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A two-parameter weighted Monsef distribution (WM) is proposed in this paper. WM is flexible and has 
the property that the hazard rate function can accommodate both increasing and bathtub shapes. Most 
of its mathematical properties, such as probability density function, hazard function, moments and 
mean residual life function, are derived. The maximum likelihood method is used to estimate the 
distribution parameters. A simulation study is performed to examine the bias and mean square error of 
the maximum likelihood estimators of the parameters. Two real data sets are presented to illustrate the 
model flexibility in fitting some data against some other known distributions. 
 
Key words: Weighted Monsef distribution, hazard rate function, maximum likelihood, mean residual life 
function. 

 
 
INTRODUCTION 
 
A challenge faced by statisticians has been to model the 
life expectancy of real-world phenomena using lifetime 
distributions (Lehmann and Casella, 1998). This 
challenge appears in several fields, such as survival 
analysis and reliability analysis of mechanical 
components, as well as in monitoring real data 
applications in biological and biomedical studies 
(Bjerkedal, 1960). One of the important models used to 
study survival data is the weighted distributions. The 
importance of weighted distributions occurs when some 
of the observations are damaged or cannot be observed 
due to unusual causes. In this case, the resulting values 
are decreased and the units have different probabilities of 
occurrence. Fisher and Rao first familiarized the idea of 
weighted distributions. Patil and Rao studied many 
general models that led to weighted distributions, and 
they presented how it arises in a natural manner in many 
selection issues. Patil and Rao (1978) also identified that 
a weighted distributions model is suitable because it 
offers   a   new  concept of  standard  distributions  and  it 

provides methods to extend distributions, which afford 
more flexibility in fitting data. According to Ghitany et al. 
(2011), if the original observation x0 has a probability 

density function (p.d.f.) ― 0 0 1( ; )f x  ‖, where 1  is a 

parameter vector, and that observation x is noted 
according to a probability re-weighted by a weight 

function 2w( ; ) 0x   , and 2  is a new parameter 

vector, then x comes from a distribution with p.d.f 
(Ghitany et al., 2011). 

 

2 0 0 1( ) ( ; ) ( ; )f x Bw x f x   

 
Distributions of this type of p.d.f are known as weighted 
distributions. Here, B is a normalizing constant.  This 
paper is organized as follows: In Section 2, essential 
shape properties of the density, hazard rate, mean 
residual life functions and moments of the WM model  are 
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presented. The moments and moments generating function are introduced in Section 2 as well. The maximum likelihood 
estimates (MLEs) of the unknown parameters are illustrated in Section 3. In Section 4, simulation studies are provided to 
examine the performance of the maximum likelihood estimators of the parameters. In Section 5, the suggested model is 
fitted to two available survival data sets and compared with some other related models. Finally, a conclusion is 
presented to conclude the paper. 
 
 
Statistical measures 
 
In this section, the shape properties of the density, hazard rate, mean residual life functions and moments of the WM are 
presented. 
 
 
Probability density function 
 
In this paper, a two-parameter weighted Monsef distribution (WM) is proposed with probability density function
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Where A is a normalizing constant and: 
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is the p.d.f. of Monsef distribution, which is defined in an earlier work of Abd El-Monsef (2020) as a special case of the 
Erlang mixture distribution (2020).  We can note that when k = 1, the WM reduces to Monsef distribution. 

The p.d.f of WM can be written as:: 
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Where: 
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is the complete gamma function (Batir, 2005). 
 

It is clear to see that the density function of the WM p.d.f. has the behaviors at 0x   and x   , as follows: 
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The shape of the p.d.f can be obtained by next theorem.  
 
 
Theorem 1. 
 
The p.d.f. of the WM has three different shapes. These shapes can be displayed as follows: 
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Figure 1. Behavior of probability density function of the WM: (a) (—) k = 0.5, θ = 0.3, (- - -) k = 0.5, θ = 2.5, (ــ..ــ..ــ) k = 0.8, θ = 1.4. (b) (—
) k = 2.5, θ =1.0, (- - -)  k = 1.3, θ = 1.5, (ــ..ــ..ــ) k = 2.5, θ = 0.8. (c) (—) k = 0.6, θ = 0.5, (- - -) k = 0.9, θ = 0.6, (ــ..ــ..ــ) k = 0.8, θ = 0.4. 

 
 
 

(1) Decreasing if [θ < k < 1: (θ –k-1)
2
-4θ(1-k)≤0]

  
or [k ≤ 1, θ ≥ k]. 

(2) Unimodal if [k =1, θ < 1] or [k >1, θ> 0]. 
(3) Decreasing-increasing-decreasing if [θ < k < 1: ( θ –k-1)

2
-4θ(1-k)>0]

  
          

 
 
Proof 
 
The first derivative of f(x) can be written as: 
 

( )
( ) ( ),

x(1 x)

g x
f x f x  


 

 
where: 
 

2( ) ( 1) (1 )g x x k x k        

 
Figure 1 illustrates the p.d.f. of the WM distribution. It is clear that the aforementioned conditions are satisfied by the 
number of values of k and θ. 
 
 

Proof  
 
The first derivative of f(x) can be written as: 
  
Where 

2( ) ( 1) (1 )g x x k x k        

 

Now we have the discriminant of ( )g x , which is 
2( 1) 4 (1 ),D k k        

 

(i) If [k ≤ 1, θ ≥ k+1], ( ) 0g x  , Also, if [ 1: 0k D    ], ( ) 0g x  . Consequently, ( )f x  is decreasing. 

In order to prove the last parts, we have to find the second derivative of ( )f x , which is given by: 
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(ii) If [k = 1, θ <1] or [k >1, θ >0], f ( ) 0x   iff ( ) 0g x 
 

which happens at the point 0x
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, ( )f x  has a global maximum at 0x . 

 

(iii) If [θ < k < 1: D > 0], f ( ) 0x 
. 
if ( ) 0g x  , which occurs at the two points 

1 2x x
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, ( )f x has a local minimum at 
1x . Equally, 

2( ) 0f x  indicates that f( )x  

has a local maximum at 
2x . 

 
It is known that the density functions of most known two-parameter distributions, such as Gamma and Weibull 

distributions, are either decreasing or unimodal. The p.d.f. of the WM distribution has an extra shape, which can be 
beneficial for modeling. 

 
 
Hazard rate function 
 
The hazard (or failure) rate is more important in some aspects of continuous distribution than either the distribution 

function or density function. 

If ( )F x is an absolutely continuous distribution function with density function ( )f x , then the hazard rate function ( )h x is 

given by 
 

ln(R(x)) ( )
( )

( )

d f x
h x

dx R x
    

 
is called the hazard rate function (HRF) of X (Chen et al., 2004). This function is a non-negative. 

Where ( )R x is the survival or (reliability) function which is given by: 
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The hazard rate function of the WM distribution is given by 
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Behaviors of ( )h x at 0x  and ,x    separately, are 

given by: 
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Lemma 1 
 
Let X be a non-negative continuous random variable with 
density function f(x) and hazard rate function h(x). Let 

 d/ dx( ) ( ).x ln f x  
: 

 
1. If η(x) is decreasing (increasing) in x, then h(x) is 
increasing (decreasing) in x. 
2. If η(x) has a bathtub (upside-down bathtub) shape, h(x) 
has also a bathtub (upside-down bathtub) shape. 
By using Glaser’s consequence (Paranjpe and Rajarshi, 
1986), the shape of the hazard rate of the WM 
distribution can be determined as follows. 

 
In order to determine the shape of h(x), we introduce the 
following theorem  

 
 
Theorem 2 
 

The hazard rate function ( )h x of the WM distribution is 

bathtub shaped (increasing) if (0 k1 1)k    for all 

0  . 

 

 
 

 
 
 
 
Proof 
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 that is, 

( )x  is bathtub shaped. Thus, h(x) is also bathtub 

shaped.  

(ii) For 1k  ,  >0x  , that is ( )x is increasing. 

Hence, h(x) is also increasing.  

 
The hazard rate function h(x) of the WM for selected 

values of k and  is illustrated in Figure 2. Here, it can be 

noted that the bathtub feature of the hazard rate function 
of WM is most convenient in modeling biological data 
from mortality studies. 

 
 
Mean residual life function 

 
The mean residual life function 

  ( | )x E X x X x     of the WM is given by: 

 
 
Next is the behaviors of μ(x) at x = 0  
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The shape of mean residual life function μ(x) can be 
determined by using the following two lemmas. 
 
Lemma 2: Let X be a non-negative continuous random 
variable with h(x) a hazard rate function and μ(x) a mean 
residual life function.  If  h(x)  is  decreasing  (increasing), 

then μ(x) is increasing (decreasing) (Bryson and 
Siddique, 1969). 

 
Lemma 3: Let X be a non-negative continuous random 
variable with p.d.f. f(x), hazard rate function h(x) and 
mean residual life function μ(x). If h(x) has a bathtub 
(upside-down bathtub) shape and f(0)μ(0) > 1(≤1), then 
μ(x) has an upside-down bathtub (bathtub) shape (Gupta 
and Akman, 1995). 

Using Lemmas 2 and 3, the shape of the mean residual 
life function μ(x) of the WM can be  illustrated  as  follows:
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Figure 2. Behavior of Hazard rate function of WM distribution:. (a) K= 0.5 (—), K = 0.7 (- - -), K = 0.8 (..ــ..ــ..) and θ = 2.0; (b) K = 1.0 (—), K = 2.0 (- - -), K = 3.0 (..ــ..ــ..) and θ = 3.0 

 
 
 
Theorem 4-3 
 
The mean residual life function μ(x) of the WM is 
upside-down bathtub shaped (decreasing) when 0 
< k <1(k ≥1) for all θ > 0. 
 
 
Proof 
 
Since h(x) is bathtub shaped for 0 < k < 1, in this 
case, f(0) μ(0) =∞, μ(x) is upside-down bathtub 
shaped, by Lemma 3. Finally, since h(x) is 
increasing for k ≥1, μ(x) is decreasing, by Lemma 
2.  
The behaviors of mean residual  life  function  μ(x)  

of the WM are shown in Figure 3. It is clear to see 
that the upside-down bathtub feature is most 
valuable in modeling engineering reliability data. 

 
 
Moments and the moment generating function 

 
In this section, the moments about the origin and 
the moment generating function, are obtained. 

 
 
The moments about the origin 

 
The rth raw moment (about the origin) of  the  WM  

( ), r 1,2,...r

r E X    is given by: 
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Figure 3. Behavior of mean residual life function of WM distribution: (a) k = 0.4 (—), k = 0.6 (- - -), k = 0.7 (..ــ..ــ.. ) and θ = 2.5; (b) k = 1.0 (—), k = 2.0 (- - -), k = 3.0 (..ــ..ــ..) and θ = 
1.5. 

 
 
 
The moment generating function 
 

Here, the moment generating function of WM 
distribution is presented as: 
 

 (6) 
 

Estimation 
 

In order to estimate the parameters of the 
proposed WM density function as defined in 
Equation 3, the loglikelihood of the sample is 
maximized with respect to the parameters. 

 
 

Let 1,  . . ., xnx  be a random sample of size n 

from the WM with p.d.f. (3) and parameters k and 

θ. Let  be the  parameter 

vector. The log- likelihood function for , say ℓ = 

ℓ( ), is given by: 

 

2 2
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Table 1. Bias and MSE for the parameters . 

 

n 
θ =   =  θ =   =  

MSE Bias MSE Bias MSE Bias MSE Bias 

20 0.03453 0.07555 0.55638 0.30094 0.03640 0.07728 0.67297 0.32921 

40 0.01136 0.03529 0.17123 0.14330 0.01199 0.03624 0.21012 0.15756 

60 0.00651 0.02341 0.09162 0.09193 0.00689 0.02403 0.11390 0.10121 

80 0.00452 0.01633 0.06539 0.06681 0.00478 0.01679 0.08129 0.07353 

100 0.00341 0.01383 0.04757 0.05481 0.00361 0.01424 0.05940 0.06059 

         

n 
θ =   =  θ =   =  

MSE Bias MSE Bias MSE Bias MSE Bias 

20 0.00744 0.03405 1.1521 0.41551 0.04284 0.08126 1.3379 0.44699 

40 0.00245 0.01644 0.37081 0.20551 0.01422 0.03853 0.43452 0.21653 

60 0.00140 0.01104 0.20433 0.13468 0.00824 0.02550 0.24292 0.13961 

80 0.00097 0.00781 0.14463 0.09864 0.00575 0.01778 0.17486 0.10062 

100 0.00073 0.00667 0.10679 0.08237 0.00436 0.01522 0.12954 0.08421 

 
 
 
where x  is the sample mean. 

The maximized log-likelihood can be found by solving 
the nonlinear likelihood equations attained by the last 
differentiating. 
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where ( ) (d/ dk) ln (k)k    is the digamma function. 

The MLEs k̂ and ̂  of k and   are achieved by 

solving the non-linear equations 1
ˆ ˆ(k, ) 0U    and 

2
ˆ ˆ(k, ) 0U   . 

 
 
SIMULATION STUDY 
 

In this section, a simulation study is presented to 
examine the average bias and average mean square 
error (MSE) of the simulated estimates. The equation 

( ) 0F x u  , where u is an observation from the 

uniform distribution (0,1), and F(x) is a cumulative 
distribution function of the WM distribution, is used to 
complete the simulation study by generating random 
samples following the WM. The simulation experiment 
was repeated 10,000 times each with sample sizes of 20, 

40, 60, 80 and 100 for  = (0.5, 0.5, 0.2,0.5) and  =(0.9,  

1,1, 1.5). The study calculates  the  following  measures: 

From Table 1, it can be established that the MSE and the 
average bias decrease as the sample size increases 

 
 
DATA ANALYSIS 
 
The aim of this section is to illustrate the WM distribution 
by showing a successful application to two real data sets. 

 
 
The carbon fibers data set 
 
Here, the uncensored data set on the breaking stress of 
carbon fibers (in Gba) as reported in Cordeiro et al. 
(2013) is considered. 

 
The data are (n = 66): 3.70, 2.74, 2.73, 2.50, 3.60, 3.11, 
3.27, 2.87, 1.47, 3.11, 3.56, 4.42, 2.41, 3.19, 3.22, 1.69, 
3.28, 3.09, 1.87, 3.15, 4.90, 1.57, 2.67, 2.93, 3.22, 3.39, 
2.81, 4.20, 3.33, 2.55, 3.31, 3.31, 2.85, 1.25, 4.38, 1.84, 
0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.70, 2.03, 1.89, 2.88, 
2.82, 2.05, 3.65, 3.75, 2.43, 2.95, 2.97, 3.39, 2.96, 2.35, 
2.55, 2.59, 2.03, 1.61, 2.12, 3.15, 1.08, 2.56, 1.80, 2.53. 
 
The application is presented where the WM distribution is 
compared with other related models. The related models 
are Monsef distribution, Weibull distribution, Gamma 
distribution and Exponential Power distribution. To 
compare the goodness of fit, the information criteria AIC 
= -2 log L+2c, BIC = -2logL + c log n and the Kolmogrov-
Smirnov statistic are used, where c is the number of 
parameters and n is the sample size (Alizadeh et al., 
2017). 
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Table 2. Fitted estimates for different distributions. 

 

Model Parameter -Log likelihood AIC BIC K-S statistic 

WM 
ˆ 2.877   

90.6934 185.387 189.766 0.13076 
6.511k   

      

Monsef ˆ 0.8332   114.421 230.843 233.033 0.25059 

      

Gamma 
ˆ 0.794   

168.049 340.099 344.478 0.55123 
11.79k   

      

Weibull 
ˆ 1.4059   

306.402 616.805 621.184 0.95640 
4.847k   

      

Exponential Power 

ˆ 0.990   

1173.14 2352.29 2358.86 0.93681 0.901k   

0.085   
 
 
 

Table 3. Fitted estimates for different distributions. 
 

Model Parameter -Log likelihood AIC BIC K-S statistic 

WM 
ˆ 0.049   

543.524 1091.05 1096.55 0.1177 
0.194k   

      

Monsef ˆ 0.069   551.809 1105.62 1108.37 0.1790 

      

Exponential ˆ 0.023   549.926 1101.85 1104.61 0.1349 

      

Lindley ˆ 0.101   631.848 1265.70 1268.45 0.3447 

 
 
 
The daily ozone measurements data set 
 
These data are used to compare the WM distribution with 
Monsef, Exponential and Lindley distributions (Lindley, 
1958). The following data are the daily ozone 
measurements in New York between May and 
September 1973 as reported by Ghitany et al, (2008). 
 

41, 36, 12, 18, 28, 23, 19, 8, 7,16, 11, 14, 18, 14, 34, 6, 
30, 11, 1, 11, 4, 32, 23, 45, 115, 37, 29, 71, 39, 23, 21, 
37, 20,12, 13, 135, 49, 32, 64, 40, 77, 97, 97, 85, 10, 27, 
7, 48, 35, 61, 79, 63, 16, 80, 108, 20,52, 82, 50, 64, 59, 
39, 9, 16, 78, 35, 66, 122, 89, 110, 44, 28, 65, 22, 59, 23, 
31, 44, 21, 9,45, 168, 73, 76, 118, 84, 85, 96, 78, 73, 91, 
47, 32, 20, 23, 21, 24, 44, 21, 28, 9, 13, 46,18, 13, 24, 
16, 13, 23, 36, 7, 14, 30, 14, 18, 20.  
 

The -Log likelihood, AIC and BIC values, and K-S statistic 

are presented in Table 3. 

 
 
Conclusion 
 
In the present paper, a new two-parameter distribution is 
introduced that was obtained from the idea of weighted 
distributions. Some of its mathematical properties are 
studied. The proposed distribution is applied on two data 
sets that demonstrated to provide a better fit than other 
related models. This is also supported by the Probability–
Probability (P–P) plots presented in Figure 4 and Figure 
5.  

The distributional results developed in this article 
should find numerous applications in the physical and 
biological sciences and, in particular, in reliability theory 
and survival analysis. 
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(a) Fitted Monsf Distribution Function (b) Fitted WM Distribution Function 

 
 

(c) Fitted Gamma Distribution Function  (d) Fitted Weibull Distribution Function 

                                              

                                                   (e) Fitted Exponential Power Distribution Function 

 
 

 

Figure 4. P–P plots for fitted (a) Monsf, (b) WM, (c) Gamma, (d) Weibull distributions and (e) Exponential Power Distribution. 
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(a) Fitted Monsf Distribution Function (b) Fitted WM Distribution Function 

  

(c) Fitted Exponential Distribution Function (d) Fitted Lindley Distribution Function 

 
 

 

Figure 5. P–P plots for fitted (a) Monsf, (b) WM, (c) Exponential and (d) Lindley distributions. 
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