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Two forms of uncertainty are identified to be associated with dynamical systems, which are randomness 
and belief degree. The uncertain stochastic differential equation (USDE) is used to describe dynamical 
systems driven simultaneously by randomness and human uncertainty (belief degree). In this paper, the 
Euler-Maruyama method for solving USDEs is examined. The method is used to solve a stock pricing 
problem and the results are compared with those of Runge Kutta of order 4. The Euler-Maruyama 
method yields lower stock prices, while the stock prices from the Runge Kutta method proved to 
converge faster to those from the analytical method. At α = 0.5 where α ∈ (0, 1), the USDE reverts to the 
stochastic differential equation, with the uncertain component eliminated, showing that the USDE is 
indeed a hybrid of the uncertain differential equation and stochastic differential equation. 
 
Key words: Euler-Maruyama, uncertain stochastic differential equation, stock price, stochastic contour process. 

 
 
INTRODUCTION 
 
The significance of differential equations in modeling 
dynamical systems cuts across biology, engineering, 
physics, and finance, etc. In simple term, dynamical 
systems are time-dependent systems. Two forms of 
uncertainty are identified to be associated with dynamical 
systems, which are randomness and belief degree. The 
class of differential equations that model dynamical 
systems associated with randomness only is known as 
the stochastic differential equation (SDE). While the class 
of differential equation that models dynamical systems 
associated with belief degrees only is known as uncertain 
differential equations (UDE). The foundation for SDEs is 
probability theory which started from the work of 
Kolmogorov (1933), and has since evolved, and studied 
by different scholars including Bachelier (1900), Black and 

Scholes (1973), Merton (1973), Hull and White (1990) 
and Dmouj (2006). Since the ground breaking work of the 
Japanese mathematician, Ito Kiyoshi in 1949 on 
stochastic processes’ differentiation and integration, 
SDEs have been successfully applied by different 
researchers when it comes to discussing the modeling of 
dynamical systems. As an example, in financial 
processes, Black and Scholes (1973) won the Nobel 
Prize in economics for successfully using this concept to 
price options in their model. On the other hand, the UDE 
was first mentioned by Liu (2009) sequel to the ground 
breaking work of Liu (2007) which birthed uncertainty 
theory. Since then, researchers have followed in 
expanding the boundaries of knowledge in this new 
branch  of  mathematics. UDEs  have  been  successfully  
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applied in describing the evolution of dynamical systems. 
For example, Liu (2009) proposed an uncertain stock 
model for option pricing. Overtime as researchers 
continue in study, it was observed that the two forms of 
uncertainty (randomness and belief degree) can 
simultaneously drive a dynamical system. As a result, a 
new class of differential equations called as uncertain 
stochastic differential equations was created. As a result, 
a new class of differential equations called uncertain 
stochastic differential equations (USDE) was created. 
Just as the SDEs are modeled by probability theory and 
the UDEs by uncertainty theory, the USDEs are modeled 
by chance theory. The USDEs are driven by uncertain 
random processes, which are a collection of uncertain 
random variables. Chance theory came into being 
through the work of Liu (2013a), where he introduced the 
concept of chance measure by combining uncertain and 
probability measures. Researchers have studied this new 
concept of chance theory, and have equally contributed 
to its development over these years. Using probability 
and uncertainty distribution, Liu (2013b) provided a 
method for determining an uncertain random variable’s 
expected value as well as a definition of their law of 
operation. Fei (2014) combined the Itˆo integral and Liu 
integral into the Itˆo-Liu integral to integrate an uncertain 
random process. He also provided the Itˆo-Liu formula for 
finding the derivative of the hybrid process. 

Like the SDEs and UDEs, the USDEs have also been 
successfully applied in describing dynamical systems. 
Matenda and Chikodza (2018) suggested an uncertain 
stochastic stock model with jump using an USDE. They 
also outlined the analytical solutions to some USDE. The 
exact and analytical solutions to USDEs are not easily 
solved and do not exist for some. However, it is possible 
to approximate the solution numerically, just as with 
SDEs and UDEs. Hence to address this challenge, it is 
necessary to create algorithms to numerically solve 
USDEs. Chirima et al. (2020) used the Runge-Kutta of 
order four (RK4) to numerically solve USDEs. In order to 
use numerical schemes of solving ODEs for USDEs, they 
converted the USDEs into ODEs with α-path, whose 
solution is a contour process. They also gave the 
theorems and proofs for existence, uniqueness and 
stability of USDEs. Alternatively, the Euler-Maruyama 
(EM) method is used to numerically solve USDEs in this 
paper. The EM method is applied to calculate the stock 
price of an uncertain stochastic market, and the results 
are compared to that of RK4 proposed by Chirima et al. 
(2020).  

One idea this paper contributes is using the EM method 
to solve USDEs. In preparation for the main work of this 
paper, the next section presents some basic definitions of 
useful terms. In the following section, we present the 
uncertain stochastic differential equation (USDE) and the 
theorems for their existence, uniqueness and stability. In 
the numerical example section we use the EM technique 
with  α-path   to  compute  the  price  of  the stock  from  a  

 
 
 
 
considered stock model of an uncertain random market. 
We also show the results in table and figures. In the final 
section, conclusions are given. 
 
 

PRELIMINARIES 
 

We present some preliminary material which will be of 
use later on. 
 
Stochastic analysis 
 
Stochastic process 
 
Definition 2.1: A stochastic process is a function: 
 
Y𝑡(𝜓): 𝑇 × (𝛹, 𝒜, 𝒫) →  ℜ 
 
such that {Y𝑡 ∈ B} is an event for any Borel set B at each 

time t. Where (𝛹, 𝒜, 𝒫) is a probability space and T is a 
totally ordered set. 
 
Definition 2.2 (Brownian motion/Wiener process): A 
stochastic process B𝑡 is called a standard Brownian 
motion or Wiener process if it satisfies the following 
properties 
 

i. B0 = 0 and almost all sample paths are continuous, 
ii. B𝑡 has stationary and independent increments, 
iii. every increment B𝑠+𝑡 − B𝑡 is a normal random variable 
with expected value 0 and variance t. 
 
 

Stochastic differential equation 
 

Definition 2.3. The differential equation: d𝑌𝑡 =
𝑚(𝑡, 𝑌𝑡)dt + 𝑛(𝑡, 𝑌𝑡)d𝐵𝑡 is called a stochastic differential 

equation. Where, 𝐵𝑡 is a standard Brownian motion and 
m and n are two given functions. An Ito process 𝑌𝑡 that 
satisfies the equation about identically in t is called the 
solution of the stochastic differential equation. 
 
 

Uncertain analysis 
 
Uncertain process 
 

Definition 2.4. An uncertain process is a function: 
 

Y𝑡(𝜋): 𝑇 × (Π, ℬ, 𝒰) →  ℜ 
 
such that {Y𝑡 ∈ B} is an event for any Borel set B at each 

time t. Where (Π, ℬ, 𝒰) is an uncertainty space, and T is a 
totally ordered set. 
 
 

Contour process 
 

Definition 2.5: Let 𝑌𝑡 be an uncertain process. If for each  



 
 
 
 

α ∈ (0,1), there exist a real function 𝑌𝑡
𝛼 such that 

 

ℳ{𝑌𝑡 ≤ 𝑌𝑡
𝛼, ∀𝑡} = α 

ℳ{𝑌𝑡 > 𝑌𝑡
𝛼, ∀𝑡} = 1 − α 

 

then 𝑌𝑡 is called a contour process. In this case, 𝑌𝑡
𝛼 is 

called an α-path of the contour process 𝑌𝑡. 
 
 

Theorem 2.6: (Yao and Chen, 2013) Let 𝑌𝑡 be an 

uncertain process with an α-path 𝑌𝑡
𝛼. Then 𝑌𝑡 has an 

inverse uncertainty distribution 
 

Φ−1(α) = 𝑌𝑡
𝛼, ∀𝛼 ∈ (0, 1) 

 

This theorem is also known as the inverse uncertainty 
distribution theorem of a contour process. 
 

Definition 2.7: An uncertain process L𝑡 is said to be a 
canonical Liu process if: 
 

i. L0 = 0  and almost all sample paths are Lipschitz 
continuous, 
ii. L𝑡 has stationary and independent increments, 

iii. every increment 𝐿𝑠+𝑡 − 𝐿𝑡 is a normal random variable 

with expected value 0 and variance 𝑡2. 
 
Definition 2.8: The inverse uncertainty distribution of the 
canonical Liu process is given by 
 

 
 
 
Uncertain differential equation 
 
Definition 2.8: The differential equation 
 
d𝑌𝑡 = 𝑚(𝑡, 𝑌𝑡)dt + 𝑛(𝑡, 𝑌𝑡)d𝐿𝑡                                          (1) 
 
is called an uncertain differential equation. Where, 𝐿𝑡 is a 
canonical Liu process and m and n are two given 
functions. A Liu process 𝑌𝑡 that satisfies Equation 1 
identically in t is known as the solution of the uncertain 
differential equation. The uncertain differential equation 
defined above is equivalent to the uncertain integral 
equation 
 

 
 
Chance theory 
 
We shall be presenting previous literatures developed on 
chance theory that are important to this study. 
 

Definition 2.9: A chance space is defined as the product 

space (Π, ℬ, 𝒰) × (𝛹, 𝒜, 𝒫), where (Π, ℬ, 𝒰) is an 
uncertainty space and (𝛹, 𝒜, 𝒫) is a probability space. 
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Definition 2.10: Given a chance space (Π, ℬ, 𝒰) ×
(𝛹, 𝒜, 𝒫) and an uncertain random event Φ ∈ ℬ × 𝒜, the 
chance measure C of Φ is defined by 

 

𝒞{Φ} = ∫ 𝒫 {𝜓 ∈ 𝛹 | 𝒰{𝜋 ∈ Π | (𝜋, 𝜓) ∈ Φ} ≥ 𝑥}𝑑𝑥
1

0

 

 
A chance measure satisfies the following properties: 

 
1. (Liu, 2013b) Normality: 𝒞{Π × 𝛹} = 1, 𝒞{0} = 0 
2. (Liu, 2013b) Monotonicity: 𝒞{Φ1} ≤ 𝒞{Φ2} for any event 
Φ1 ⊂ Φ2 

3. (Liu, 2013b) Self-duality: 𝒞{Φ} + 𝒞{Φ𝑐} = 1 for any 
event Φ 
4. (Hou, 2014) Sub-additivity: For any countable 
sequence of events Φ1, Φ2, …, 

 

𝒞 {⋃ Φ𝑖

∞

𝑖=1

} ≤ ∑ 𝒞{Φ𝑖}

∞

𝑖=1

 

 
5. (Hou, 2014) Null-additivity: Suppose Φ1, Φ2, …, are a 
sequence of events with 𝒞{Φ𝑖} → 0 as 𝑖 → ∞. Then for 

any event lim𝑖→∞ 𝒞{Φ ∪ Φ𝑖} = lim𝑖→∞ 𝒞{Φ ∖ Φ𝑖} =
𝒞{Φ} That means 𝒞{Φ1 ∪ Φ2} = 𝒞{Φ1} + 𝒞{Φ2} if either 
𝒞{Φ1} = 0 or 𝒞{Θ2} = 0 
6. (Hou, 2014) Asymptotic: For any sequence of events 
Φ1, Φ2, …, 
lim
𝑖→∞

𝒞{Φ𝑖} > 0, if Φ𝑖 ↑ Π × 𝛹 

lim
𝑖→∞

𝒞{Φ𝑖} < 0, if Φ𝑖 ↓ ∅ 

 
Definition 2.11: Given a chance space(Π, ℬ, 𝒰) ×
(𝛹, 𝒜, 𝒫), an uncertain random variable is defined as a 
function ζ ∶ (Π, ℬ, 𝒰) × (𝛹, 𝒜, 𝒫) → 𝐵 ∈ ℜsuch that 

ζ ∈ 𝐵 ∈ (ℬ × 𝒜). 

 
Definition 2.12: Given a chance space (Π, ℬ, 𝒰) ×
(𝛹, 𝒜, 𝒫) and a totally ordered set T, an uncertain 
random process is a function: 

 
𝑌𝑡(𝜋, 𝜓): 𝑇 × (Π, ℬ, 𝒰) × (𝛹, 𝒜, 𝒫) → ℜ 

 
such that 𝑌𝑡 ∈ 𝐵 ∈ (ℬ × 𝒜) for any Borel set 𝐵(ℜ) at each 
time t. 

 
Remark 1: Suppose 𝑌𝑡 and 𝑍𝑡 are uncertain and 
stochastic processes, respectively, then 𝑋𝑡 = 𝑚(𝑌𝑡 , 𝑍𝑡) is 
an uncertain random process given a measurable 
function f. 

 
Definition 2.13: Given fixed 𝜋∗ ∈ Π and 𝜓∗ ∈ 𝛹, the 
sample path of an uncertain random process 𝑌𝑡 on a 

chance space (Π, ℬ, 𝒰) × (𝛹, 𝒜, 𝒫) is defined as the 
function 𝑌𝑡(𝜋∗, 𝜓∗). 

Φ−1(α) =
√3

𝜋
ln

α

1 − α
 

𝑌𝑠 = 𝑌0 + ∫ 𝑚(𝑡, 𝑌𝑡)dt
𝑠

0

+ ∫ 𝑛(𝑡, 𝑌𝑡)d𝐿𝑡

𝑠

0
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Ito-Liu integral 

 
Definition 2.14: (Fei, 2014) Let 𝑌𝑡 = (𝐹𝑡 , 𝐺𝑡) be an 
uncertain stochastic process. For any partition 𝑃 = {𝑎 =
𝑡1, 𝑡2, … , 𝑡𝑘+1 = 𝑏} of the closed interval [a, b] with 

𝑎 = 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑘+1 = 𝑏 the mesh is written as 
∆= max1≤𝑖≤𝑘|𝑡𝑖+1 − 𝑡𝑖|. Then the Ito-Liu integral of 𝑌𝑡 with 

respect to 𝐾𝑡 = (𝐵𝑡, 𝐿𝑡) is defined as follows, 

 

∫ 𝑌𝑠d𝐾𝑠

𝑏

𝑎

= lim
∆→0

∑ 𝐺𝑡𝑖

𝑁

𝑖=1

(𝐵𝑡𝑖+1
− 𝐵𝑡𝑖

) + lim
∆→0

∑ 𝐹𝑡𝑖

𝑁

𝑖=1

(𝐿𝑡𝑖+1
− 𝐿𝑡𝑖

) 

 
provided that exists in mean square and is an uncertain 
random variable, where 𝐿𝑡 and 𝐵𝑡 are a one-dimensional 
canonical process and a one-dimensional Brownian 
motion, respectively. Here, 𝑌𝑡 is called Ito-Liu integrable. 

In particular, when 𝑌𝑡 ≡ 0, 𝑌𝑡 is called Liu integrable. 

 
Theorem 2.15 (Fei, 2014): Let 𝐵 = (𝐵𝑡)0≤𝑡≤𝑇 =
(𝐵𝑡

1, … , 𝐵𝑡
𝑚)0≤𝑡≤𝑇

𝑇  and 𝐿 = (𝐿𝑡)0≤𝑡≤𝑇 = (𝐿𝑡
1, … , 𝐿𝑡

𝑛)0≤𝑡≤𝑇
𝑇  be an 

m-dimensional standard Brownian motion and an n-
dimensional canonical process, respectively. Assume 
that uncertain stochastic processes 𝑌1(𝑡), 𝑌2(𝑡), … , 𝑌𝑝(𝑡) 

are given by: 

 

𝑑𝑌𝑘(𝑡) = 𝑢𝑘(𝑡)𝑑𝑡 + ∑ 𝑣𝑘𝑙(𝑡)𝑑𝐵𝑡
𝑙

𝑚

𝑙=1

+ ∑ 𝑤𝑘𝑙(𝑡)𝑑𝐿𝑡
𝑙

𝑛

𝑙=1

, 𝑘

= 1, … , 𝑝 

 
Where 𝑢𝑘(𝑡) are all absolute integrable uncertain 

stochastic processes, 𝑣𝑘𝑙(𝑡) are all square integrable 
uncertain stochastic processes, and 𝑤𝑘𝑙(𝑡) are all Liu 
integrable uncertain stochastic processes. For 𝑘, 𝑙 =
1, … , 𝑝, let 
𝜕𝐾

𝜕𝑡
(𝑡, 𝑦1, … , 𝑦𝑝),

𝜕𝐾

𝜕𝑦𝑘
(𝑡, 𝑦1, … , 𝑦𝑝),

𝜕2𝐾

𝜕𝑦𝑘𝜕𝑦𝑙
(𝑡, 𝑦1, … , 𝑦𝑝) be 

continuous functions. Then we have: 

 
𝑑𝐾(𝑡, 𝑌1(𝑡), … , 𝑌𝑝(𝑡))

=
𝜕𝐾

𝜕𝑡
(𝑡, 𝑌1(𝑡), … , 𝑌𝑝(𝑡))𝑑𝑡

+ ∑
𝜕𝐾

𝜕𝑦𝑘
(𝑡, 𝑌1(𝑡), … , 𝑌𝑝(𝑡))𝑑𝑌𝑘(𝑡)

𝑝

𝑘=1

+
1

2
∑ ∑

𝜕2𝐾

𝜕𝑦𝑘𝜕𝑦𝑙
(𝑡, 𝑌1(𝑡), … , 𝑌𝑝(𝑡))𝑑𝑌𝑘(𝑡)𝑑𝑌𝑙(𝑡)

𝑝

𝑙=1

𝑝

𝑘=1

 

 

where   𝑑𝐵𝑡
𝑘𝑑𝐵𝑡

𝑙 = 𝛿𝑘𝑙𝑑𝑡, 𝑑𝐵𝑡
𝑘𝑑𝑡 = 𝑑𝐿𝑡

𝑖 𝑑𝐿𝑡
𝑗

= 𝑑𝐿𝑡
𝑙 𝑑𝑡 =

𝑑𝐵𝑡
𝑘𝑑𝐿𝑡

𝑖 = 0,  for 𝑘, 𝑙 = 1, … , 𝑚.      𝑖, 𝑗 = 1, … , 𝑛. 
Here: 
 

𝛿𝑘𝑙 = {
0,         𝑖𝑓 𝑘 ≠ 𝑙
1,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

 
 
 
 
UNCERTAIN STOCHASTIC DIFFERENTIAL 
EQUATIONS 
 
This new class of differential equation is driven by both 
the Brownian motion and Liu canonical process. 
 
Definition 3.1: The differential equation 
 

𝑑𝑌𝑡 = 𝑚(𝑡, 𝑌𝑡)𝑑𝑡 + 𝑛(𝑡, 𝑌𝑡)𝑑𝐿𝑡 + 𝑟(𝑡, 𝑌𝑡)𝑑𝐵𝑡                     (3) 
 
is called an Uncertain Stochastic Differential Equation 
(USDE). Where Lt and Bt are one-dimensional canonical 
process and Brownian motion, respectively, and m, n and 
r are given functions. 
 
Remark 2: The solution to the USDE above is called an 

uncertain stochastic process 𝑌𝑡. 
 
 
Existence and uniqueness 
 
Theorem 3.2 (Chirima et al., 2020): An USDE: 
 

𝑑𝑌𝑡 = 𝑚(𝑡, 𝑌𝑡)𝑑𝑡 + 𝑛(𝑡, 𝑌𝑡)𝑑𝐿𝑡 + 𝑟(𝑡, 𝑌𝑡)𝑑𝐵𝑡 
 
satisfying the linear growth and Lipschitz conditions 
|𝑚(𝑥, 𝑡)| + |𝑛(𝑥, 𝑡)| + |𝑟(𝑥, 𝑡)| ≤ 𝐿(1 + |𝑥|), ∀ 𝑥 ∈ ℝ, 𝑡 ≥ 0 
And |𝑚(𝑥, 𝑡) − 𝑚(𝑦, 𝑡)| + |𝑛(𝑥, 𝑡) − 𝑛(𝑦, 𝑡)| + |𝑟(𝑥, 𝑡) −
𝑟(𝑦, 𝑡)| ≤ 𝐿|𝑥 − 𝑦|, ∀ 𝑥, 𝑦 ∈ ℝ, 𝑡 ≥ 0 respectively, for some 
constant L, is said to have a unique solution that is 
sample continuous. 
 
 
Stability 
 
Definition 3.3: An arbitrary USDE is said to be stable, if 
given any two solutions to an uncertain stochastic 

differential equation, 𝑌𝑡 and 𝑍𝑡 which satisfy the condition 

lim
|𝑌0−𝑍0|→0

𝐶{|𝑌𝑡 − 𝑍𝑡| > 𝜖} = 0 , ∀ 𝑡 ≥ 0 

 
Theorem 3.4: (Chirima et al., 2020) If 𝜐𝑡, 𝜇𝑡 and 𝜈𝑡 are 
continuous functions where 

sup𝑠≥0 ∫ 𝜐𝑡𝑑𝑡
𝑠

0
< +∞, ∫ |𝜇𝑡|𝑑𝑡

+∞

0
< +∞, ∫ |𝜈𝑡|𝑑𝑡

+∞

0
< +∞ 

then an USDE d𝑌𝑡 = 𝜐𝑡𝑌𝑡dt + 𝜇𝑡𝑌𝑡d𝐿𝑡 + 𝜈𝑡𝑌𝑡dB𝑡 is stable. 
 
 
NUMERICAL EXAMPLE 
 
Matenda and Chikodza (2018) proposed an uncertain 
stochastic stock model for the stock price Zt and bond 
price Yt:  
 

{
𝑑𝑌𝑡 = 𝑎𝑌𝑡𝑑𝑡

𝑑𝑍𝑡 = 𝑏𝑍𝑡𝑑𝑡 + 𝜎2𝑍𝑡𝑑𝐿𝑡 + 𝜎1𝑍𝑡𝑑𝐵𝑡
                                 (2) 

 
where  a  represents   the   rate   of   riskless   interest ,  b  



 
 
 
 

represents the drift of the stock, 𝜎2 represents the 
uncertain diffusion and the random diffusion is 

represented by 𝜎1. 
For an USDE of Equation (2), let  𝑇 = 1, 𝑏 = 0.06, 𝑍0 =

40, 𝜎1 = 0.29, 𝜎2 = 0.32, 𝑁 = 100. Our aim is to use the 
EM method to compute the distribution of the price of 
stock 𝑍𝑡 and compare our result with that exact solution 
and RK4 proposed by Chirima et al. (2020). Equations (2) 
and (1) are similar, with α-path 
 

d𝑍𝑡
𝛼 = 𝑏𝑍𝑡

𝛼dt + |𝜎2𝑍𝑡
𝛼|Φ−1(α)dt + 𝜎1𝑍𝑡

𝛼d𝐵𝑡                     (3) 
 

which is an SDE α-path whose solution 𝑍𝑡 is a stochastic 
contour process. Φ−1(α) is deterministic and represents 
the inverse uncertainty distribution of the canonical Liu 
process given by: 
 

Φ−1(α) =
√3

𝜋
ln

α

1 − α
 

 

In Equation (2), eliminating 𝜎1𝑍𝑡𝑑𝐵𝑡 leaves us with the 
Liu’s stock model proposed by Liu (2013). 
 

𝑑𝑍𝑡 = 𝑏𝑍𝑡𝑑𝑡 + 𝜎2𝑍𝑡𝑑𝐿𝑡                                                   (4) 
 

Also, eliminating 𝜎2𝑍𝑡𝑑𝐿𝑡 in Equation (2) leaves us with 
the Black-Scholes (1973) model. 
 

𝑑𝑍𝑡 = 𝑏𝑍𝑡𝑑𝑡 + 𝜎1𝑍𝑡𝑑𝐵𝑡                                                   (5) 
 

We will proceed to solve Equation (3) by the EM method 
using MATLAB. 
 
 

Euler-Maruyama method with α–path 
 

Consider the stochastic initial value problem: 
 

d𝑌(𝑡) = 𝑚(𝑌(𝑡))dt + 𝑛(𝑌(𝑡))d𝐿𝑡 + 𝑟(𝑌(𝑡))d𝐵(𝑡) 

 
and the SDE with α–path is given as 
 

d𝑌𝛼(𝑡) = 𝑚(𝑌𝛼(𝑡))dt + |𝑛(𝑌𝛼(𝑡))|Φ−1(α)dt +
𝑟(𝑌𝛼(𝑡))d𝐵(𝑡)                                                                 (6) 
 

with 
𝑌𝛼(0) = 𝑌0

𝛼(𝑌0
𝛼 is an uncertain random variable) and 0 ≤

𝑡 ≤ 𝑇. Before applying a numerical method to the initial 
value problem, we first discretize the time interval by 

letting ∆𝑡 = 𝑇/𝐿 for some positive integer L and 𝜏𝑗 = 𝑗∆𝑡 

(Higham, 2001). Note that 𝑌𝛼(𝜏𝑗) will be approximated by 

𝑌𝑗
𝛼. 

The Euler-Maruyama method for the SDE with α–path 
is given by 
 

𝑌𝑗
𝛼 = 𝑌𝑗−1

𝛼 +  𝑚(𝑌𝑗−1
𝛼 )∆𝑡 + |𝑛(𝑌𝑗−1

𝛼 )|Φ−1(α)∆𝑡 +

𝑟(𝑌𝑗−1
𝛼 )(𝐵(𝜏𝑗) − 𝐵(𝜏𝑗−1))                                                 (7) 

 

for 𝑗 =  1, 2, … , 𝐿. (Higham, 2001). Taking n = 0 yields the 
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generally known stochastic case without uncertainty in 
the system. Taking h = 0 yields the uncertainty case 
without randomness in the system as proposed by Liu 
(2009). 
 
 

Algorithm 
 

The EM method below can be used in solving USDEs. 
 

𝑌𝑗
𝛼 = 𝑌𝑗−1

𝛼 +  𝑚(𝑌𝑗−1
𝛼 )∆𝑡 + |𝑛(𝑌𝑗−1

𝛼 )|Φ−1(α)∆𝑡 +

𝑟(𝑌𝑗−1
𝛼 )(𝐵(𝜏𝑗) − 𝐵(𝜏𝑗−1))  

 

Let T be a fixed time length, N be the number of 

iterations, and 𝑑𝑡 = 𝑇/𝑁 be the interval difference over 
[0, T]. We choose the step size dt as an integer multiple 

R ≥ 1, that is, 𝐷𝑇 =  𝑅 ∗ 𝑑𝑡, and 𝐿 = 𝑁/𝑅. 
In this case, we choose R = 1. We calculate our own 

discretized Brownian pathways and utilize them to 
produce the increments. 𝐵(𝜏𝑗) − 𝐵(𝜏𝑗−1) needed in 

Equation (7). 
 

Step 1. Set α = 0.05 and j = 1. 
Step 2. Solve Equation (6) using EM method Equation 
(7). 
Step 3. Increase j by 1 and repeat steps 2 and 3 to the 
maximum value of N. 

Step 4. Obtain E(𝑌𝑠
𝛼) by 

∑ 𝑌𝑗
𝛼𝑁

𝑗=1

𝑁
 

Step 5. The process is repeated for α values 0.05, 0.10, 
0.15… 0.95. This brings us to the inverse uncertainty 

distribution of 𝑌𝑡. 
From Table 1 and Figure 1, the EM method yields the 

least stock prices compared to RK4 and exact methods. 
The stock prices from RK4 prove to converge faster to 
those from the exact method as seen in the enlarged 
view of Figure 1 in Figure 2. Thus showing the RK4 
method has faster rate of convergence than the EM 
method. 

At 𝛼 = 0.5, the EM method to the USDE model gives 
exactly the same stock price as that  for the Black-
Scholes (1973) SDE model. This can be easily seen from 
Figures 4 and 5. It implies that at 𝛼 = 0.5, the uncertain 
component is eliminated from the USDE thereby turning 
the USDE stock model into the Black-Scholes (1973) 
SDE stock model, which further proves that the USDE is 
indeed a hybrid of the UDE and SDE. The randomness of 
the USDE model can also be easily seen from Figures 3, 
4, 5, and 6. 

The distributions represent the stock price 𝑍𝑡 for USDE 
using EM, RK4 and analytical methods. An uncertain 
distribution is regular if it satisfies the conditions of 
continuity, strictly increasing, and 

lim
𝑥→−∞

Φ(x) = 0,   lim
𝑥→+∞

Φ(x) = 1 

(Liu 2010). 
From Table 1, the results of EM and RK4 method 

satisfies the above conditions. The results in Figure 1 
shows that  the  functions  are  increasing for both the EM
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Table 1. Stock prices (𝑍𝑡) for uncertain stochastic market based on analytical method, Euler-Maruyama 
method and Runge-Kutta of order 4 method for α values. 
 

α-path 
Stock Price 

Analytical method EM method RK4 method 

0.05 25.265 24.524 24.617 

0.15 31.276 29.580 30.474 

0.20 33.258 31.292 32.406 

0.25 34.990 32.805 34.093 

0.30 36.576 34.206 35.638 

0.35 38.079 35.547 37.103 

0.40 39.541 36.864 38.528 

0.45 40.996 38.185 39.945 

0.50 42.473 39.539 41.385 

0.55 44.004 40.954 42.876 

0.60 45.623 42.465 44.454 

0.65 47.375 44.116 46.161 

0.70 49.322 45.970 48.058 

0.75 51.558 48.124 50.236 

0.80 54.242 50.744 52.852 

0.85 57.680 54.155 56.201 

0.90 62.586 59.126 60.981 

0.95 71.404 68.362 69.574 
 

Source: Author, 2023 

 
 
 

 
 

Figure 1. Distribution curves for stock prices in the uncertain stochastic market based on the 
EM, RK4 and analytical methods. 
Source:  Author, 2023  
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Figure 2. Enlarged section of Figure 1. 
Source:  Author, 2023  

 
 
 

 
 

Figure 3. The simulation of stock price at α = 0.3. 
Source:  Author, 2023 
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Figure 4. The simulation of stock price at α = 0.5. 
Source:  Author, 2023         

 
 
 

  
 

Figure 5. The simulation of stock price without uncertainty component.  
Source:  Author, 2023 
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Figure 6. The simulation of stock price at α = 0.7. 
Source:  Author, 2023  

 
 
 

 
 

Figure 7. The simulation of stock price at α = 0 or α = 1. 
Source:  Author, 2023 

 
 
 

and RK4 methods, except at Φ(x) ≡ 0 and Φ(x) ≡ 1, 
which can be seen from Figure 7,  further  supporting  the 

necessary and sufficient conditions by Peng and Iwamura 
(2013). 
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Conclusion 
 
We have demonstrated in this paper that USDEs can be 
converted to SDEs with α-paths and solved by the Euler-
Maruyama method. The solution of the SDEs with α-path 
therefore becomes a stochastic contour process. The 
RK4 converges faster than the EM method to the exact 
solution. The EM method proved to yield lower stock 
price compared to the stock price from the RK4 and exact 
methods. At α = 0.5, the USDE crashed to the SDE with 
the uncertain component eliminated showing that the 
USDE is indeed a hybrid of the UDE and SDE. 
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