
 

 

 

 
Vol.  7(1), pp. 1-6,  February, 2014  

DOI: 10.5897/AJMCSR2014.0532  

ISSN 2006-9731 ©2014 Academic Journals 

http://www.academicjournals.org/AJMCSR 

African Journal of Mathematics and Computer 
Science Research 

 
 
 
 

Full Length Research Paper 
 

Application of exp ))((  -  expansion method to find the 
exact solutions of Shorma-Tasso-Olver Equation 

 

Nizhum Rahman1,  Md. Nur Alam1,  Harun-Or-Roshid1*, Selina Akter1 and  M. Ali Akbar2 
 

1
Department of Mathematics, Pabna University of Science and Technology, Bangladesh. 

2
Department of Applied Mathematics, University of Rajshahi, Bangladesh. 

 
Accepted 22 January, 2014 

 

In this work, we present traveling wave solutions for the Shorma-Tasso-Olver equation. The idea of 

exp ))((  - expansion method is used to obtain exact solutions of that equation. The traveling wave 
solutions are expressed by the exponential functions, the hyperbolic functions, the trigonometric 
functions solutions and the rational functions. It is shown that the method is awfully effective and can 
be used for many other nonlinear evolution equations (NLEEs) in mathematical science and 
engineering. 
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INTRODUCTION 
 
The study of nonlinear evolution equation (NLEE) has 
much remarkable progress in the past few decades. Most 
of the phenomena in real world can be described using 
non-linear equations. A nonlinear phenomenon plays a 
vital role in applied mathematics, physics and 
engineering branches. Most of the complex nonlinear 
equations in plasma physics, fluid dynamics, chemistry, 
biology, mechanics, elastic media and optical fibers etc., 
can be explained by nonlinear evolution equations. There 
are a lot of NLEEs that are integrated using various 
mathematical techniques.  

In recent times, many powerful and effective methods 
have been presented such as the Ansatz method (Hu, 
2001a,b; Wang et al., 2013), the Complex hyperbolic 
function method (Zayed et al., 2006; Chow, 1995), the 
 )/( GG -expansion method (Wang et al., 2008; Alam et 
al., 2014; Alam and Akbar, 2013; Alam et al., 2013; Bekir,  
2008; Roshid et al., 2013a,b; Neyrame et al., 2012;  
Akbar et al., 2012), the F-expansion method (Wang and 

Zhou, 2003; Wang and Zhou, 2005), the Backlund 
transformation method (Miura, 1978), the Darboux 
transformation method (Matveev and Salle, 1991), the 
Homogeneous balance method (Wang, 1995, 1996; 
Zayed et al., 2004), the Adomian decomposition method 
(Adomain, 1994; Wazwaz, 2002), the Auxiliary equation 
method (Sirendaoreji, 2003, 2007), the Simplest equation 
(Eslami et al., 2013; Yildirim et al., 2012) and so on.  

Recently, Wang and Xu (2013a,b) and Wang et al. 
(2014), presented some exact solutions of different 
nonlinear evolution equations by Lie group analysis. 
Wang and Xu (2013a) established exact solutions of 
nonlinear time fractional Sharma-Tasso-Olver equation 
via Lie group analysis. Zhao and Li (2013) proposed 

the
 ))(exp( 

-expansion method to find new type of 
solutions for nonlinear evolution equations. In this work, 

we apply exp
 ))((  -expansion method to solve the 

Shorma-Tasso-Olver equation. 
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METHODOLOGY 
 

In this section we describe exp
 ))(( 

- expansion 
method for finding traveling wave solutions of nonlinear 
evolution equations (Miura, 1978). Suppose that a 

nonlinear equation, say in two independent variables  x  

and  t  is given by: 
 

 0.........),.........,,,,,( xtxxttxt uuuuuuF
                      (1) 

 

where 
 ),()( txuu 

 is an unknown function,  F  is a 

polynomial of 
 ),( txu

 and its partial derivatives in which 
the highest order derivatives and nonlinear terms are 
involved. In the following, we give the main steps of this 
method: 
 
 
Step 1  
 
Combining the independent variables  x  and t into one 

variable 
 tx  

 , we suppose that
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                 (2) 

 
 The travelling wave transformation Equation (2) permits 
us to reduce Equation (1) to the following ordinary 
differential equation (ODE): 
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where   is a polynomial in 
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 and its derivatives, 
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Step 2 
 
We suppose that Equation (3) has the formal solution: 
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Where 
)0( niAi 

 are constants to be determined, 

such that 
 0nA

and 
 )( 

 satisfies the following 
ODE: 
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Equation (5) gives the following solutions: 
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When 
 0,0,042  

,  )ln()( E            (10) 
 

  ,,,......nA
 are constants to be determined later, 

 0nA
 , the positive integer n can be determined by 

considering the homogeneous balance between the 
highest order derivatives and the nonlinear terms 
appearing in Equation (3). 
 
 

Step 3  
 

We substitute Equation (4) into Equation (3) and then we 

account the function 
 ))(exp( 

. As a result of this 

substitution, we get a polynomial of
 ))(exp( 

. We 

equate all the coefficients of same power of 
 ))(exp( 

 
to zero. This procedure yields a system of algebraic 
equations whichever can be solved to 

find
 ,,,, VAN 

. Substituting the values of 

 ,,,, VAN 
 into Equation (4) along with general 

solutions of Equation (5) completes the determination of 
the solution of Equation (1). 
 
 

Application of the method 
 

Here we will present the  ))(exp(   expansion method to 



 
 
 
 
construct the exact solutions and then the solitary wave 
solutions of the Shorma-Tasso-Olver equation. First 
consider the Shorma-Tasso-Olver equation in the forms: 
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Using the wave transformation 
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Equation (12) is carried to an ODE 
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Equation (12) is integrable, therefore, integrating with 

respect to 
 
 

 once yields: 
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Now, balancing the highest order derivative 
 ''u   and non-

linear term
 3u , we get  1n . Therefore, the solution of 

Equation (13) is of the form: 
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where 
 

10 , AA
 are constants to be determined such that 

 ,0NA
 while 

 ,
 are arbitrary constants.  

Substituting Equation (14) into Equation (13) and then 

equating the coefficients of 
 ))(exp( 

 to zero, we get: 
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Solving the Equation (15) - Equation (18), yields: 
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Case 2 
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For Case 1: 

Now substituting the values of 
 

10 ,, AAV
 into Equation 
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Now substituting Equation (6) - Equation (10) into 
Equation (19) respectively, we get the following five 
traveling wave solutions of modified equal width equation. 
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where 
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Figure  1. Kink solution of 
 

1u
 with 

 3,1,3,4,1,1 10  EaAA 
 and 

 .10,10  tx
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For Case 2: 
 

Now substituting the values of 
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Now substituting Equation (6) - Equation (10) into 

Equation (20) respectively, we get the following five 
traveling wave solutions of modified equal width equation. 
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where
 x

, E  is an arbitrary constant. 
 
 
GRAPHICAL REPRESENTATION 
 
The graphical demonstrations of obtained solutions for 
particular values of the arbitrary constants are shown in 
Figure 1 to 5 with the aid of commercial software Maple 
13. 
 
 
Conclusion 
 

In this paper, we have applied the 
 ))(exp( 

-
expansion method for the exact solution of the Shorma-
Tasso-Olver equation and constructed some new exact 
travelling wave solutions. The travelling wave solutions 
are expressed by the hyperbolic functions, the 
trigonometric functions solutions and the rational 

functions.  This paper shows that the 
 ))(exp( 

- 
expansion method is quite efficient and effective to find 



 
 
 
 

 
 

Figure 2. Singular Kink of 
 

3
u

 with  

 3,1,3,4,1,1 10  EaAA 
 and 

 .10,10  tx
 

 
 
 

 
 

Figure 3. Singular soliton of 
 

4
u  when 

 3,1,3,4,1,1 10  EaAA 
 and 

 .10,10  tx
 

 
 
 
the exact solutions of NLEEs. Also, we observe that this 
method can be also applied to other nonlinear evolution 
equations. 

 
 
REFERENCES  
 
Adomain G (1994). Solving frontier problems of physics: The 

decomposition method, Kluwer Academic Publishers, Boston. 
Akbar MA, Ali NHM, Zayed EME (2012).  A  generalized  and  improved  

Rahman et al.         5 
 
 
 

 
 

Figure 4. Singular kink of 
 )(9 u

when  

 5,2,2,4,2, 10  EaAA 
 and 

 .10,10  tx  

 
 
 

 
 

Figure 5. Singular soliton of 
 )(10 u

 when  

 5,0,0,4,2, 10  EaAA 
 and 

 .10,10  tx
 

 
 
 

)/( GG
-expansion method for nonlinear evolution equations, Math. 

Prob. Eng, P. 22. doi: 10.1155/2012/459879. 

Alam MN, Akbar MA, Mohyud-Din ST (2014). A novel 
( / )G G

-
expansion method and its application to the Boussinesq equation, 
Chin. Phys. B, Article ID 131006. 23(2) 02XXXX. 

Alam MN, Akbar MA (2013). Exact traveling wave solutions of the KP-

BBM equation by using the new generalized 
 ( / )G G

-expansion 
method, SpringerPlus, 2(1):617. DOI: 10.1186/2193-1801-2-617. 

Alam MN, Akbar MA, Khan K (2013). Some new exact traveling wave 
solutions to the (2+1)-dimensional breaking soliton equation, World 
Appl. Sci. J. 25(3):500-523. 



6         Afr. J. Math. Comput. Sci. Res. 
 
 
 

Bekir A (2008). Application of the 
 ( / )G G

-expansion method for 
nonlinear evolution equations, Phys. Lett. A 372 3400-3406. 

Chow KW (1995). A class of exact periodic solutions of nonlinear 
envelope equation, J. Math. Phys. 36:4125-4137. 

Eslami M, Mirzazadeh M, Biswas A. Soliton solutions of the resonant 
nonlinear Schrödinger’s equation in optical fibers with time dependent 
coefficients by simplest equation approach, J. Modern Optics. 
60(19):1627-1636. 

Hu JL (2001). A new method for finding exact traveling wave solutions 
to nonlinear partial differential equations. Phys. Lett. A, 286:175-179, 
2001. 

Hu JL (2001). Explicit solutions to three nonlinear physical models. 
Phys. Lett. A, 287:81-89. 

Matveev VB, Salle MA (1991). Darboux transformation and solitons, 
Springer, Berlin. 

Miura  MR (1978). Backlund transformation, Springer, Berlin. 
Neyrame A, Roozi A, Hosseini SS, Shafiof SM (2012). Exact travelling 

wave solutions for some nonlinear partial differential equations, 
journal of King Saud University (Science). 22:275-278. 

Roshid HO, Alam MN, Hoque MF, Akbar MA (2013). A new extended 

( / )G G
-expansion method to find exact traveling wave solutions of 

nonlinear evolution equations, Mathematics and Statistics, 1(3):162-
166. 

Roshid HO, Rahman N, Akbar MA (2013). Traveling wave solutions of 

nonlinear Klein-Gordon equation by extended 
 )/( GG

-expansion 
method, Annals of Pure and Appl. Math. 3(1):10-16. 

Sirendaoreji JS (2003). Auxiliary equation method for solving nonlinear 
partial differential equations, Phys. Lett. A. 309:387-396. 

Sirendaoreji JS (2007). Auxiliary equation method and new solutions of 
Klein-Gordon equations,Chaos Solitions Fractals 31:943-950. 

Wang GW, Xu TZ (2013a). Invariant analysis and exact solutions of 
nonlinear time fractional Sharma-Tasso-Olver equation by Lie group 
analysis, Nonlinear Dyn. DOI 10.1007/s11071-013-1150-y. 

Wang GW, Xu TZ (2013b). Group Analysis and New Explicit Solutions 
of Simplified Modified Kawahara Equation with Variable Coefficients. 
Abstract and Applied Analysis. Article ID 139160, 8 pages. 
http://dx.doi.org/10.1155/2013/139160. 

Wang GW, Xu TZ, Ebadi G, Johnson S, Strong AJ, Biswa A (2013). 
Singular solitons, shock waves, and other solutions to potential KdV 
equation, Nonlinear Dynamics, 10.1007/s11071-013-1189-9. 

Wang GW, Xu TZ, Johnson S, Biswa A (2014). Solitons and Lie group 
analysis to an extended quantum Zakharov-Kuznetsov equation, 
Astrophys. Space Sci. 349(1):317-327. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Wang M (1995). Solitary wave solutions for variant Boussinesq 

equations, Phy. Lett. A, 199:169-172. 
Wang ML (1996). Exact solutions for a compound KdV-Burgers 

equation, Phys. Lett. A 213:279-287. 
Wang ML, Li XZ (2005). Extended F-expansion method and periodic 

wave solutions for the generalized Zakharov equations. Phys. Lett. A 
343:48-54. 

Wang ML, Li XZ, Zhang J (2008).  The 
 ( / )G G

-expansion method 
and traveling wave solutions of nonlinear evolution equations in 
mathematical physics. Phys. Lett. A. 372:417-423. 

Wang ML, Zhou YB (2003). The periodic wave solutions for the Klein-
Gordon-Schrodinger equations. Phys. Lett. A. 318:84-92. 

Wazwaz AM (2002). Partial Differential equations: Method and 
Applications, Taylor and Francis. 

Yildirim A, Paghaleh AS, Mirzazadeh M, Moosaei H,  Biswas A (2012).  
New exact traveling wave solutions for DS-I and DS-II equations, 
Nonlinear Anal. Modell. Control. 17(3):369-378. 

Zayed EME, Abourabia AM, Gepreel KA, Horbaty MM (2006). On the 
rational solitary wave solutions for the nonlinear HirotaCSatsuma 
coupled KdV system, Appl. Anal. 85:751-768. 

Zayed EME, Zedan HA, Gepreel KA (2004). On the solitary wave 
solutions for nonlinear Hirota-Sasuma coupled KDV equations, 
Chaos, Solitons and Fractals. 22:285-303. 

Zhao MM, Li C (2013). The 
 ))(exp( 

-expansion method applied 
to nonlinear evolution equations, http://www. Paper. Edu. Cn. 

 

http://link.springer.com/search?facet-author=%22Gang-Wei+Wang%22
http://link.springer.com/search?facet-author=%22Tian-Zhou+Xu%22
http://link.springer.com/search?facet-author=%22Gang-Wei+Wang%22
http://link.springer.com/search?facet-author=%22Tian-Zhou+Xu%22
http://dx.doi.org/10.1155/2013/139160
http://link.springer.com/search?facet-author=%22Gang-Wei+Wang%22
http://link.springer.com/search?facet-author=%22Tian-Zhou+Xu%22
http://link.springer.com/search?facet-author=%22Ghodrat+Ebadi%22
http://link.springer.com/search?facet-author=%22Stephen+Johnson%22
http://link.springer.com/search?facet-author=%22Andre+J.+Strong%22
http://link.springer.com/search?facet-author=%22Anjan+Biswas%22
http://link.springer.com/search?facet-author=%22Gang-Wei+Wang%22
http://link.springer.com/search?facet-author=%22Tian-Zhou+Xu%22
http://link.springer.com/search?facet-author=%22Stephen+Johnson%22
http://link.springer.com/search?facet-author=%22Anjan+Biswas%22
http://www/

