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We proposed earlier that the equation of the exponential smoothing method (ESM) is equivalent to (1,1) 
ARMA model equation, a new method of estimating the smoothing constant in the exponential 
smoothing method which satisfied the minimum variance of forecasting error. Generally, the smoothing 
constant is selected arbitrarily, but in this paper, we utilize the above theoretical solution. Firstly, we 
estimate the ARMA model parameter and then estimate the smoothing constants. Thus, the theoretical 
solution is derived in a simple way and it may be utilized in various fields. Furthermore, combining the 
trend removal method with this method, we aim to improve forecasting accuracy. An approach to this 
method is executed in the following method. Trend removal by the combination of linear, 2nd order non-
linear function and 3rd order non-linear function is executed on the stock market price data of J-REIT 
(Japan Real Estate Investment Trust) for office type. Genetic algorithm is utilized to search optimal 
weights for the weighting parameters of linear and non-linear function. For the comparison, monthly 
trend is removed after that. Theoretical solution of the smoothing constant of ESM is calculated for 
both the monthly trend removal data and the non monthly trend removing data. Then the forecasting is 
executed on these data. This new method shows that it is useful for the time series that has various 
trend characteristics. The effectiveness of this method should be examined in various cases. 
 
Key words: Minimum variance, exponential smoothing method, forecasting, trend, genetic algorithm. 

 
 
INTRODUCTION 
 
Many methods for time series analysis have been 
presented such as Autoregressive model (AR Model), 
Autoregressive Moving Average Model (ARMA Model) 
and Exponential Smoothing Method (ESM) (Jenkins, 
1994; Brown, 1963; Tokumaru et al., 1982; Kobayashi, 
1992). Among these, ESM is said to be a practical simple 
method. 

For this method, various improving methods such as 
adding compensating item for  time  lag,  coping  with  the  
 
 
 
*Corresponding author. E-mail: y-ishii@oiu.jp. Tel: +81-72-858-
1616. Fax: +81-72-858-0897. 

time series with trend (Winters, 1984), utilizing Kalman 
Filter (Maeda, 1984), Bayes Forecasting (West and 
Harrison, 1989), adaptive ESM (Ekern, 1982), exponen-
tially weighted Moving Averages with irregular updating 
periods (Johnston, 1993), making averages of forecasts 
using plural method (Makridakis and Winkler, 1983) are 
presented. For example, Maeda

 
(1984) calculated 

smoothing constant in relationship with S/N ratio under 
the assumption that the observation noise was added to 
the system. But he had to calculate under supposed 
noise because he could not grasp observation noise. It 
can be said that it does not pursue the optimum solution 
from the very data themselves which should be derived 
by those  estimations.  Ishii  (1991)

  
pointed  out  that  the 



 
 
 
 
optimal smoothing constant was the solution of infinite 
order equation, but he did not show the analytical 
solution. Based on these facts, we proposed a new 
method of estimating smoothing constant in ESM before 
(Takeyasu, 2002, Takeyasu and Nagao, 2008). Focusing 
that the equation of ESM is equivalent to (1,1) order 
ARMA model equation; a new method of estimating 
smoothing constant in ESM was derived. 

In this paper, utilizing the above method, a revised 
forecasting method is proposed. In making forecast such 
as stock market price data, trend removing method is 
devised. 
In the application, the following five typical stocks are 
selected in which investment is concentrated on office 
rental field: 
 

･Nippon Building Fund Inc. "NBF" 

･Japan Real Estate Investment Corporation "JRE" 

･Global One Real Estate Investment Corp "GOR" 

･NOMURA REAL ESTATE OFFICE FUND, INC ("NOF") 

･Daiwa Office Investment Corporation ("DOI") 
 

Forecasting is executed on these data. This is a revised 
forecasting method. Variance of forecasting error of this 
newly proposed method is assumed to be less than those 
of previously proposed methods. The rest of the paper is 
organized as follows. In section 2 (Description of ESM 
using ARMA model), ESM is stated by ARMA model and 
estimation method of smoothing constant is derived using 
ARMA model identification. The combination of linear and 
non-linear function is introduced for trend removing in 
section 3 (TREND REMOVAL METHOD). The monthly ratio is 
referred to in section 4 (MONTHLY RATIO). 
Measuring method of forecasting accuracy is exhibited in 
5 (FORECASTING ACCURACY). GA model to search 
optimal weights for the weighting parameters of liner and 
non-linear function is introduced in 6 (SEARCHING 

OPTIMAL WEIGHTS UTILIZING GA). Forecasting is executed in 
section 7 (NUMERICAL EXAMPLE), and 
estimation accuracy is examined. 
 
 

Description of ESM using ARMA model (Takeyasu 
and Nagao, 2008)

 
 

 

In ESM, forecasting at time t +1 is stated in the following 
equation. 

 

 tttt xxxx ˆˆˆ
1                                                   (1)

 
 

  tt xx ˆ1                                                                    (2)
 

 

Here, 

:ˆ
1tx

 forecasting at 1t  

:tx
 realized value at t  
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:  smoothing constant  10   
 (2) is re-stated as: 
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By the way, we consider the following (1,1) order ARMA 
model. 

 

11   tttt eexx                                                   (4) 

 

Generally, 
 qp,  order ARMA model is stated as: 
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Here, 

 :tx
 Sample process of Stationary Ergodic Gaussian 

Process  tx   ,,,2,1 Nt   

 te : Gaussian White Noise with 0 mean 
2

e
variance 

 
MA process in (5) is supposed to satisfy convertibility 
condition. 

Utilizing the relation that: 

 

  0,, 21  ttt eeeE
 

 
we get the following equation from (4). 
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Operating this scheme on t +1, we finally get: 
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If we set 
 1

, the above equation is the same with 
(1), that is, equation of ESM is equivalent to (1,1) order 
ARMA model. 

Comparing (4) with (5) and using (1) and (7), we get, 

 


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b
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                                                                  (8) 

 
From the above, we can get estimation of smoothing 
constant  after  we  identify the  parameter of  MA  part  of  
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ARMA model. But, generally MA part of ARMA model 
becomes non-linear equations which are described 
below. 
 
Let (5) be: 
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We express the autocorrelation function of tx~
 as r k

~
 and 

from (9), (10) we get the following non-linear equations 
which are well known (Tokumaru et al., 1982). 
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For these equations, recursive algorithm has been 
developed. In this paper, parameter to be estimated is 

only b1 , so it can be solved in the following way. 
From (4) (5) (8) (11), we get: 
 

 
2

11

22

10

1

1

~

1~

1

1

1

e

e

br

br

b

a

q

















                                                     (12) 

 

If we set: 
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the following equation is derived. 
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We can get b1  as follows, 
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In order to have real roots, 1 must satisfy, 
 
 
 
 

2

1
1                                                                   (16)

 
 

As 
 

11  b  

1b
 is within the range of 

 

01 1  b
 

 

Finally we get, 
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which satisfy the above condition. Thus we can obtain a 
theoretical solution by a simple way. 
 
 

TREND REMOVAL METHOD 
 

As ESM is a one of a linear model, forecasting accuracy 
for the time series with non-linear trend is not necessarily 
good. How to remove trend for the time series with non-
linear trend is a big issue in improving forecasting 
accuracy. In this paper, we devise a way to remove this 
non-linear trend by utilizing non-linear function. 

As trend removal method, we describe linear and non-
linear function, and the combination of these. 
 
 

Linear function 
 

We set: 
 

11 bxay                                                             (18) 

 

as a linear function, where x  is a variable, for example, 

time and 
y

 is a variable, for example, stock market price, 

1a
 and 1b

 are parameters which are estimated by using 
least square method. 
 
 

Non-linear function 
 

We set: 
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as a 2nd and a 3rd order non-linear function. 
),,( 222 cba

and 
),,,( 3333 dcba

 are also parameters for 2nd and 3rd 
order non-linear functions which are estimated by using 
least square method. 
 

 

The combination of a linear and a non-linear function 
 

We set: 
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1321                                                          (22) 

 

as the combination of linear and 2nd order non-linear and 
3rd order non-linear function. Trend is removed by 
dividing the original data by (21). The optimal weighting 

parameters 1α , 2α , 3α
are determined by utilizing GA. GA 

method is precisely described in 6(SEARCHING 
OPTIMAL WEIGHTS UTILIZING GA). 
 
 
MONTHLY RATIO 
 

For example, if there is the monthly data of L years as 
stated below, 
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where 
Rxij   in which 

j
 means month and i  means 

year and ijx
 is shipping data of i-th year, j-th month, then 

monthly ratio jx~
 
 12,,1j  is calculated as follows, 
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Monthly trend is removed by dividing the data by (23). 
Numerical examples for both the monthly trend removal 
case and the non-removal case are discussed in 7 
(NUMERICAL EXAMPLE). 
 
 
FORECASTING ACCURACY 
 
Forecasting accuracy is measured by calculating the 
variance of the forecasting error. 
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Variance of forecasting error is calculated by: 
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Where, forecasting error is expressed as: 
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SEARCHING OPTIMAL WEIGHTS UTILIZING GA 
 
Definition of the problem 
 

We search 1α , 2α , 3α
 of (21) which minimizes (24) by 

utilizing GA. By (22), we only have to determine 1α  and 

2α . 
2

 ((24)) is a function of 1α  and 2α ; therefore we 

express them as ),( 21

2  . Now, we pursue the 
following: 
 

Minimize:
),( 21

2                                                  (27) 
 

Subject to: 1,10,10 2121   　　　　　　  
 
We do not necessarily have to utilize GA for this problem 
which has small member of variables. Considering the 
possibility that variables increase when we use logistics 
curve in the near future, we want to ascertain the 
effectiveness of GA. 
 
 

The structure of the gene 
 

Gene is expressed by the binary system using {0,1} bit. 
Domain of variable is [0,1] from (22). We suppose that 
variables are taken down to the second decimal place. As 
the length of domain of variable is 1-0=1, seven bits are 
required to express variables. The binary bit strings <bit6, 

～, bit0> is decoded to the [0,1] domain real number by 

the following procedures (Sakawa and Tanaka, 1995). 
 
Procedure 1: Convert the binary number to the binary-
coded decimal. 
 

                              (28) 
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Table 1. Corresponding table of the decimal, the binary and the real numbers. 

 

The 
decimal 
number 

The binary number The 
corresponding 

real number 
Position of the bit 

6 5 4 3 2 1 0 

0 0 0 0 0 0 0 0 0.00 

1 0 0 0 0 0 0 1 0.01 

2 0 0 0 0 0 1 0 0.02 

3 0 0 0 0 0 1 1 0.02 

4 0 0 0 0 1 0 0 0.03 

5 0 0 0 0 1 0 1 0.04 

6 0 0 0 0 1 1 0 0.05 

7 0 0 0 0 1 1 1 0.06 

8 0 0 0 1 0 0 0 0.06 

…        … 

126 1 1 1 1 1 1 0 0.99 

127 1 1 1 1 1 1 1 1.00 
 
 

 
Table 2. The gene structure. 

 

1α   
2α  

Position of the bit    

13 12 11 10 9 8 7  6 5 4 3 2 1 0 

0-1 0-1 0-1 0-1 0-1 0-1 0-1  0-1 0-1 0-1 0-1 0-1 0-1 0-1 

 
 
 

 

 
 

Figure 1. The flow of algorithm. 

Procedure 2: Convert the binary-coded decimal to the 
real number. 
 

    (29) 
 
The decimal number, the binary number and the 
corresponding real number in the case of 7 bits are 
expressed in Table 1. 

1 variable is expressed by 7 bits; therefore, 2 variables 
need 14 bits. The gene structure is exhibited in Table 2. 
 
 
The flow of algorithm 
 
The flow of algorithm is exhibited in Figure 1. 
 
 
Initial population 
 

Generate M  initial population. Here, 100M . 
Generate each individual so as to satisfy (22). 
 
 
Calculation of fitness 
 
First of all, calculate forecasting value. There are 36 
monthly data for each case. We use 24 data (1 to 24) and  

 

 

 

 

 

 

 

 

 

 

 

 

 

Start 

Exceed maximum  

generation? 

Selection 

Crossover 

Mutation 

End 

Generate Initial Population 

generation + 1 

Yes 

No 

Calculate Fitness 

The real number = (Left head starting point of the domain)  

   + 'X ((Right hand ending point of the domain) / ( 127  ))       (29) 



 
 
 
 

 
 

Figure 2. The flow of calculation of fitness. 

 
 
remove trend by the method stated in 3. Then we 
calculate monthly ratio by the method stated in 4. After 
removing monthly trend, the method stated in 2 is applied 
and Exponential Smoothing Constant with minimum 
variance of forecasting error is estimated. Then 1 step 
forecast is executed. Thus, data are shifted to 2nd to 25

th
 

and the forecast for 26th data is executed consecutively, 
which finally reaches forecast of 36th data. To examine 
the accuracy of forecasting, variance of forecasting error 
is calculated for the data of 25th to 36th. Final forecasting 
data are obtained by multiplying monthly ratio and trend. 
Variance of forecasting error is calculated by (24). 
Calculation of fitness is exhibited in Figure 2. 

Scaling (Iba, 2002) is executed such that fitness 
becomes large when the variance of forecasting error 
becomes small. Fitness is defined as follows: 
 

),(),( 21

2

21  Uf
                                       (30) 

 

Where U is the maximum of 
),( 21

2
 during the past 

W  generation. Here, W  is set to be 5. 
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Selection 
 
Selection is executed by the combination  of  the  general 
elitist selection and the tournament selection. Elitism is 
executed until the number of new elites reaches the 
predetermined number. After that, tournament selection is 
executed and selected. 
 
 
Crossover 
 
Crossover is executed by uniform crossover. Crossover 
rate is set as follows: 
 

7.0cP
                                                               (31) 

 
 
Mutation 
 
Mutation rate is set as follows: 
 

05.0mP
                                                             (32) 

 

Mutation is executed to each bit at the probability mP
;
 

therefore, all mutated bits in the population M become 

14MPm . 
 
 
NUMERICAL EXAMPLE 
 
Application to stock market price data 
 
The following five typical stocks are selected in which 
investment is concentrated on office rental field. 
 

･Nippon Building Fund Inc. "NBF" 

･Japan Real Estate Investment Corporation "JRE" 

･Global One Real Estate Investment Corp. "GOR" 

･NOMURA REAL ESTATE OFFICE FUND, INC.("NOF") 

･Daiwa Office Investment Corporation ("DOI") 

 
The above mentioned 5 companies for 2 cases (from 
January 2009 to December 2011) are analyzed. 
Furthermore, GA results are compared with the 
calculation results of all considerable cases in order to 
confirm the effectiveness of GA approach. First of all, 
graphical charts of these time series data are exhibited in 
Figures 3 to 7. 
 
 

Execution results 
 

GA execution condition is exhibited in Table 3. We made 
repetition10 times; the maximum, average and minimum 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Start 

End 

  count < The number 

    to be forecasted 

Calculate parameters of (21) 

Trend Removal 

Calculate monthly ratio 

Trend Removal by monthly ratio 

count + 1 

count=0 

Calculate the variance of forecasting error using 

25th to 36th forecasting and real data. 

No Yes 

Convert gene(the binary system) to α1,α2,α3(real number) 

Shift month and take 24 data 

Calculate fitness using the variance of  

forecasting error  

Calculate forecasting value using (1) and (17). Multiply 

monthly ratio and trend 
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Figure 3. Data of NBF. 

 
 
 

 
 
Figure 4. Data of JRE. 

 
 
 

 
 
Figure 5. Data of GOR. 

 

 

 
Table 3. Execution condition. 

 

GA execution condition 

Population 100 

Maximum generation 50 

Crossover rate 0.7 

Mutation ratio 0.05 

Scaling window size 5 

The number of elites to retain 2 

Tournament size 2 
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Figure 6. Data of NOF. 
 

 
 

 
 
Figure 7. Data of DOI. 

 
 

 
Table 4. GA execution results (Monthly ratio not used). 

 

Variable 
The variance of forecasting error Average of convergence 

generation Maximum Average Minimum 

NBF 1,088,146,306 1,088,146,306 1,088,146,306 4.9 

JRE 622,323,409 612,640,873 609,228,939 19.4 

GOR 1,884,674,063 1,878,367,620 1,877,666,904 16.7 

NOF 259,788,011 259,788,011 259,788,011 8.7 

DOI 245,057,177 239,710,519 237,419,094 6.8 
 

 
 

Table 5. GA execution results (Monthly ratio used). 

 

Variable 
The variance of forecasting error Average of convergence 

generation Maximum Average Minimum 

NBF 1,274,502,902 1,273,045,651 1,272,421,115 15.1 

JRE 1,385,530,597 1,385,530,597 1,385,530,597 10.4 

GOR 2,626,387,232 2,625,942,748 2,625,893,361 9.9 

NOF 570,750,000 570,750,000 570,750,000 18.1 

DOI 474,911,255 474,911,255 474,911,255 16.4 
 

 
 

of the variance of forecasting error and the average of 
convergence generation are exhibited in Tables 4 and 5. 

The case  of  monthly  ratio is not used is smaller than 
the case monthly ratio used in the variance of forecasting  
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Figure  8. Convergence process in the case of NBF (monthly ratio is not 

used). 
 
 

 
 
Figure 9. Convergence process in the case of NBF (Monthly ratio is used). 

 
 
 

 
 
Figure 10. Convergence process in the case of JRE (Monthly ratio is not used). 
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Figure 11. Convergence process in the case of JRE (Monthly ratio is 

used). 

 
 

 
 
Figure 12. Convergence process in the case of GOR (monthly ratio is not used). 

 
 
 

 

 
 
Figure 13. Convergence process in the case of GOR (Monthly ratio is used). 
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Figure 14. Convergence process in the case of NOF (Monthly ratio is not 
used). 

 
 
 

 
 
Figure 15. Convergence process in the case of NOF (Monthly ratio is used). 

 
 

 

 
 
Figure 16. Convergence Process in the case of DOI (Monthly ratio is not used). 
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Figure 17. Convergence process in the case of DOI (Monthly ratio is used). 

 
 

Table 6. Optimal weights and their genes (Monthly ratio is not used). 

 

Variable 
1  

2  3  
Position of the bit 

13 12 11 10 9 8 7 6 5 4 3 2 1 0 

NBF 0.00 0.83 0.17 0 0 0 0 0 0 0 1 1 0 1 0 0 1 

JRE 0.01 0.89 0.00 0 0 0 1 1 1 0 1 1 1 0 0 0 1 

GOR 0.74 0.01 0.25 1 0 1 1 1 1 0 0 0 0 0 0 0 1 

NOF 0.67 0.00 0.33 1 0 1 0 1 0 1 0 0 0 0 0 0 0 

DOI 0.54 0.00 0.46 1 0 0 0 1 0 0 0 0 0 0 0 0 0 

 
 
 

Table 7. Optimal weights and their genes (Monthly ratio is used). 
 

Variable 
1  

2  3  
Position of the bit 

13 12 11 10 9 8 7 6 5 4 3 2 1 0 

NBF 0.00 0.53 0.47 0 0 0 0 0 0 0 1 0 0 0 0 1 1 

JRE 0.00 0.89 0.11 0 0 0 0 0 0 0 1 1 1 0 0 0 1 

GOR 0.44 0.00 0.56 0 1 1 1 0 0 0 0 0 0 0 0 0 0 

NOF 0.37 0.00 0.63 0 1 0 1 1 1 1 0 0 0 0 0 0 0 

DOI 0.33 0.00 0.67 0 1 0 1 0 1 0 0 0 0 0 0 0 0 

 
 
 
error in every company. It may be because stock market 
price does not have definite seasonal trend in general. 
The minimum variance of forecasting error of GA 
coincides with those of the calculation of all considerable 
cases and it shows the theoretical solution. Although it is 
a rather simple problem for GA, we can confirm the 
effectiveness of GA approach. Further study for complex 
problems should be examined hereafter. 

Next, optimal weights and their genes are exhibited in 
Tables 6 and 7. 

In the case of monthly ratio not used, the combination 
of linear and 2nd+3rd order non-linear function model is 
best in GOR. On the other hand, the combination of 

linear and 3rd order non-linear function model is best in 
NOF and DOI. And the combination of linear and 2nd 
order non-linear function model is best in JRE and the 
combination of 2nd+3rd order non-linear function model 
is best in NBF. In the case of monthly ratio used, the 
combination of 2nd plus 3rd order non-linear function 
model is best in NBF and JRF. On the other hand, the 
combination of linear and 3rd order non-linear function 
model is best in GOR, NOF and DOI. Parameter 
estimation results for the trend of equation (21) using 
least square method are exhibited in Table 8 for the case 
of 1st to 24th data. 

Trend curves are exhibited in Figures 18 to 22.  
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Table 8. Parameter estimation results for the trend of equation (21). 
 

Variable 
1a  

1b  
2a  

2b  
2c  3a  

3b  
3c  

3d  

NBF -4,402 844,688 739 -22,882 924,771 21 -45 -14,881 906,426 

JRE 1,444 737,612 500 -11,055 791,776 5 310 -9,115 787,327 

GOR 135 646,399 400 -9,860 689,710 68 -2,153 16,187 629,986 

NOF -3,957 578,795 31 -4,722 582,110 137 -5,113 47,767 461,758 

DOI 2,667 184,915 -172 6,976 166,243 116 -4,512 51,268 64,685 

 
 
 

 
 

Figure 18. Trend of NBF. 

 
 
 
 

 
 
Figure 19. Trend of JRE. 

 
 
Calculation results of monthly ratio for 1st to 24th data 
are exhibited in Table 9. 

Estimation result of the smoothing constant of minimum 
variance for the 1st to 24th data is exhibited in Tables 10  
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Figure 20. Trend of GOR. 

 

 
 

 
 

Figure 21. Trend of NOF. 

 
 
 

 
 
Figure 22. Trend of DOI.  
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Table 9. Parameter estimation result of monthly ratio. 
 

Month 1 2 3 4 5 6 7 8 9 10 11 12 

NBF 1.078 0.981 1.030 1.001 1.000 0.975 1.017 0.986 0.988 0.989 0.975 0.983 

JRE 1.044 0.998 1.035 0.990 0.983 1.019 1.038 0.999 0.987 0.988 0.934 0.984 

GOR 1.083 0.988 1.002 0.921 0.958 1.018 1.065 1.029 0.979 0.946 0.974 1.037 

NOF 1.042 0.965 1.009 0.984 0.982 0.992 1.016 0.999 1.006 1.008 0.973 1.024 

DOI 0.971 0.825 0.845 0.998 0.954 1.066 1.143 1.160 1.112 1.046 0.923 0.957 
 
 
 

Table 10. Smoothing constant of minimum variance of equation (17) 

(Monthly ratio is not used). 
 

Variable ρ1 α 

NBF -0.1504 0.8460 

JRE -0.0441 0.9558 

GOR -0.2501 0.7320 

NOF -0.0185 0.9815 

DOI -0.3369 0.6126 
 
 
 

Table 11. Smoothing constant of minimum variance of equation (17) 
(Monthly ratio is used). 
 

Variable ρ1 α 

NBF -0.3266 0.6283 

JRE -0.4058 0.4877 

GOR -0.3099 0.6527 

NOF -0.5662 0.0800 

DOI -0.3789 0.5415 

 
 
 

to 11. 
Forecasting results are exhibited in Figures 23 to 27. 

 
 
REMARKS 
 
In all cases, that monthly ratio was not used had a better 
forecasting accuracy (Tables 4 and 5). JRE had a good 
result in 1

st
+2

nd
 order, NBF had a good result in 2

nd
+3

rd
 

order and GOR had  a  good  result  in  1
st
+2

nd
+3

rd
  order. 

NOF and DOI had a good result in 1
st
+3

rd
 order.

 

The minimum variance of forecasting error of GA 
coincides with those of the calculation of all considerable 
cases and it shows the theoretical solution. Although it is 
a rather simple problem for GA, we can confirm the 
effectiveness of GA approach. Further study for complex 
problems should be examined hereafter. 
 
 
Conclusion 
 
Based  on  the  idea   that  the   equation  of   exponential 
smoothing method (ESM) was equivalent to (1,1) order 
ARMA model equation, a new method of estimation of 

smoothing constant in the exponential smoothing method 
was proposed before by us which satisfied the minimum 
the variance of forecasting error. Generally, the 
smoothing constant was selected arbitrarily. But in this 
paper, we utilized the above stated theoretical solution. 
Firstly, we made an estimation of ARMA model parameter  
and  then estimated smoothing constants. Thus the 
theoretical solution was derived in a simple way and it 
might be utilized in various fields. 

Furthermore, combining the trend removal method with 
this method, we aimed to improve forecasting accuracy. 
An approach to this method was executed in the following 
method. Trend removal by a linear function was applied 
to the stock market price data of J-REIT for office type.  

The combination of linear and non-linear function was 
also introduced in trend removal. Genetic algorithm is 
utilized to search the optimal weight for the weighting par-
ameters of linear and non-linear function. For the 
comparison, monthly trend was removed after that. 
Theoretical solution of smoothing constant of ESM was 
calculated for both of the monthly trend removal data and 
the non monthly trend removal data. Then forecasting 
was executed on these data. The new method shows that 
it  is  useful  for  the  time  series  that  has  various  trend  
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Figure 23. Forecasting result of NBF. 

 
 

 
 

Figure 24. Forecasting result of JRE. 
 

 

 
 
Figure 25. Forecasting result of GOR. 
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Figure 26. Forecasting result of NOF. 

 

 

 
 
Figure 27. Forecasting result of DOI. 

 
 

 
characteristics. The effectiveness of this method should 
be examined in various cases. 
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