Full Length Research Paper
References
Barboteu M, Bartosz K, Kalita P (2013). An analytical and numerical approach to a bilateral contact problem with nonmonotone friction. International Journal of Applied Mathematics and Computer Science 23(2):263-276. |
|
Barboteu M, Cheng XL, Sofonea M (2016). Analysis of a contact problem with unilateral constraint and slip-dependent friction Mathematics and Mechanics of Solids 21(7)79-811. |
|
Capatina A (2014). Variational Inequalities and Frictional Contact Problems. Advances in Mechanics and Mathematics, volume 31. Springer, New York. |
|
Ciarlet PG (1978). The Finite Element Method for Elliptic Problems. North Holland, Amsterdam. |
|
Duvaut G, Lions JL (1972). Les inéquations en Mécanique et en Physique, Dunod, Paris. |
|
Eck C, Jarusek J, Krbec M (2015). Unilateral Contact Problems: Variational Methods and Existence Theorems, Pure Applied Mathematics, 270, Chapman/ CRC Press, New York. |
|
Eck C, Jarusek J, Stara J (2013). Normal compliance contact models with finite interpenetration. Archive for Rational Mechanics and Analysis 208(1):25-57. |
|
Fichera G (1964). Problemi elastostatici con vincoli unilaterali. II. Problema di Signorini con ambique condizioni al contorno, Mem. Accad. Naz. Lincei 8(7):91-140. |
|
Han W, Reddy BD (1995). Computational plasticity: the variational basis and numerical analysis. Computational Mechanics Advances 2:283-400. |
|
Han W, Reddy BD (1999). Plasticity: Mathematical Theory and Numerical Analysis, Springer-Verlag, New York. |
|
Han W, Sofonea M (2002). Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity, Studies in Advanced Mathematics 30, American Mathematical Society and International Press, Providence. |
|
Haslinger J, Hlavácek I, Necas J (1996). Numerical methods for unilateral problems in solid mechanics. In: Lions, J.-L., Ciarlet, P. (eds.) Handbook of Numerical Analysis, IV, 313-485 North-Holland, Amsterdam. |
|
Jarusek J, Sofonea M (2008). On the solvability of dynamic elastic-visco-plastic contact problems. Zeitschrift fur Angewandte Matematik Und Mechanik (ZAMM) 88:3-22. |
|
Kikuchi N, Oden JT (1988). Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, SIAM, Philadelphia. |
|
Kinderlehrer D, Stampacchia G (2000). An Introduction to Variational Inequalities and their Applications. Classics in Applied Mathematics 31, SIAM, Philadelphia. |
|
Panagiotopoulos PD (1985). Inequality Problems in Mechanics and Applications, BirkhÄauser, Boston. |
|
Rochdi M, Shillor M, Sofonea M (1998). Quasistatic viscoelastic contact with normal compliance and friction. Journal of Elasticity 51(2):105-126. |
|
Signorini A (1933). Sopra alcune questioni di elastostatica. Atti della Società Italiana per il Progresso delle Scienze. |
|
Sofonea M, Matei A (2012). Mathematical Models in Contact Mechanics. London Mathematical Society Lecture Note Series 398, Cambridge University Press, Cambridge. |
|
Sofonea M, Souleiman Y (2015). Analysis of a Sliding Frictional Contact Problem with Unilateral Constraint. Mathematics and Mechanics of Solids 22(3):324-342. |
|
Sofonea M, Souleiman Y (2016). A Viscoelastic Sliding Contact Problem with Normal Compliance, Unilateral Constraint and Memory Term. Mediterranean Journal of Mathematics 13:2863-2886. |
|
Sofonea M, Xiao Y (2016). Fully, history-dependent quasivariational inequalities in Contact Mechanics. Applicable Analysis 95(11):2464-2484. |
Copyright © 2025 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0