A new methodology for suppliers selection and order allocation

Kambiz Shahroudi¹ and Hajar Rouydel²

¹Department of Industrial Management, Islamic Azad University, Rasht Brunch, Rasht, Iran. ²Young Researchers Club, Rash Branch, Islamic Azad University, Rasht, Iran.

Accepted 31 January, 2012

One of the main factors in competitive environment is to reduce production costs. Selecting the right suppliers significantly reduces the purchasing costs and improves corporate competitiveness. That is why the cost of raw materials and components part constitutes the main cost of a product and most of the firms have to spend considerable amount of their sales revenue on purchasing. The aim of this research is to introduce an integrated model for supplier’s selection and order allocation in an automotive company. Therefore, the research was divided into two phases (conceptual modeling and mathematical modeling) with four steps. In conceptual modeling, in order to select the best suppliers, an integrated, Analytic Hierarchy Procees and Technique for Order Preference by Similarity to Ideal Solution (AHP-TOPSIS) approach was used. Hence, after library studies and interview with experts, managers and specialists in the supply chain management field, decision criteria were identified through brain storming which contains the main criteria and sub criteria of the selection process for suppliers. Then in mathematical modeling in order to allocate every selected supplier in conceptual modeling, a Multi-Objective Linear Programming (MOLP) model was used. As such, the objectives and subjectives of suppliers and the Automotive Company were identified. Results show that applying a two phase AHP-TOPSIS methodology aided the selection of the best suppliers. Also Automotive Company’s total costs were minimized with using a MOLP model.

Key words: Supply chain, analytical hierarchy process, supplier evaluation, technique for order preference by similarity to ideal solution (TOPSIS), multi-objective linear programming (MOLP).

INTRODUCTION

Increasing customer demands and diversity, technological advances in communications and information systems, competition in the global environment, reducing government regulations and increasing environmental awareness, have forced companies to accurately focus more on supply chain management. The term “chain management” is defined as an integration of activities related to preparation of raw materials, its conversion to intermediate goods and final products, and its final delivery to customers (Cebi and Bayraker, 2003). Generally, the primary goal of supply chain management will be to reduce supply chain risk, production costs, making the maximum revenue, improve customer’s service, optimize inventory levels, improve business processes which ends in increasing competitiveness, customer satisfaction and profitability (Boran and Genc, 2009). This chain started with the production of raw materials, equipment and components by suppliers and finally ends with consumption by consumers which will then create a strong relationship between suppliers, manufacturers and consumers (Chan, 2008). Since in many industries, more than 70% of the total cost to organizations is related to the cost of raw materials (Chuan, 2009) and companies are forced to spend a major portion of their revenues on buying raw materials, supply management is one of the most important issues of supply chain management.

*Corresponding author. E-mail: shahroudi@iaurasht.ac.ir. Tel: +989121374680.
Consequently, selection of appropriate supplier can significantly reduce purchase cost and improve companies’ competitive position (Cebi and Bayraker, 2003).

Basically, the issues related to supplier selection are of two types. The first type (single sourcing), in which a supplier is able to meet all buyers’ needs including demand rate, quality, and delivery time. In this condition, the management should just decide which supplier is the best? In type II (multiple sourcing) a supplier alone is not able to meet all needs of buyer and buyer must meet their demands through several suppliers. In this case, management should take two types of decisions: first, which suppliers are the best? And second, how much should be purchased from each supplier? (Demirtas and Ustun, 2008; Ting and Cho, 2008).

In many cases, organizations usually choose more than one supplier for their products, when faced with non-competence of one supplier to ensure continuity of supply. They can also compare prices and services from various suppliers during the period of time. Hence, in the present study, we discussed solving the selection of supplier in the state of multiple sourcing. Increasingly, the importance of selecting appropriate supplier, as a critical decision in supply chain management, lead organizations into different industries to use systematically formed models to choose suppliers and allocate orders to them. One of these industries is automobile manufacturing industry which had been significant progress in Iran during the recent years. The study is doing an automobile manufacturing company which despite spending energy, time and cost to select the appropriate suppliers, unfortunately, is faced with deficiencies and drawbacks in its supply chain. The main problems can be listed as following:

1. Assessment process in the company is being done step by step. In other words, it is not given an equal opportunity to suppliers in order to demonstrate their competency in all stages and if a supplier fails to obtain the required score in the first stage, it will be removed from competition cycle, while it may have high capability in later stages or vice versa.
2. All suppliers, regardless of the product type they produce, are being assessed together, while the determining factor varies from each product to the other (such as quality for product A and price for product B and so on).
3. Finally, the order rate to each selected supplier, is being determined solely based on scores earned during the assessment process in the sense that a supplier which obtains the highest score, and the highest amount of order will be assigned to it, while the supplier may not have the capacity to produce that order which in this case, they change the amount of order manually.

Therefore, the present study using the suggested model is done to remove these deficiencies and to answer two main research questions:

How to select suitable suppliers in order to meet company’s need?
How to determine the optimal amount of order to each selected supplier?

The research is done in the two phases, (conceptual modeling and mathematical modeling) and four steps that will explain more in the following.

LITERATURE REVIEW

Nowadays, supply chain management tries to obtain the long-term participation with suppliers and use fewer numbers but more reliable suppliers. Therefore, to choose appropriate suppliers is something more than just looking at the list of suppliers’ suggested prices and suppliers selection depends on to many qualitative and quantitative factors. Thus, wide multiple criteria decision-making approaches (MCDM) proposed for suppliers selection such as: Analytic Hierarchy Process (AHP), the process of network analysis (ANP), Artificial Neural Networks (ANN), Case-Based Reasoning (CBR), Data Envelopment Analysis (DEA), Genetic Algorithm (GA), Fuzzy Set Theory, Mathematical Programming (MP), Simple Multi–Attribute Rating Technique (SMART) and mixed technique. At least four journal articles have already reviewed the literature related to suppliers’ evaluation and selection models (Weber et al., 1991; Degraeve et al., 2000; De Boer et al., 2001; Ho et al., 2010).

Talluri and Narasimhan (2004) applied DEA model for sourcing effective suppliers. The approach was the same with the works of Narasimhan et al. (2001) except that they had used a simple efficiency index while Talluri and Narasimhan (2004) used statistical models and cross-efficiencies indicator in the classification of the various categories. Hong et al. (2005) formulated a mixed integer linear programming to solve supplier’s selection problem. This model was determined by the optimal number of suppliers and optimal order quantity which could maximize an income. In addition, changes in the supplier’s supply capacities and needs of customers during a period of time were studied. Percin (2006) proposed an integrated, Analytical Hierarchy prosess and Goal Programming (AHP-GP), approach to assess and select suppliers. At first, AHP was used to measure the relative importance of potential suppliers according to 20 criteria. Then, the weights were used as coefficients of five objective functions in GP model. This model also determined the optimal order quantity from the best suppliers; while supplier’s productive capacity was also examined. Amid et al. (2006) constructed a fuzzy multi-objective linear programming model to choose appropriate suppliers. This model was able to control the
ambiguity and inaccuracy of the input data, and help
decision-makers to find the optimal order quantity of each
supplier. In this model, three objective functions with
different weights and one algorithm was developed to
solve the model. Ramanathan (2007) reported that DEA
can be used to evaluate supplier’s performance apprais-
sals using qualitative and quantitative information
obtained by Total Cost of Ownership (TCO) and AHP
 technique. More exactly, the cost based on the concepts
total cost of ownership was used as the input, and
weights obtained by AHP model considered as output in
DEA model. Lau et al. (2006) developed an integrated
ANN and GA approach for supplier selection. ANN was
used for benchmarking the potential supplier with respect
to the four evaluating factors. After that, GA was deve-
loped to determine the best combination of suppliers. The
four evaluating criteria were used again in the fitness
function of GA. Saen (2007) suggested an integrated
AHP-DEA approach to evaluate and select suppliers that
somewhat were inconsistent. The experts stated that
many of the suppliers are not using their entries and
inputs completely to supply and produce outputs. In this
approach, AHP was used to determine the relative weight
of each supplier. Then DEA was applied to calculate the
relative efficiency of each supplier. Kull and Talluri (2008)
developed an integrated AHP-GP approach to evaluate
and select suppliers according to risk indexes and
product life cycles. In the proposed model, AHP was
used to evaluate suppliers according to the risk factors,
and according to this; some scores were given to the
suppliers and then GP model formulated to assess alter-
native suppliers based on the objectives of multiple risk
and various hard restrictions. Ho Lin (2009) proposed an
integrated Fuzzy Analytic Network Process (FANP)
approach and multi-objective linear programming for
suppliers selection and order allocation. In this approach,
four criteria including quality, price, delivery, and
technology were considered. Then, ANP specified the
priority option of suppliers with the study of interde-
pendence between criteria and its effect on the
evaluation and selection of suppliers. Because ANP was
just able to calculate definite data, the fuzzy set theory
was also used. In the last step, multi-objective
programming model were identified to determine the
amount of order according to the restriction of suppliers
and buyers.

There are also several articles that used the two
techniques of AHP and TOPSIS simultaneously (Onut
and Selin, 2008; Percin, 2008; Dagdeviren et al., 2009;
Gumus, 2009; Torfi et al., 2010). In all of the earlier
mentioned articles, researchers first designed their
hierarchical tree and then using the AHP technique deter-
mined the relative weights of indices and eventually using
TOPSIS technique dealt with rank available alternatives
in their model. Using a two-phase AHP and TOPSIS
methodology comes with several advantages. First, the
AHP technique is able to evaluate the hierarchical
structure, performing pairwise comparisons and consist-
tency ratio (CR) to determine correct judgments, while
TOPSIS does not provide such a possibility. In contrast,
TOPSIS technique is able to consider distances from the
best and worst answers due to relative proximity to the
optimal answer simultaneously and in addition find the
answer and prioritize other options, respectively. As a
result, first combining of these two models means to
benefit from both techniques (Dagdeviren et al., 2009).
Secondly, the speed of decision-making using two
techniques of the AHP and TOPSIS is higher as
compared to the other mathematical models such as
DEA, ANP, fuzzy logic, and genetic algorithm. Thus, the
proposed combination technique is a flexible and
convenient tool for decision-making under different
conditions (Gumus, 2009).

METHODOLOGY

The research was carried out in automotive industry. Overall, this
study was conducted in two phases (conceptual and mathematical
modeling) and four steps. In the first phase (conceptual modeling),
in order to answer the first question of the research, concerning
how to select best supplier(s), after reviewing the research
literature, interview with the experts, and survey the managers, in a
company custodian to automotive supply chain management group,
decision-making criteria were identified using brainstorming method
including criteria and sub-criteria affecting on suppliers selection.
Then, in order to calculate the weight of each indices and final
ranking of desired parts suppliers, integrated AHP-TOPSIS
techniques were used. In the second phase (mathematical
modeling), in order to answer the second question of the research
centering allocation quantity of orders to each supplier, multi-
objective linear programming model (MOLP) was used. First, the
multi-objectives of the company were identified then suppliers’ and
buyers’ constraints were considered. Finally the equations solved
by LINGO software and the optimum amount of order to each
supplier identified. Figure 1 shows the process of the research. The
first phase (conceptual modeling) includes three steps.

Conceptual modeling

Step 1: Identifying evaluation criteria and sub-criteria

In decision-making models, one of the most important parts is to
determine the criteria and measuring indicators. The selected
criteria and indicators for this purpose are important aspects
considered in measuring the characteristics of suppliers. In fact,
suppliers’ selection indices indicate the present status and
present/future supplier’s performance. Therefore, the design and
selection of indices as the input of decision-making model has a
direct impact on model efficiency. As in companies and
organizations, the criteria and sub-criteria affecting suppliers’
selection processes differs based on their objectives. In our case
study, automotive company used brainstorming in order to identify
criteria and sub-criteria, with regard to their strategic goals.
Therefore, the automotive company—in a meeting consists of 32
managers, experts and specialists in supply chain area identified
the criteria influencing the process of appropriate suppliers
selection due to their industry targets by using brain-storming
method. The criteria were identified in the form of three main criteria
and 10 sub-criteria as follows:

C1: Quality
D1: Standardization: To standardize the maker production process, as the first step to improve production process and to form process control program
D2: Packaging design: Projects for the first time are prepared or revised with the aim of increasing customer satisfaction.
D3: PPM (Part Per Million) customers: Measuring the number of returned parts per million delivered parts which is returned by automobile-maker.
D4: PPM after sales services: Measuring the number of returned parts per million delivered parts which returned by the final customer.
C2: Cost
D5: Price reduced rate: Ability of suppliers to reduce products prices at lower prices than the year before the contract or if possible maintaining proposed price in the current year.
D6: transportation cost: An expense related to transport products from origin to destination.
D7: Order cost
C3: Delivery
D8: On time delivery: Product delivery in time and date specified in the amount determined by the procurement unit.
D9: achieving over-supply: The ability to increase production because of the sudden increase in customer's demands.
D10: percentage of performance realization: Measuring the rate of realization of customer needs (automotive).

Step 2: Implementing AHP technique

AHP technique which was developed by Thomas (1980) is a powerful tool for solving complex problems of decision-making with regard to quantitative and qualitative criteria (Ting and Cho, 2008). According to the solution algorithm in this technique as shown in Figure 2, decision-making hierarchical structure is determined to simplify supplier selection. It should be noted that despite the frequency of the number of suppliers and parts, in order to test the model, some part makers who had the highest evaluation (grade A) was able to produce four parts with codes A, B, C, and D was selected.

After the hierarchical structure was drawn; in order to determine the criteria, and sub-criteria weights, a questionnaire concerning pairwise comparisons matrix was given to 42 managers, experts, and specialists in the field of supply chain management. Then, the data gathered from them was entered into specialized software of expert choice to calculate the weight of suppliers indices and to ensure the accuracy of judged and inconsistency rate. Because of smaller inconsistency rate from 0.1, the accuracy of judgments were confirmed. Table 1 shows the weights obtained for each of the criteria, sub-criteria, and the decision-making alternatives using the AHP technique.

Step 3: Implementation of TOPSIS technique

TOPSIS is a widely accepted model that was proposed by Huang and Yoon (1981), and was developed by Chen and Huang (1992). In this method, alternatives are ranked based on the shortest distance from the positive ideal solution and the farthest distance from the negative ideal solution. In this step, TOPSIS technique
play its role. The weight obtained by the AHP technique using Equations 1 and 2 as shown in Table 2 is converted to normalized weighted matrix. Equations 1 and 2 can be summarised as:

\[d_i^+ = \left(\sum_{j=1}^{n} (V_{ij} - V_{j}^+) \right)^{0.5} \]

(5)

\[d_i^- = \left(\sum_{j=1}^{n} (V_{ij} - V_{j}^-) \right)^{0.5} \]

(6)

In the final stage, relative closeness of suppliers to ideal solution using Equation 7 is obtained and ranked according to the relative descending order of suppliers. Table 5 represents the ranking of suppliers based on the combination of the two techniques of AHP and TOPSIS. Equation 7 is thus highlighted:

\[\text{CL}_i^+ = \frac{d_i^-}{d_i^+ + d_i^-} \]

(7)

Table 6 defines all of symbols used in Equations 1 to 7.

Mathematical modeling

As was observed, in the first phase of this study using the two techniques of AHP and TOPSIS in integrated form, suppliers were classified with regard to criteria and sub-criteria. While in the second phase, using a mathematical model, how much order should be allocated to each supplier was identified. Thus, the
Table 1. Final weights of criteria and sub-criteria and alternatives.

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Weights of criteria</th>
<th>Sub-criteria</th>
<th>Weights of sub criteria</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>S5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality</td>
<td>0.330</td>
<td>D1: Standardization</td>
<td>0.231</td>
<td>0.513</td>
<td>0.261</td>
<td>0.129</td>
<td>0.163</td>
<td>0.033</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D2: Packaging design</td>
<td>0.189</td>
<td>0.122</td>
<td>0.425</td>
<td>0.280</td>
<td>0.055</td>
<td>0.055</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D3: Customers PPM</td>
<td>0.198</td>
<td>0.200</td>
<td>0.200</td>
<td>0.200</td>
<td>0.200</td>
<td>0.200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D4: After sale customers PPM</td>
<td>0.238</td>
<td>0.267</td>
<td>0.555</td>
<td>0.124</td>
<td>0.254</td>
<td>0.140</td>
</tr>
<tr>
<td>Cost</td>
<td>0.250</td>
<td>D5: Price reduced rate</td>
<td>0.268</td>
<td>0.513</td>
<td>0.261</td>
<td>0.129</td>
<td>0.063</td>
<td>0.133</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D6: transfer cost</td>
<td>0.091</td>
<td>0.230</td>
<td>0.036</td>
<td>0.476</td>
<td>0.036</td>
<td>0.230</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D7: Order cost</td>
<td>0.096</td>
<td>0.079</td>
<td>0.520</td>
<td>0.298</td>
<td>0.074</td>
<td>0.128</td>
</tr>
<tr>
<td>Delivery</td>
<td>0.230</td>
<td>D8: On time delivery</td>
<td>0.153</td>
<td>0.041</td>
<td>0.512</td>
<td>0.144</td>
<td>0.260</td>
<td>0.044</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D9: Achieving over-supply</td>
<td>0.149</td>
<td>0.352</td>
<td>0.156</td>
<td>0.057</td>
<td>0.029</td>
<td>0.040</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D10: Percentage of performance realization</td>
<td>0.203</td>
<td>0.513</td>
<td>0.216</td>
<td>0.129</td>
<td>0.163</td>
<td>0.133</td>
</tr>
</tbody>
</table>

Table 2. The weighted normalized decision matrix.

<table>
<thead>
<tr>
<th>Variable</th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>D4</th>
<th>D5</th>
<th>D6</th>
<th>D7</th>
<th>D8</th>
<th>D9</th>
<th>D10</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>4.256</td>
<td>2.168</td>
<td>0.700</td>
<td>1.658</td>
<td>3.771</td>
<td>3.979</td>
<td>0.231</td>
<td>7.316</td>
<td>1.564</td>
<td>0.506</td>
</tr>
<tr>
<td>S2</td>
<td>2.165</td>
<td>10.089</td>
<td>0.310</td>
<td>0.131</td>
<td>1.118</td>
<td>0.523</td>
<td>8.106</td>
<td>1.948</td>
<td>0.689</td>
<td>1.892</td>
</tr>
<tr>
<td>S3</td>
<td>1.070</td>
<td>5.391</td>
<td>0.113</td>
<td>0.589</td>
<td>0.202</td>
<td>6.898</td>
<td>4.645</td>
<td>0.560</td>
<td>3.272</td>
<td>3.504</td>
</tr>
<tr>
<td>S4</td>
<td>0.523</td>
<td>1.059</td>
<td>0.052</td>
<td>0.131</td>
<td>1.118</td>
<td>0.532</td>
<td>1.154</td>
<td>3.482</td>
<td>0.294</td>
<td>0.246</td>
</tr>
<tr>
<td>S5</td>
<td>0.276</td>
<td>0.558</td>
<td>0.814</td>
<td>0.287</td>
<td>0.525</td>
<td>3.397</td>
<td>0.436</td>
<td>7.419</td>
<td>0.174</td>
<td>0.506</td>
</tr>
</tbody>
</table>

Table 3. The ideal solution and negative solution.

<table>
<thead>
<tr>
<th>Variable</th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>D4</th>
<th>D5</th>
<th>D6</th>
<th>D7</th>
<th>D8</th>
<th>D9</th>
<th>D10</th>
</tr>
</thead>
<tbody>
<tr>
<td>A⁺</td>
<td>4.256</td>
<td>10.089</td>
<td>0.052</td>
<td>0.131</td>
<td>0.202</td>
<td>6.896</td>
<td>0.231</td>
<td>0.560</td>
<td>1.564</td>
<td>3.504</td>
</tr>
<tr>
<td>A⁻</td>
<td>0.276</td>
<td>0.558</td>
<td>0.814</td>
<td>1.658</td>
<td>3.771</td>
<td>0.523</td>
<td>8.106</td>
<td>7.419</td>
<td>0.294</td>
<td>0.246</td>
</tr>
</tbody>
</table>

Table 4. Separation of each alternative to positive and negative solution.

<table>
<thead>
<tr>
<th>Variable</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>S5</th>
</tr>
</thead>
<tbody>
<tr>
<td>d⁺</td>
<td>16.196</td>
<td>9.935</td>
<td>12.175</td>
<td>15.884</td>
<td>15.997</td>
</tr>
<tr>
<td>d⁻</td>
<td>9.224</td>
<td>15.869</td>
<td>13.676</td>
<td>8.191</td>
<td>11.152</td>
</tr>
</tbody>
</table>

Table 5. Final ranking in two-phase AHP-TOPSIS approaches.

<table>
<thead>
<tr>
<th>Alternatives</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>S5</th>
</tr>
</thead>
<tbody>
<tr>
<td>C⁺ₐᵢ</td>
<td>0.363</td>
<td>0.615</td>
<td>0.529</td>
<td>0.340</td>
<td>0.413</td>
</tr>
<tr>
<td>Ranking</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

second phase is included in designing a multi-objective linear used in the equations. Multi-objective linear programming model was designed this way, that at first, automotive company multiple programming model. Table 7 is briefly described to the symbols
Table 6. Description of symbols in first phase.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_{ij}</td>
<td>Value of the ith Alternative according to jth crieteria</td>
</tr>
<tr>
<td>n_{ij}</td>
<td>Normalized matrix of ith alternative according to jth crieteria</td>
</tr>
<tr>
<td>V</td>
<td>Normalized weighted matrix</td>
</tr>
<tr>
<td>$W_{n\times n}$</td>
<td>A matrix with original diameter of non-zero</td>
</tr>
<tr>
<td>A^+</td>
<td>Positive ideal solution</td>
</tr>
<tr>
<td>A^-</td>
<td>Negative ideal solution</td>
</tr>
<tr>
<td>J</td>
<td>Related to profit criteria</td>
</tr>
<tr>
<td>J'</td>
<td>Related to cost criteria</td>
</tr>
<tr>
<td>d^--_i</td>
<td>Euclidean distance to negative ideals</td>
</tr>
<tr>
<td>d^+_i</td>
<td>Euclidean distance to positive ideals</td>
</tr>
<tr>
<td>CL^+_i</td>
<td>Relative closeness to positive ideal solution</td>
</tr>
</tbody>
</table>

targets are formulated as three objectives function that include:

The first objective function (Z_1): Purchase costs

$$\text{Min}Z_{1} = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} \cdot x_{ij}$$

$$c_{ij} = p_{ij} + f_{ij} + o_{ij}$$

The first objective function (Z_1) which is expressed as the minimum indicates the minimization of the costs of buying its pieces from suppliers. These costs include the pure price of product (piece), transportation costs and the cost of ordering.

The second objective function (Z_2): Quality

$$\text{Min}Z_{2} = \sum_{i=1}^{m} \sum_{j=1}^{n} d_{ij} \cdot x_{ij}$$

The second objective function (Z_2) expressed minimizing of the amount due to defects and disadvantages in the parts.

The third objective function (Z_3) expressed the minimizing of total deviation from the delivery date which is determined according to the contract.

Limitation of conceptual and mathematical modeling

The limitation of company’s suppliers and automotive company are specified in seven constraints as follows:

First limitation: Shopping budget

$$\sum_{i=1}^{m} p_{ij} \cdot x_{ij} \leq B_{j}$$

$$j = A, B, C, D \quad i = 1, 2, 3, 4, 5$$

The first limitation represents budget constraints of purchase by the company automotive. This limitation is as \leq because the total payments to buy parts to suppliers should not be higher from the set budget.

Second limitation: Product demand (pieces)

$$D_{j} \leq \sum_{i=1}^{m} x_{ij} \leq D'_{j}$$

$$j = A, B, C, D \quad i = 1, 2, 3, 4, 5$$
Table 7. Introducing mathematical parameters model.

<table>
<thead>
<tr>
<th>Decision variables</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_{ij}</td>
<td>Order quantity of the jth part from the ith supplier</td>
</tr>
<tr>
<td>c_{ij}</td>
<td>Purchasing cost of jth part from the ith supplier</td>
</tr>
<tr>
<td>d_{ij}</td>
<td>Average defect rate of jth part from the ith supplier</td>
</tr>
<tr>
<td>t_{ij}</td>
<td>Average delivery delay of the jth part from the ith supplier</td>
</tr>
<tr>
<td>p_{ij}</td>
<td>The price of jth part that be suggested by ith supplier to automotive company</td>
</tr>
<tr>
<td>f_{ij}</td>
<td>Transportation cost of jth part that be suggested by ith supplier to automotive company</td>
</tr>
<tr>
<td>o_{ij}</td>
<td>Ordering cost of jth part that be suggested by ith supplier to automotive company</td>
</tr>
<tr>
<td>B_j</td>
<td>Purchasing budget for the jth part</td>
</tr>
<tr>
<td>D_j</td>
<td>Lowest demand for jth part</td>
</tr>
<tr>
<td>D'_j</td>
<td>Highest demand for jth part</td>
</tr>
<tr>
<td>s_{ij}</td>
<td>Lowest quantity supply of jth part from the ith supplier</td>
</tr>
<tr>
<td>s'_{ij}</td>
<td>Highest quantity supply of jth part from the ith supplier</td>
</tr>
<tr>
<td>q_{ij}</td>
<td>Average defect percent of jth part from the ith supplier</td>
</tr>
<tr>
<td>Q_j</td>
<td>Maximum acceptable scrap rate of the jth part</td>
</tr>
<tr>
<td>L_j</td>
<td>Lead time of the jth part be delivery by ith supplier to automotive company</td>
</tr>
<tr>
<td>A_j</td>
<td>Average consumption quantity of the jth part</td>
</tr>
<tr>
<td>z_i</td>
<td>Objective function</td>
</tr>
<tr>
<td>K_j</td>
<td>Capacity of a vehicle for carried the jth part in terms of kg</td>
</tr>
<tr>
<td>u_{ij}</td>
<td>Weight of the jth part that bought from the ith supplier</td>
</tr>
<tr>
<td>K'_j</td>
<td>Capacity of a vehicle for carried the jth part in terms of m3</td>
</tr>
<tr>
<td>v_{ij}</td>
<td>Volume of the jth part that bought from the ith supplier</td>
</tr>
</tbody>
</table>

The second restriction indicated limits of demand for the product by automotive company. This restriction shows that how much should be the highest and lowest demand for concerned parts.

$S_{ij} \leq x_{ij} \leq s'_{ij}$

$j = A, B, C, D \quad i = 1, 2, 3, 4, 5$

This restriction shows that how much the highest and lowest production which supplier is able to meet it.

Third limitation: Production capacity

Fourth limitation: Quality control

$$m \sum_{i=1}^{m} q_{ij} \cdot x_{ij} \leq Q_j \cdot D_j$$
Table 8. The order quantity allocation.

<table>
<thead>
<tr>
<th>Alternative</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplier 1</td>
<td>2500</td>
<td>3000</td>
<td>5200</td>
<td>1600</td>
<td>12300</td>
</tr>
<tr>
<td>Supplier 2</td>
<td>6200</td>
<td>3700</td>
<td>6800</td>
<td>4100</td>
<td>20800</td>
</tr>
<tr>
<td>Supplier 3</td>
<td>4500</td>
<td>4800</td>
<td>6200</td>
<td>5600</td>
<td>21500</td>
</tr>
<tr>
<td>Supplier 4</td>
<td>2100</td>
<td>2000</td>
<td>1500</td>
<td>5600</td>
<td></td>
</tr>
<tr>
<td>Supplier 5</td>
<td>3800</td>
<td>4500</td>
<td>3500</td>
<td>1200</td>
<td>13000</td>
</tr>
</tbody>
</table>

\[Z_1 = 681562500 \quad Z_2 = 93 \quad Z_3 = 11 \]

Table 9. Model credit assessment in first phase.

<table>
<thead>
<tr>
<th>Suppliers</th>
<th>Final ranking by AHP</th>
<th>Final ranking by topsis</th>
<th>Final ranking by AHP-TOPSIS</th>
<th>Final ranking of company</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>S2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>S3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>S4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>S5</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

\[j = A, B, C, D \quad i = 1, 2, 3, 4, 5 \]

This restriction shows that the total amount of deficiency for each piece should not be higher from the maximum acceptable rate of defects for each piece, so it is express as \(\leq \).

Fifth limitation: Vehicle weight capacity

\[\sum_{i=1}^{m} u_{ij} \cdot x_{ij} \leq K_j \]

\[j = A, B, C, D \quad i = 1, 2, 3, 4, 5 \]

This restriction indicates constraints in available transportation capacity. In the above limitation, KJ is expressed in terms of kilogram (kg), so weight of customized parts should be less than or equal to vehicle capacity in terms of kg.

Sixth limitation: Vehicle volume capacity

\[\sum_{i=1}^{m} V_{ij} \cdot x_{ij} \leq K'_{j} \]

\[j = A, B, C, D \quad i = 1, 2, 3, 4, 5 \]

These limitations indicate the limitations of vehicle capacity. In the above limitation, \(K'_{j} \) is expressed the capacity of a vehicle in terms of m\(^3\). This restriction should be considered in system because it is possible that the cargo which is carried is in high volume relative to its weight. This limitation is written as \(\leq \).

Seventh limitation: Non-zero limit (integer)

\[X_{ij} = \text{Integer} \]

\[j = A, B, C, D \quad i = 1, 2, 3, 4, 5 \]

After gathering data about decision variables and parameters of mathematical model, the information obtained was entered into a software (LINGO). Table 8 shows that in order for the automotive company to minimize purchase costs, returned rate from defects and delivery time, she must buy from any supplier at the amount specified by the model.

MODEL CREDIT ASSESSMENT

In phase 1 of the research’s aim to select and rank suppliers for the four parts A, B, C, D, a two-phase AHP and TOPSIS approaches was used in the integrated form. It should be noted that though each of these two techniques alone can also evaluate and rank suppliers, however, combining the two, caused the weaknesses of each model covered by the strengths of other models. Therefore, to measure the proposed model, one with the approach of AHP and the other with TOPSIS approach was used in single form to solve the decision model, and then the results along with the results of integrated model was provided for managers, experts and specialists in supply chain management area. The results expressed from the integrated AHP-TOPSIS model is closer to the actual results of the company as shown in Table 9 in which model credit was confirmed in the first phase.

In phase II, after determining the position of the suppliers to identify the optimum amount of order to each of them, a linear programming model with three
Table 9. Model credit assessment in first phase.

<table>
<thead>
<tr>
<th>Suppliers</th>
<th>Final ranking by AHP</th>
<th>Final ranking by topsis</th>
<th>Final ranking by AHP-TOPSIS</th>
<th>Final ranking of company</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>S2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>S3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>S4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>S5</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 10. Saving in purchase cost after applying suggested model.

<table>
<thead>
<tr>
<th>Part</th>
<th>Real purchasing cost</th>
<th>Optimize purchasing cost</th>
<th>Saving</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>36800000</td>
<td>31452500</td>
<td>5347500</td>
</tr>
<tr>
<td>B</td>
<td>11400000</td>
<td>8910000</td>
<td>2490000</td>
</tr>
<tr>
<td>C</td>
<td>78200000</td>
<td>64120000</td>
<td>140800000</td>
</tr>
<tr>
<td>D</td>
<td>6500000</td>
<td>5250000</td>
<td>1250000</td>
</tr>
<tr>
<td>Total cost</td>
<td>836700000</td>
<td>658512500</td>
<td>149887500</td>
</tr>
</tbody>
</table>

Units are according one thousand Rials- Iran.

Table 11. Optimization results of quality and delivery functions.

<table>
<thead>
<tr>
<th>Part</th>
<th>Defect rate (number) before</th>
<th>Defect rate after</th>
<th>Delivery delay (day) before</th>
<th>Delivery delay after</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>35</td>
<td>12</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>B</td>
<td>22</td>
<td>8</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>C</td>
<td>42</td>
<td>12</td>
<td>45</td>
<td>30</td>
</tr>
<tr>
<td>D</td>
<td>36</td>
<td>10</td>
<td>45</td>
<td>30</td>
</tr>
</tbody>
</table>

...objective function and 7 constraints was used. According to this, the amount of order that must be allocated to each supplier determined. Then the results were compared to documents available in the company. To run the proposed mathematical model and order allocation given to each supplier as seen in Table 10, purchase costs were minimized. Table 10 shows the amounts saved by applying the (MOLP) model for the first objective function and Tabel 11 shows the amounts for other objective functions (Quality and delivery).

Conclusion

In this study, what should be considered is that the allocation order to suppliers, based on score alone is not an appropriate method. So the proposed model which shows that the supplier obtained the highest score in phase (1) and also holds a high productive capacity is the appropriate method. However, if the supplier does not meet the objectives and priorities of the automotive company, it is therefore not a good approach for the highest order to be allocated to this supplier just because of a higher rank. This not only results in meeting the goals of the company, but also causes too much waste of time and cost. While executing the proposed model causes to save energy, cost and time. It is a great privilege for large organizations and industries that seek competitive advantage in global markets to adopt this model.

REFERENCES

Demirtas EA, Üstün Ö (2008). An integrated multi objective decision-

