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The effect of heat generation and radiation on the peristaltic motion of micropolar fluid with heat and 
mass transfer through porous medium in a symmetric channel was investigated. The equations of 
motion for micropolar fluids were introduced as well as the equations of energy and concentration. The 
system of these equations written in two dimensions and then transformed using the transformations 
between a laboratory and fixed frames. The yield equations were solved analytically with the 
appropriate boundary conditions under the approximation of low Reynolds number and long 
wavelength. The longitudinal velocity, the microrotation velocity, the temperature and the concentration 
are plotted and shown graphically and discussed for different physical parameters of the problem. 
 
Key words: Peristaltic transport, micropolar fluid, porous medium, heat and mass transfer, heat generation, 
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INTRODUCTION 
 
Peristalsis is defined as a wave of relaxation contraction 
(expansion) imparted by the walls of a flexible conduit, 
thereby pumping the enclosed material, it is a nature’s 
way of moving the content within hollow muscular 
structures by successive contraction of their muscular 
fibers (Eytan et al., 2001; Fung and Yih, 1968; Mishra  
and Rao, 2003; Mekheimer, 2003). Peristalsis is now 
well-known to the physiologists to be one of the major 
mechanisms for fluid transport in many biological 
systems,as it results physiologically from neuron 
muscular properties of the tubular smooth muscles 
(Srivastava and Srivastava, 1982; El-Shehawey et al., 
2006; Gharsseldien et al., 2010; Gharsseldien, 2003). 

The peristaltic transport may be involved in many 
biological organs, for instance, moving food through the 
esophagus; movement  of  chime  in  the  gastrointestinal 

tract; urine transport from the kidney to the bladder 
through the ureter; transport of spermatozoa in the ducts 
efferents of male reproduction tract and in the cervical 
canal of the female; movement of ova in the fallopian tub; 
vasomotion of small blood vessels such as venules and 
capillaries as well as blood flow in arteries, and in many 
other glandular ducts (El-Shehawey et al., 2006; El-
Shehawey and Husseny, 2000; Mekheimer, 2003; Mishra 
and Rao, 2003; Srivastava and Srivastava, 1982). There 
are also many industrial applications of the peristaltic 
transport like, blood pumps in heart lung machine, 
transport of corrosive fluid, where the contact of the fluid 
with the machinery parts is prohibited (Mishra and Rao, 
2003).  

The theory of microfluid introduced by Eringen, deals 
with a class  of  fluids  which  exhibit  certain  microscopic 
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Figure  1. The geometry of the problem. 

 
 
 
effects arising from the local structure and micro-motions 
of the fluid elements. A subclass of these fluids is the 
micropolar fluids, like blood, liquid crystals and polymers, 
can support couple stresses, body couples and exhibit  
micro-rotational and micro-inertial effects. Eringen is the 
first researcher who put out the theory to find a 
mathematical model of the micropolar fluids (Eringen, 
1966). These equations are a generalization of the 
(Newtonian) Navier-Stokes equations and deals with 

three fields: velocity vector  V , the pressure of the fluid 

 P  and microrotation vector , together with some 
viscosity parameters and material constants to describe 
the behavior of the fluid (Eldabe et al., 2008 and El-
Sayed et al., 2011). Some researchers attempted 
studying the peristaltic flow problems concerning the 
micropolar fluids, (Ali and Hayat 2008;  Devi and 
Devanathan, 1975; Hayat and Ali, 2008; Hayat et al., 
2007; Mekheimer and Abd Elmaboud, 2008; Muthu et al., 
2003, 2008; Srinivasacharya et al., 2003) and others 
studied the heat transfer effect with peristalsis or not for 
different fluids (Abo-Eldahab et al. 2012;  Eldabe, 2001;  
Eldabe et al., 2008;  Eldabe and Mohamed, 2002;  El-
Sayed et al., 2011;  Hayat and Hina, 2010;  Nadeem and 
Noreen 2009;  Nadeem et al., 2010). 

In the current study we investigated the effects of heat 
generation and radiation with heat and mass transfer on 
peristaltic transport of micropolar fluid through porous 
medium in a symmetric channel. 
 
 
Basic equations   
 
After studying the motion of micropolar fluid through 
porous medium with heat and mass transfer, the basic 
equations which describe this motion can be written as: 
Continuity equation  
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Conservation of angular momentum  
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Heat equation  
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Concentration equation 
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where  V  is the velocity vector of the fluid, 

 )(0,0,= ww
is the microrotation vector,  k is the 

permeability of porous medium,  l is the body couple,   is 

the fluid density,  j is the microinertia parameter,  T is 

temperature, 
 

pc
is the specific heat at constant pressure, 

 
rq
is the radiation heat flux vector, 

 
1k
is the thermal 

conductivity, 
 Q

is heat generation,  C  is the 

concentration, 
 

mD
is the coefficient of mass diffusivity, 

 
Tk

is the thermal diffusion ratio and
 

 , 
 

 , 
 
 , 

 
 , 

 
  

and 
 
k  are the material parameters (Eringen, 1966) 

(different viscosities that characterize the isotropic 
properties of the fluid), satisfy  
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Mathematical formulation  
 
Consider that the micropolar fluid moves in two-dimensions of 

cartesian coordinates
 ),( YX

, where  X -axis is taken in motion 

direction while  Y -axis is perpendicular on it and 
 ),( VU

 are the 

velocity components in  X  and  Y  directions respectively as 
shown in Figure 1. Neglecting body couple, with solenoidal 
microrotation vector, then the previous equations of become: 
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Using the Rosselent approximation we 

have where
 

0
 is the Stefan-Boltzmann 

constant and 
 

0k
 is the mean absorption coefficient (Mahmoud and 

waheed, 2012).  
 
 The geometry of the wall surface is defined as  
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where  d  is the half-width of the channel,  b  is the wave amplitude, 

   is the wavelength,  c  is the velocity propagation, and  t   is the 
time.  The appropriate boundary conditions are: 
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where    is the stream function 
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,  q  is the flux of flow, and 
according to Bayada and Banhaoucha (2008), it is proposed to link 
the value of the microrotation value with the rotation of the velocity 

by way of a coefficient   ,  
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where  n  is the normal unit vector on the boundary,     
characterizes the microrotation on the solid surfaces and its value is 
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evaluated by the relation:  
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Introducing a wave frame 
 ),( yx

 moving with the velocity  c  away 

from the laboratory frame
 ),( YX

, by the transformations 
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 where  u  and  v  are the fluid velocity components and  p  is 
pressure in the wave frame of references. 
Further, we introduce the following non-dimensional variables: 
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After using transformation (17), dimensionless variables (18), after 
dropping bars and under the assumptions of long wave length 

( ) and low Reynolds number (
 

eR
), the Equations 7 to 12 

becomes: 
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also, the channel wall equation will be : 
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Figure  2. The velocity profile  u  against  y  for different values 

of coupling number  N  when: 
 0.5=

,  1=x ,  1= , 

 1.5=K , 
 5=

,
 1=q

. 
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Using Equation (20) into (19), the previous Equations (in terms of 
stream function, will be: 
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Also, we can write down the non-dimensional boundary conditions 
in terms of the stream function as follows: 
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Introducing these conditions into the general solutions of the 
Equations (25-28), the solutions of the stream function and the 
microrotation velocity, temperature and concentration respectively 
are given by: 
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where
 1,2,3)=(ii , 

 1,...7)=( jLj
 and 

 1,...18)=(knk  
are given in the appendix. 
 
 
RESLUTS AND DISCUSSION  
 
In the present study, the problem of peristaltic transport 
of micropolar fluid under the effects of heat generation 
and radiation with heat and mass transfer through a 
symmetric channel is modeled mathematically. The 
governed equations of this problem are formed in two 
dimensions and transformed from a laboratory frame to a 
fixed frame, the yield equations written in dimensionless 
form. The analytical solutions of these equations have 
been obtained under the conditions of low Reynolds 
number and long wave length, subject to a set of 
appropriate boundary conditions using the Mathematica 
Program. The expressions of velocity profile, 
microrotation velocity, temperature and concentration 
distributions have been evaluated for different physical 
parameters of the problem and have been shown 
graphically through a set of figures. In our figures we 

chose  y  between  0  and  1.5  we observed that in the 

region
 0.80  y

.  

Figure 2 explained the effect of coupling number  N on 

the velocity  u , it is observed that  u  decreases with 

increasing  of   N   and   after  that,   the   velocity   profile  



 

 
 
 
 

 
 

Figure  3. The velocity profile  u  against  y  for different values 

of  K  when: 
 0.5=

,  1=x ,  1= ,  0.1=N , 
 5=

, 

 1=q
. 

 
 
 

 
 

Figure  4. The microrotation  w  against  y  for different values 

of coupling number  N  when: 
 0.5=

,  1=x ,  0= , 

 1.5=K , 
 3=

,
 0.5=q

. 

 
 
 

increases with increasing the coupling number  N . A 

similar behavior happens for the micropolar parameter 
 

   

(when: 
 0.5=

,  1=x ,  1= ,  1=m ,  1=N ,  0.5=K , 

 1=q
 ) and the parameter    (characterizes the 

microrotation on the solid surfaces, when:  
 0.5=

, 

 1=x ,  1=N ,  0.5=K , 
 3=

, 
 1=q

).  But the effect of 

the permeability parameter  K  on the velocity profile is 
illustrated in Figure 3. It is clear that velocity increases 

with increasing of  K  in the nominated region and then it 

decreases with increasing of  K . 
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Figure 5. The microrotation  w  against  y  for different 

values of  K  when: 
 0.5=

,  1=x ,  0= , 
 3=

, 

 0.5=N  , 
 0.5=q

. 

 
 
 

 
 

Figure  6. The microrotation  w  against  y  for different values of 

 
 when: 

 0.5=
,  1=x ,  0= ,  0.5=N ,  1.5=K , 

 0= , 
 0.5=q

. 

 
 
 

Figure 4 explained the effect of coupling number  N  on 

microrotation velocity w , it is observed that in the region 

 0.60  y
 there is no effect of  N  on  w  ( w  has one 

behavior) and then  w  decreases with increasing of  N . 

The effect of the permeability parameter  K  on the 
microrotation velocity is illustrated in Figure 5. It is noted 

that  w  decreases with increasing of  K  in the region 

 1.250  y
 and subsequently this effect disappear and 

 w  has one behavior. In Figure 6 it is clear that  w  

decreases with increasing of micropolar parameter 
 

, 

and its effect of the parameter     on   w   is  reflected  as  
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Figure  7. The microrotation  w  against  y  for different values of    

when: 
 0.5=

,  1=x ,  0.5=N ,  1.5=K , 
 3=

, 

 0.5=q
. 

 
 
 

 
 

Figure  8. The temperature distribution    against  y  for different 

values of 
 

nR
 when: 

 0.5=
,  1=x , 

 5=rP
,  0.3=G . 

 
 
 
shown in Figure 7. 

Figures 8 explained the effects of radiation parameter 

 
nR

 on the temperature distribution  , it is illustrated that 

   increases with increasing of it.  The similar behavior 

occur  with Prantdel number 
 

rP
 ( when: 

 0.5=
,   1=x ,  

 5=nR
, 0.3=G ) and generation parameter  G  (when: 

 0.5=
,  1=x , 

 5=nR
,
 5=rP

) .  In Figure 9, the effect  

of 
 

nR
 on the concentration distribution 

 
 is pointed out,  

it   is   observed  that    
 

    decreases    with   increasing 

 
 
 
 

 
 

Figure  9. The concentration 
 

 against  y  for different 

values of 
 

nR
 when: 

 0.5=
,  1=x , 

 5=rP
, 

 0.3=G , 
 1.5=cS

,
 0.3=rS

. 

 
 
 

 
 

Figure  10. The concentration   against y  for different 

values of cS  when: 
 0.5=

,  1=x , 
 5=nR

, 

 oPr 2=
, 
 0.3=rS

,  0.3=G . 

 
 
 

of 
 

nR
 and the similar behavior happen with 

 
rP
 (when 

 0.5=
,  1=x , 

 5=nR
,  0.3=G , 

 1.5=cS
,
 0.3=rS

).                  

The effect of Schmit number 
 

cS
 on the concentration 

distribution 
 

 is pointed out in Figure 10 and it is shown 

that 
 

 decreases with increasing of 
 

cS
. Figure  11  

indicated the effect of Soret number 
 

rS
 on 

 
, it 

appeared that 
 

 decreases with increasing of  it  and the  

generation parameter  G  (when: 
 0.5=

,  1=x , 
 5=nR

, 

 5=rP
, 

 1.3=cS
, 

 0.3=rS
) has the same effect on 

 
. 
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Figure  11. The concentration   against y  for different values of 

 
rS

 when: 
 0.5=

,  1=x , 
 5=rP

,  0.3=G , 

 5=nR
,
 1.3=cS

. 

 
 
 
Conclusion  

 
The problem of two dimensional peristaltic flow of a 
miropolar fluid through a symmetric channel with the 
effects of heat generation and radiation with heat and 
mass transfer has been investigated. The equations 
governing the fluid flow, subjected to a set of appropriate 
boundary conditions, have been solved analytically under 
the conditions of low Reynolds number and long wave 
length. The solutions of these equations are obtained as 
functions of the physical parameters of the problem, the 
effects of these parameters of the problem on these 
solutions have been shown graphically. 

It appeared that the velocity profile increases with 

increasing of the parameters N , 
 

 and    in the 

region
 0.80  y

. The temperature distribution    

increases with increasing of the parameters 
 

nR
, 

 
rP
 

and G . The concentration distribution 
 

 decreases with 

increasing of 
 

nR
 and 

 
rP
 and decreases with increasing 

of the parameters
 

cS
, 

 
rS
 and  G . 
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