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INTRODUCTION 
 
The fundamental definitions of the moment generating 
function (MGF) of the distribution of random variables is 

( )txeE  for the distribution of the random variable X and 

( )ytxt
eE 21 +

 
for the joint distribution of x and y for some 

non-negative real numbers 21  and tt (Freund, 1992). 

These fundamental definitions often yield compact 
expressions for MGF of the distribution of random 
variables which when they exist uniquely identifies the 
probability distributions associated with them and when 
appropriately differentiated and evaluated at 0=t  yield 

the required moments. These MGFs do not however exist 
for all probability distributions. Even if they exist, they 
may not be used to find moments of the distributions of 
powers of random variables when these powers are not 
whole numbers (Baisnab and Manoranjan, 1993). For 
example, they cannot be used to find the moments of the 

distribution   of  
c

X  or   moments     of      the     bivariate  
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distributions of dC
YX  and  where c and d are non-

negative real numbers at least one of which is not a 
whole number. A more generalized expression for MGF 
in these cases is required. In this paper, we intend to 
develop expressions of the MGF for the joint distribution 

of
dC

YX  and , for ( )0,0 ≥≥ dc  both of which are not 

necessarily whole numbers based on the fundamental 
definition of MGF. The case of the MGF of the distribution 

of 
c

X where c is a non-negative real number not 
necessarily a whole number has already been discussed 
elsewhere (Oyeka, 1996). The cases as in 

which 1== dc , will be treated as special cases. We 
assume that the random variables x and y are 
continuously differentiable on the real line or within their 
ranges of definition with joint probability density 

function ( )yxf , . For lack of a better name, we here term 

this approach� 
Alternative MGF (AMGF) of the joint 

distribution of the random 

variables
dc

YVXU ==  and ( )0,0 ≥≥ dc . Clearly, 

given the joint distribution of the random variables x and 

y, any functions of x and y such as 
dc

YVXU ==  and  

also have their own distributions which can easily be 
found. 
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Strictly speaking in finding the AMGF of the joint 

distribution of the random variables 
dc

YVXU ==  and  

one would need to first find and then use the joint 
distribution of these random variables in the calculations. 

However, as illustrated below the result obtained when 

using either the joint distribution of 
dc

YVXU ==  and  

or simply the joint distribution of x and y is always the 
same. 

Hence, in finding AMGF of the joint distribution of some 

functions such as 
dc

YVXU ==  and ( )0,0 ≥≥ dc  of 

given random variables x and y, it is not necessary to find 
and use the joint distribution of these functions. It is 
sufficient to simply use only the joint distribution of the 
random variables (x and y) themselves in the calculations 
(Uche, 2003). This approach is adopted here.   

 
 
THE PROPOSED METHOD 
 
The MGF of the joint distribution of the continuous 
random variables dc

YVXU ==  and  with PDF ( )yxf ,  

defined on the real line is: 
 

( ) ( ) ( ) ( )0,0          ,, 2121,21,
21 ≥≥== +

tteEttMttM
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Where ( )dcr ,
′

µ  is the rth moment of the joint 

distribution of dC
YX  and  about zero. Equation 2 is the so 

called ‘’AMGF’’ of the joint distribution of the random 
variables dC

YX  and . Equation 2 generates all 

conceivable moments of the joint distribution of the 
random variables dc

YVXU ==  and . The rth moment of 

this joint distribution is the coefficient of 
!

21

r

tt
rr

 or the rth 

derivative of Equation 2 with respect to 21 , tt  evaluated 

at 021 == tt . In the sequel, the nth moment of the joint 

distribution of dC
YX  and  about zero would be taken as 

the  coefficient  of   
!

21

n

tt
nn   namely   ( )dc

n
,

′µ  or   the  nth 

 
 
 
 
derivative of Equation 2 with respect to 21 , tt  evaluated 

at 021 == tt . 

Thus,  
 

( ) ( )( )n

YXn dcMdc 0,0,
,

=
′

µ                                         (3) 

 
Equation 2 would be used here to develop AMGFs for the 
joint distribution of dC

YX  and  ( )0,0 ≥≥ dc  given the 

joint distribution of the random variables X and Y. The 
corresponding nth moment of the joint distribution of 

dC
YX  and  is obtained from Equation 3. The AMGFs for 

cases when 1== dc  that is, for joint distribution of the 

random variables X and Y is obtained from Equation 2 
as: 
 

( ) =21, , ttM
YX ( )1,1

!0

21∑
∞

=

′

r

r

rr

r

tt
µ

                      (4) 
 
and would be treated and discussed here as special 
cases. The MGF of the marginal distribution of the 

random variable c
XU =  is obtained by setting 0=d  

and 1
2

=t  in Equation 2, while the corresponding nth 

moment is obtained by setting 0=d  in Equation 3. Thus, 

 

( ) =1tM c
X ( )0,

!0

1 c
r

t

r

r

r

∑
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=

′
µ

 

                              (5) 
 
And  
 

( )cnx

′
µ ( ) =

′
= 0,cnµ ( )( )n

X cM 0  
                    (6) 

 
Similarly, the MGF of the marginal distribution of the 
random variable d

YV =  is obtained by setting 

0=c and 11 =t  in Equation 2, while the corresponding 

nth moment is obtained by setting 0=c  in Equation 3. 

That is, 

( ) ( ) ( ) ( )0,0          ,,
2121,21,

21 ≥≥== +
tteEttMttM

dc

dc
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YXvu  
 

( ) =
2

tM d
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                        (7) 
 
And 
 

( )dny

′
µ ( ) =

′
= d

n
,0µ ( )( )n

Y
dM 0

                            (8) 
 
To illustrate the use of Equation 2, suppose the 
continuous random variables X and Y have the joint PDF, 
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Therefore, the AMGF for the joint distribution of 

dc
YVXU ==  and  is obtained by using Equation 10 

as: 
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Equation 11 is the AMGF of the joint distribution of the 
random variables dc

YVXU ==  and  given in Equation 

10. The corresponding nth moment about zero is 
obtained from Equation 11 as: 
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Setting 0=d  and 12 =t  in Equation 11 gives the 

AMGF of the marginal distribution of c
XU =  as: 
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The nth moment of this marginal distribution is obtained 
from Equation 12 as: 
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′
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The AMGF for the marginal distribution of d

YV =  and the 

corresponding nth moment are similarly obtained. If in 
Equation 11 we set 1== dc , we have that the AMGF of 

the joint distribution of X and Y given in Equation 9 is: 
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So that the corresponding nth moment about zero is 
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NOTE: That the usual MGF of the joint distribution of X 
and Y given in Equation 9 is 
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which does not exist at 0

21
== tt  

and hence cannot be 

used to obtain the moments of the distribution given in 
Equation 15. Now, if we have in fact directly used the 
joint distribution of X and Y given in Equation 9 to find the 
AMGF of the joint distribution of  dc

YVXU ==  and  we 

would have that, 
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That is, 
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This is the same as Equation 11 obtained by using the 

joint distribution of
dC

YX  and . The corresponding nth 
moment is 
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Then the AMGF of the joint distribution of  dc
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Or equivalently, 
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Equation 18 or equivalently Equation 19 is the AMGF of 

the joint distribution of 
dC

YX  and  where X and Y have 

the joint PDF given in Equation 17, and generates all 
conceivable moments about zero of the joint distribution 
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The corresponding nth moment of this marginal 

distribution is the coefficient of 
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The AMGF and the corresponding moments of the 

marginal distribution of 
d

Y  are similarly obtained by 

setting 0=c , and 11 =t  in Equation 18. If 1== dc , 

then we have that the AMGF of the joint distribution of X 
and Y given in Equation 17 is obtained by setting 

1== dc  in either Equation 18 or Equation 19 yielding 
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The corresponding nth moment of the joint distribution of  
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X and Y is 
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Note that Equation 24 is much easier and faster to use in 
finding the nth moment of the joint distribution of X and Y 
given in Equation 17 than differentiating the 
corresponding regular MGF of this joint distribution 
namely 
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The AMGF of the joint distribution of dc

YVXU ==  and  is 
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Hence, ( )21,
,ttM dc

YX  



252          Afr. J. Math. Comput. Sci. Res 
 
 
 

( ) ( ) 







+Γ
















+Γ








= ∑ ∑ ∑

∞

= = =

−−

2

1

2
2

2

1

2
2

!

1

0 0 0

2
2

22
2

2

11
21 s

s

drs

s

cr

r

tt

r

cr

s

dr

s

s
sdr

s
scr

rr

σµσµ
π

                

                                                                               (26) 
 

Provided we set 
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as may be easily verified. Equation 26 generates all 
conceivable moments of the joint distribution of  
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(27) 
 
subject to the provision of Equation 26. If we set 

1== dc  in Equation 26 we obtain the AMGF for the 

bivariate normal distribution of Equation 26. 
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(28) 
 
subject to the provision of Equation 26. The 
corresponding nth moment of the bivariate normal 
distribution of Equation 25 is obtained from Equation 28 

as the coefficient of 
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namely 
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subject to the provision of Equation 26. Equation 29 is 
easier and quicker to use in finding the nth moment of the 
bivariate normal distribution given in Equation 25 than 

differentiating n times (with respect to 21  and tt ) the 

corresponding regular mgf of this joint distribution. 
 
 
Conclusion 
 
In this paper, we developed an alternative method of the 
MGF of the joint distribution of powers of two continuous 
random variables, where these powers need not be both 
whole numbers. Unlike the regular MGF, AMGF are 
known to always exist for all continuous probability 
distributions. AMGF of the joint distributions of the 
random variables themselves are presented as special 
cases. The proposed method is easier and quicker to use 
to obtain moments of joint distributions of continuous 
random variables than the usual or regular MGFs of 
these distributions when they exist. 
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