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bioinformatic screening (Tanaka et al., 2008). Spaetzle is 
synthesized and secreted as an inactive precursor and 
cleaved by a serine protease cascade that are preferentially 
triggered by Gram-positive or by fungal infection (Valanne 
et al., 2011). After cleaving with its active C-106, the cleaved 
form of Spaetzle binds to the Toll receptor and activated 
Toll receptor. Unlike mammalian Toll-like receptors (TLRs), 
Toll does not function as a pattern recognition receptor that 
directly recognized the microbial ligands. Instead Lys-type 
peptidoglycan (PGN) is recognized either by the PGRP-
SA–GNBP1 complex or by PGRP-SD (Lemaitre and 

Hoffmann, 2007; Valanne et al., 2011; Watanabe et al., 
2006). To date, 11 Tolls and 2 Toll analogs genes have 
been identified in the B. mori genome (Cheng et al., 
2008; Imamura and Yamakawa, 2002; Tanaka et al., 
2008). Expression profiles of Bm Tolls showed that 10 of 
genes were induced or suppressed with different degrees 
by different invaders stimulation (Cheng et al., 2008). Bm 
Toll gene expression was strongly suppressed when 
lipopolysaccharide     (LPS)      was    injected   into   silkworm 
hemocoel (Imamura and Yamakawa, 2002).  

Escherichia coli, fungus and Beauveria bassiana 
infection also significantly increased BmToll9 expression 
in different parts of the gut, suggesting that BmToll9 is 
probably involved in the local gut immune response (Wu 
et al., 2010a). The expression of BmToll10-3 gene was 
significantly increased when infected with B. mori 
nucleopolyhedrovirus (BmNPV) (Sagisaka et al., 2010). 
The activated Toll receptor recruit a hetero-trimeric 
complexes composed of MyD88 (homologs of the human 
Myd88 protein), an adaptor protein Tube and the kinase 
Pelle  (homologs  of  the  human  IL1 receptor associated 
kinase (IRAK)) (Leclerc and Reichhart, 2004; Valanne et 
al., 2011). Bacillus bombysepticus (Bb) infection induced 
the systemic immune response mainly by the Toll path-
way in silkworm. Toll pathway genes including Spz1, Toll1, 
Toll6, MyD88, Tube and RelA were up-regulated after Bb 
infection. MyD88 was only expressed after Bb infection 
(Huang et al., 2009).  

Formation of this hetero-trimeric adapter complex leads 
to rapid phosphorylation and degradation of Cactus (a 
homologue of the mammalian inhibitor of NF-KB (IKB)) 
by an uncharacterized mechanism, which is then degraded 
by the proteasome. As a consequence, the Rel transcription 
factors DIF are released and move from the cytoplasm to 
the nucleus (Kawaoka et al., 2008; Lemaitre and Hoffmann, 
2007; Tanaka et al., 2005, 2009; Valanne et al., 2011). 
BmCactus, which constitutively expressed mainly in the 
fat body and hemocytes, can strongly inhibit activation of 
the CecB1 gene promoter by either BmRelA or BmRelB 
(Furukawa et al., 2009). Two BmRelish genes have been 
identified in the B. mori. E. coli infection induces the 
expression of BmRelish1 and BmRelish2 while deletion mu-
tant of BmRelish of the BmRelish gene in transgenic 
silkworms resulted in failure of the activation of 
antimicrobial peptide genes (Tanaka et al., 2007). 

The  canonical components of B. mori IMD pathway are 

Wang et al.          3437 
 
 
 

composed of IMD, TAK1 (TGF-β activated kinase 1), TAB, 
DIAP2, two IκB kinase (IKK) complex components, namely 
IKK-β (IRD5) and IKK-γ (Kenny), which are homologs of 
mammalian IKK signalosome. In addition, FADD functions 
as downstream of IMD, controlling the activity of DREDD 
(a caspase-8 homolog), which acts with the IKK complex 
to activate Relish (Brennan and Anderson, 2004; Kaneko 
and Silverman, 2005; Tanaka et al., 2008). Transcriptional 
profiling of midgut showed that IMD pathway, but not Toll 
pathway genes were up-regulated during the wandering 
stage, suggesting that IMD pathway probably regulates 
the production of antimicrobial peptides in the midgut 
during the wandering stage (Xu et al., 2012). 

PGRP was first purified from hemolymph of the B. mori 
and was found to bind to peptidoglycan and triggered 
the prophenoloxidase cascade (Ochiai and Ashida, 1999b; 
Royet and Dziarski, 2007; Yoshida et al., 1996). Insect 
PGRP genes are divided into two subfamilies (short (S) 
and long (L) transcripts) based on their structure (Royet 
and Dziarski, 2007; Royet et al., 2011, 2005). The PGRP 
family comprises 12 members in B. mori with conserved 
PGRP domains (Figure 2). Six belong to the short (S) 
subfamily (Tanaka et al., 2008). Comparative proteomic 
approach identified that PGRP was up-regulated when 
reared on fresh mulberry leaves when compared with on 
artificial diet (Zhou et al., 2008). B. mori GNBP was found 
to constitutively express in fat body and rapidly induced 
following a cuticular or hemoceolien bacterial challenge 
(Lee et al., 1996). The solution structure of the N-terminal 
β-1, 3-glucan recognition domain of B. mori GNBP3 
showed that GNBP3 is a β-1,3-glucan-recognition protein 
that specifically recognizes a triple-helical structure of β-
1,3-glucan (Takahasi et al., 2009). 
 
 
Cellular response  
 
B. mori larvae contain several thousand hemocytes, which 
can be divided into the following three cell types on the 

basis of their structural and functional features: plasma-
tocytes, crystal cells and lamellocytes (Lemaitre and 
Hoffmann, 2007; Tan et al., 2013; Wago, 1982; Williams, 
2007). 
Plasmatocytes are professional phagocytes that function 
in the phagocytic removal of dead cells and microbial 
pathogens, which is most similar to the mammalian macro-
phage lineage and make up 95% of circulating hemocytes. 
The other 5% of circulating hemocytes consist of crystal 
cells, which secrete components of the phenol oxidase 
cascade for the melanization process, as well as for 
wound repair. A third cell type known as lamellocytes are 
rarely seen in healthy larvae and primarily function in 
encapsulation and neutralization of objects too large to 
be phagocytosed. Phagocytosis and encapsulation are 
two major mechanisms of the cellular response (Ling et 
al., 2005; Taniai et al., 1997). 

B.   mori   are   efficiently killed by infection with human 
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