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Proposed paper gives a secure key exchange scheme using block upper triangular matrices of higher 
order. By using this method it is possible to generate keys of large orders without the need of large 
primes thereby avoiding the common ciphertext attacks. The element used for generating shared key is 
the element of (1, 3) block of the matrix which depends upon the elements of (1, 2) as well as on the (2, 
3) blocks thereby increasing the hardness of the problem and providing greater security. Moreover our 
proposal is compared with the method proposed by Alvarez et al. (2009)  
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INTRODUCTION 
 
With the invention of the World Wide Web and its rapid 
spread, the need for authentication and secure commu-
nication became still more acute. The introduction of the 
public key cryptography (PKC) by Diffie and Hellman 
(1976) entirely changed the secure communications. In 
PKC scheme, a key pair consisting of a public and a 
private (secret) key is selected so that the problem of 
deriving the private key from the corresponding public 
key is equivalent to solving a computational problem that 
is believed to be intractable. The discrete logarithm 
problem (DLP) Menezes and Wu (1997) and Stallings 
(2003), is one such problem upon which the public key 
crypto-systems are built.  

Thus efficiently computable groups where the DLP is 
hard to break are very important. PKC solves the key 
exchange problem of establishing a common key bet-
ween two parties that may have never met. It also finds 
use in specialized algorithms for digital signatures and 
message authentication. Many key exchange protocols 
have been proposed since the DH protocol was proposed 
which is most popularly used. In this paper we have 
defined a group of block upper  triangular  and  derived  a 
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a key exchange protocol which can be used for 
exchanging keys with greater security. Unlike the key 
exchange scheme proposed by Alvarez et al. (2005, 
2008, 2009), our proposed scheme uses the element of 
the (1, 3) block of the matrix which depends upon the 
elements of (1, 2) as well as on the (2, 3) block thereby 
increasing the hardness of the problem and providing 
greater security. 
 
 
DESCRIPTION OF THE SYSTEM 
 
Given p a prime number and r, s, t ∈Z+ let Glr(Zp), Gls(Zp) 
and Glt(Zp) represent invertible matrices of order r×r, s×s 
and t×t respectively, Zp  being the set of integers modulo 
p Koblitz (1987). Further let matr×s(Zp), matr×t(Zp) and 
mats×t(Zp) denote matrices of size r×s, r×t and s×t 
respectively also with elements in Zp. We define a set of 
block upper triangular matrices. 
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Theorem 1 
 
The set � forms a non-abelian group with respect to 
multiplication of matrices. 
 
 
Proof 
 
Closure and associative: Obvious by the definition. 
 
Identity: The identity element is 
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Ir, Is and It being Identity matrices of order r × r, s × s and 
t × t respectively. 
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Also for M1, M2 ∈  Θ , M1M2 � M2M1. 
 
 
Theorem 2 
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then for any non negative integer h  
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Particular case  
 
If X = 0 or Z = 0, then 
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By induction method on h, for h = 2 
 
we have 
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where X(2) = AX + XB, Y(2) = AY + YC + XZ, Z(2) = BZ + 
ZC   which is true. 
 
Assuming that the above equations are true for h - 1, 
 

So that Mh-1 = 

�
�
�

	




�
�
�

�



−

−−

−−−

1

)1(1

)1()1(1

00
0

h

hh

hhh

C

ZB

YXA

 
 
We prove it for h.  
 

Now,   Mh = M.Mh-1   = 
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Considering the term AY(h-1) + XZ(h-1) + YCh-1 using 
equations (2), (3) and (4) we have 
 
 AY (h-1) + XZ(h-1) + YCh-1 
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which is similar to equation (4). Equations (2) and (3) can 
be proved in the same way.  
 
 
Proof of particular case  
 
If either X or Z = 0 then Y(h) = AY(h-1) + 0 + YCh-1  
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which is analogus to Equation (5). This expression is 
similar to X(h) as obtained by  Alvarez et al. (2005,2008). 
Hence the proposed method can be considered as an 
extension of Alvarez et al. (2008, 2009), with increased 
hardness and security. Expressions (2) and (3) can be 
proved in the same way. 
 
 
Corollary (1) 
 
If t be any integer such that 0 � t � h, then by easy 
computation we can obtain 
 
X(h) = At X(h-t) +X(t) Bh-t, Y(h) = At Y(h-t) + X(t) Z(h-t) + Y(t) Ch-t,  
 
Z(h) = Bt Z(h-t) + Z(t) Ch-t. 

 
 
 
 
In particular if t = 1 
 
Y(h) = AY(h-1) + XZ(h-1) + YCh-1. 
 
 
GENERATION OF HIGHER ORDER ELEMENTS 
 
To get the orders of elements sufficiently large we use 
the concept of primitive polynomials as given by Odoni 
and Vardharajan (1984). 
 
Let f(x) = a0 + a1x + a2x

2  + ....+ an-1x
n-1  + xn 

 
be a monic polynomial in Zp[x] whose companion n × n 
matrix is given by 
 

A  = 

�
�
�
�
�
�
�
�

	




�
�
�
�
�
�
�
�

�



−−−−− −− 12210 ...
10...000
01...000

00...100

00...010

nn aaaaa

������

. 
 
If f is a primitive polynomial in Zp[x] then the order of the 

matrix A  is equal to the order of any root of f in Fp
n and 

the order of A  divides pn-1.Moreover assuming that f is a 
primitive  polynomial in Zp[x] the order of   is exactly pn-1.  

We define  
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proposed by Odoni where  A  is the companion matrix of 

fi. The order of each block iA  is pn
i -1 for i =1, 2...k. 

Therefore the order of A  is  
lcm (pn

1 -1, pn
2
 -1,... , pn

k  -1). 
 
If Q is any invertible matrix then A can be defined as A = 

Q AQ-1 with the same order as A  

               

 
Let f(x) = a0 + a1x + a2x

2 + …………+ar-1x
r-1+xr,  

      
      g(x) = b0 + b1x + b2x

2+…………+bs-1x
s-1+xs, 

      
      h(x)= c0 + c1x + c2x

2 +………….. +ct-1x
t-1+xt,        

 

be primitive polynomials in Zp[x] and CBA ,,  be the 
corresponding   companion    matrices.   Let  Q,  R,  S  be  



Pathak and Sanghi.293 
 
 
 

Table 1. Values of order of M in bits for large values of p. 
 

r s t p=250bits p=280bits p=2100bits 
2 3 5 2400 2640 2800 

3 4 7 2600 2960 21200 

3 5 8 2700 21120 21400 

4 5 9 2800 21280 21600 

5 6 11 21000 21600 22000 

 

 

Table 2. Values of order of M in bits for small values of p. 
 

r s t p=3bits p=7bits p=11bits 
31 32 29 2145 2230 2302 

47 48 41 2219 2348 2457 

60 61 59 2279 2445 2584 

130 131 127 2605 2963 21264 

216 217 207 21004 21599 22099 

 
 
 

Table 3. Comparison of o(M) by Alvarez et.al and proposed method. 
 

p(bits) r s t o(MA)bits o(MP) bits 
5 31 32 29 2145 2209 

13 130 131 127 2963 21429 

29 216 217 207 22099 23059 

2100 3 4 7 2600 21200 

2160 4 5 9 21280 22560 

2200 5 6 11 22000 24000 

 
 
 
invertible matrices and let   
 

111 ,, −−− === RCRCQBQBPAPA  
 
Then the order of M ∈ Θ   is given by 
 
o(M)   =  lcm (pr -1, ps -1, pt -1) 
 
which will be maximum if pr -1, ps-1 and pt -1are relatively 
prime. 

Tables 1 and 2 gives the values of order of M in bits 
obtained for small and large values of p. In Table 3 
column o(MA) gives the order of the matrix M obtained by 
Alvarez et al. (2009), for different values of p, r and s and 
the column o(MP) gives the values obtained by our 
proposed method for different values of p, r, s and t. For 
example for p = 2200 bits by taking r = 5 and s = 6 the 
order of the matrix obtained by Alvarez et al. (2005) is 
22000 bits which is indeed very large but by adding a 
matrix of order t = 11 the order of M obtained by our 
proposed method is 24000 which is double the value 
obtained by Alvarez et al. (2009) 

KEY EXCHANGE SCHEME 
 
The two parties Alice and Bob who wish to exchange 
their secret data first generate a shared key for which 
they perform the following steps. 
 
1. First Alice and Bob agree on two square matrices  
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 of orders m1 and m2  respectively. 
2. Alice generates two private keys r, s ∈Z+ where 1 � r � 
m1, 1 � s � m2   computes  C = M1
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and  sends C to Bob as her public key. 

3. Bob also generates private keys 1 � u � m1 and 1 � v � 

m2  computes  
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 and  sends D as his public key. 

4. Alice calculates Ka = A1
rADY2

(s) + (A1
rXD + X1

(r)BD)Z2
(s) + 

(A1
rYD+X1

(r)ZD+Y1
(r)CD)C2

S 

5. Bob calculates  Kb = A1
uACY2

(v) + (A1
uXC + X1

(u)BC)Z2
(v)  

+ (A1
uYC+X1

(u)ZC+Y1
(u)CC)C2

v 

 
 

Shared key is Ka = Kb 
 
 
Theorem 3 
 
With the above notation Ka = Kb

 
 
 
Proof 
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 Hence Ka = Kb. 
 

Data encryption and decryption 
 
1. Alice encrypts the message in the form of matrices �1 
and �2 of order r×s such that    
 
� = (�1 + �2) mod 2. 
 
Here the message � is broken into 2 matrices �1 and �2 
in which the integers are encoded as follows. 1 in �1 is 
encoded as 1+0 or 0+1 so that 1 and 0 are put in two 
different matrices �1 and �2. Similarly 0 in � is encoded 
as 1+1 so that each 1 is entered in �1 and �2. 
2. Generates the matrices  
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3. Computes the cipher text �1 = M1

rT1, �2 = M1
sT2, r and 

s being the private keys of Alice and sends this to Bob. 
4. Bob computes �1M2

u and 
�2M2

v by taking u and v as his 
private key and sends it back to Alice. 
5. Alice computes M1

-r
�1M2

u and M1
-s
�2M2

v and sends 
T1M2

u and T2M2
v to Bob. 
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Table 4. Execution time for different sizes. 
 

r s t p o(M)bits Time(s) 
2 3 271 5167 1024 1.54 
2 3 293 3197 1024 1.7 
3 5 297 3127 1024 1.85 
3 5 319 2567 1024 1.96 
5 7 319 1867 1024 2.11 
5 7 397 1237 1024 2.41 

 
 
 
6. Bob finally calculates T1M2

uM2
-u = T1 and T2M2

vM2
-v = T2 

gets the blocks �1 , �2 and the shared key Ka . 
7. Bob compares Ka = Kb and if this is true decodes the 
message (�1   + �2) mod 2 = �. 
 
Table 4 and Figure 1 give the execution time required for 
calculating the values of order of M. The time is 
calculated by using gmp library by taking the values of r, 
s, t and the required values of p for getting the order of 
about 1024 bits which is the minimum key size for being 
secured.  
 
 
Security analysis 
 
Tables 1 and 2 show that matrices of very large orders 
greater than 1024 bits can be generated easily by using 
small primes and hence the present scheme is infeasible 
against the Brute force attacks. 

Menezes and Wu (1997), gave he algorithm for the 
cryptanalysis of the protocols based on matrix powers in 
which the discrete logarithm problem � = Mr can be 
broken into simpler discrete logarithms over finite fields. 
This concept cannot be applied to this scheme as simple 
powers of matrices are not used as public key instead 
product of powers of two different matrices   C = M1

rM2
s is 

published. 
By the Climent et al. (2007) technique, based on 

Cayley Hamilton theorem the private keys can be 
retrieved by solving the DLP in a finite field only if the 
matrices M1 and M2 share a common eigenvalue. It can 
be proved that this technique is also invalid for our 
present scheme. 
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where n= r + s+ t Then the characteristic polynomials of 
the matrices M1  and M 2  are given by )(
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Figure 1. Execution time for different sizes. 
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Consequently we get  

A1
h  = b0  + b1 A1 + b2A1

2 +........+bn-1A1
n-1, 

B1
h  = b0  + b1 B1 + b2B1

2 +........+bn-1 B1
n-1, 

C1
h  = b0  + b1 C1 + b2C1

2 +........+bn-1 C1
n-1, 

Y1
(h)  = b1Y1 + b2Y1

(2) + .......+bn-1Y1
(n-1). 

 

So the problem of getting private keys r, s from the public  

key  C = M1 
r M2

s   in the resent scheme is similar to 

solving the linear equations 

M1
r = c0I+ c1M1 + c2M1

2+ .....+ cn-1M1
n-1, 

M2
s = d0I+ d1M2 + d2M22+ .....+ dn-1M2

n-1, 

c0, c1, ... c n-1, d0, d1,....,dn-1, M1
r  and M2

s being unknown.  

 

CONCLUSION 
 
In this paper we have proposed a new key exchange 
scheme and data encryption method based on block 
matrices. For this purpose we have defined a non abelian 
group of block upper triangular matrices of higher order. 
The main purpose of this scheme is to increase the 
hardness of the problem and provide greater security. We  
 
 
 

can generate matrices of very high orders by using very 
small values of p (not necessarily primes) thereby 
avoiding the common attacks. The scheme is also 
analyzed against the attacks based on Cayley Hamilton 
theorem. 
 
 
REFERENCES 
 
Alvarez R, Tortosa L, Vicent JF, Zamora (2005). A Public Key 

Cryptosystem based on Block upper Triangular Matrices. WSEAS 
Information security and Privacy, pp. 163-168. 

 Alvarez R, Tortosa L, Vicent JF, Zamora (2009). Analysis and design of 
a secure key exchange scheme. Inf. sci., 179:  2014-2021. 

Alvarez R, Ferrandez F, Vicent JF, Zamora (2006). Applying quick 
Exponentiation for block upper triangular matrices. Appl. Math. 
Comput., 183: 729- 737. 

Alvarez R, Vicent JF, Zamora A (2008). Matricial public key 
cryptosystem with digital signature. WSEAS Trans. Math., 4: 195-
204. 

Climent J, Gorla E, Rosenthal J (2007). Cryptanalysis of the CFVZ 
cryptosystem. Advances in Mathematics of Communications. 1: 1-11. 

Diffie W, Hellman (1976). New directions in Cryptography. IEEE Trans. 
Inf. Theory, 22: 644-654. 

Koblitz N (1987). A Course in Number Theory and Cryptography.  
Springer-Verlag. 

Menezes A Wu YH (1997). The discrete logarithm problem in gl(n,q). 
Arts Combinatoria, 47: 22-32.  

Odoni RWK, Varadharajan V, Sanders PW (1984). Public Key 
Distribution in Matrix Rings. Electron. Lett., 20: 386-   387. 

Stallings W (2003). Cryptography and Network Security. Principles and 
Practice, Third Edition., Prentice Hall, New Jersey. 

 


