the slip approximation was more drag-
dominated versus the normal no-slip computation which 
is more gravity-dominated. Ostensibly, the slip approxi-
mation followed a more realistic trajectory. Remember, 
again, the goal is to model a realistic trajectory, so that, 
with this information, we can then design changes to the 
aircraft geometry and observe if the paratrooper path is 
beneficially affected. We now have a viable realistic 
trajectory with the slip approximation. Looking closely, it 
can be seen that the paratrooper was perhaps expe-
riencing too much drag.  

He appears to have been blown back excessively by 
the air. This is probably attributable to the lack of a spoi-
ler door on this aircraft model. Such a cargo aircraft nor-
mally has a spoiler door that is hinged to one side of the 
opening through which the paratroopers jump. When the 
paratroopers prepare to jump, the spoiler door is opened 
to a position perpendicular, or normal, to the fuselage of 
the aircraft. It is important to note this spoiler door is 
opened to the upstream side of the opening. In Figure 24, 
it would be to the right hand side of the jumping para-
trooper. The spoiler door contains holes  or  grooves  that  
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Figure 23. Paratrooper trajectory comparison: Numerical (no-slip) vs slip formulation. 

 
 

  
 
Figure 24.  Paratrooper trajectory with no-slip conditions aircraft. 

 
 

  
 
Figure 25. Paratrooper trajectory with slip conditions on aircraft. 

 
 
direct or deflect the upstream air flow downward as it tra-
vels through the door. This effectuates a decreased drag 
force on the paratrooper directly downstream of the door. 
Once the paratrooper clears the door, the drag force he 
feels returns to full free-stream drag again. A spoiler door 

would change the trajectory of the jumping paratrooper 
so that he would not be blown back as much, expe-
riencing so much drag. However without a spoiler door, 
the results were encouraging, and Figure 25 illuminated 
this. 



 
 
 
 
 
Conclusions 
 
Though tetrahedral boundary layers for arbitrary shapes 
were achieved, it was the slip formulation applied to the 
paratrooper problem that properly simulated the flow 
around the cargo aircraft. The slip formulation introduced 
here found the normals for arbitrary 3D shapes by a new 
weighting method based on the angles of the bordering 
2D triangles. This formulation removed the thick boun-
dary layer poorly approximating a very thin physical 
boundary layer. This increased the drag felt for sepa-
rating objects. The paratrooper, for example, was clearly 
swept back more with a larger drag force. Geometry 
changes can now be made to the aircraft to beneficially 
affect the paratrooper trajectory. Much can be done for 
future directions. The biggest change can be made to the 
actual geometric model of the aircraft by adding a spoiler 
door and observing the affected change in the 
paratrooper path. Also the model of the paratrooper can 
of course be made flexible with rotating and moveable 
joints. Crosswind should also be added for more realistic 
effects. 
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