
V
D
A
IS
C
A
h

 
 
 
 
 

Fu
 

3D

 
 
INT
 
Stre
and
dar
com
ant
 

*C
 
Au
4.0

Vol. 8(51), pp. 
DOI: 10.5897/A
Article Numbe
SSN 1996-0808
Copyright © 20
Author(s) retain
http://www.ac

ull Length 

Disr
SP

Jun-Ho

1Departmen

2Department 

Department o

Pathway-sp
process. T
actinorhodi
we searche
acid seque
and SP1750
that the dis
1.74-fold, re
and early a
SP_nsdB n
 
Key words:

TRODUCTION

eptomycetes 
d are widely re
ry metabolites
mmercially an
tibiotic biosyn

Corresponding a

uthor(s) agree t
0International L

3969-3975, 17 
AJMR2014.6895
r: 0DFC591495

8  
014 
n the copyrigh
cademicjourn

Research

ruption
P_nsdB

o Cho1, Mi

nt of Pharmac

of Health Adm

of Dental Hyg

pecific regula
he genes ns
in, prodigios

ed for similar
nce similarit
0 (SP_NsdB)
ruption of SP
espectively. 

aerial myceliu
egatively aff

 Doxorubicin

N 

are Gram-po
ecognized as
s. Streptomyc
nd medically 
nthesis is me

author. E-mail:

that this article
License 

 December, 2
5 
579 

ht of this article
als.org/AJMR 

h Paper 

n of ne
B) in S
doxor

-Kyeong K
J

ceutical Engin

ministration, B

iene, Hanseo

Rece

atory genes g
sdA and ns

sin and calci
r genes in th
ty between S
) was 78.4%.
P_nsdA and 
The SP_nsd
um than did
fected doxor

, gene disrupt

ositive, soil-dw
s producers of
cetes produce
useful antibi

ediated by s

 tjoh3782@sun

 remain perma

2014  

e 
 

egative
Strepto
rubicin
Kim1, Kyou
Joo-Ho Lee

neering, SunM
Chungna

Baekseok Cu
Chungna

o University, #

eived 12 May, 20

generally par
sdB were re
um-depende
e Streptomy

SC_NsdA an
. High perfor
SP_nsdB si

dA and SP_n
 the original
ubicin produ

tion, negative

welling bacter
f various seco
e about 75%
iotics, and th
everal types 

nmoon.ac.kr. Te

anently open ac

Africa

e regul
omyces
n overp

 
ng-Hee Kw
e1 and Tae

 
Moon Univers
am 336-708, K
lture Univers

am 330-705, K
#46, Hanseo 1

Korea. 
 

014; Accepted 28
 

rticipate in th
ported to ha

ent antibiotic
yces peucetiu
d SP4635 (S
rmance liqui
gnificantly in

nsdB disrupt
l wild-type s
uction and m

e regulator, se

ria, 
on-
 of 

heir 
of 

pathw
Reg

synth
antibi
repre

Tel: +82(41)530

ccess under the

an Journa

lators
s peuc
produc
won2, Kisu
-Jin Oh1*

sity, #100, Ka
Korea. 
ity, #393, Ans
Korea. 
1-ro, Haemi-m

8 November, 201

he secondary
ave a negat

c from Strept
us genome,

SP_NsdA) wa
id chromato
ncreased do
tion mutants

strain. These
morphologica

econdary met

way-specific r
gulatory gene

hesis act as 
iotic product

essor genes h

0-2677. Fax: +8

e terms of the 

al of Micro

(SP_n
cetius c
ction 
p Ahn2, Jo

alsan-ri, Tangj

seo-dong, Do

myun, Seosan

14 

y metabolites
tive effect o
tomyces coe
the doxorub
as 88.1%, an
graphy (HPL

oxorubicin pr
s produced m
e results sho
al differentiat

tabolite, Strep

regulators (Ch
es that are r
positive and

tion. Identific
have proven e

82(41)530-2279

Creative Comm

obiology R

nsdA a
causes

ong Hwa Ja

jeong-myeon

ngnam-gu, C

n-si, Chungna

s-related bios
on the produ
elicolor. In th
bicin produce
nd between S
LC) analysis 
roduction by
more yellow

ow that SP_n
tion in S. peu

ptomyces peu

hampness, 20
required for 
d/or negative
cation and in
effective in ov

9. 

mons Attributio

Research 

nd 
s 

ang3,  

, Asansi, 

Cheonan-si, 

am 356-706, 

synthesis 
uction of 
his study, 
er. Amino 
SC_NsdB 
revealed 

y 2.07 and 
w pigment 
nsdA and 
ucetius. 

ucetius. 

000). 
antibiotic bio

e elements in
nactivation o

verproduction 

n License 

 

o-
n 
of 



3970          Afr. J. Microbiol. Res. 
 
 
 
of clinically important drugs. Secondary metabolites with 
clinical value have been overproduced in significantly 
higher amount through the combined application of 
genetic engineering and strain improvement techniques. 
Pathway-specific regulatory genes like actII-orf4, redD, 
cdaR and mmyR regulate the antibiotic-related bio-
synthetic genes in S. coelicolor (Bibb, 1996), and other 
global regulators such as bldA (Fernandez-Moreno et al., 
1991), bldB (Eccleston et al., 2002), bldD (Elliot et al., 
1998) and bldG (Bignell et al., 2000) perform the highest-
level of regulation and affect both morphological and 
physiological differentiation (Chater, 1993, 2001). In other 
cases, some regulatory genes containing absA1-absA1 
(Anderson et al., 2001; Ryding et al., 2002), cutS-cutR 
(Champness et al., 1992), phoR-phoP (Sola-Landa et al., 
2003) and tcrA (Liu and Yang, 2006) are pathway-
specific repressors that regulate antibiotic production in a 
negative way since their mutation or deletion results in 
the overproduction of antibiotics. S. coelicolor is a 
genetically well-characterized strain that can produce four 
types of antibiotics such as actinorhodin (Act), 
undecylprodigiosin (Red), calcium-dependent antibiotic 
(CDA), and methylenomycin (Mmy). Among the various 
regulatory genes, especially SCO5582 (nsdA) and 
SCO7252 (nsdB) in S. coelicolor were identified by gene 
disruption as a gene negatively affecting antibiotic 
production and sporulation (Li et al., 2006; Wang et al., 
2009; Zhang et al., 2007). 

Doxorubicin (DXR) was first isolated from Streptomyces 
peucetius subsp. caesica ATCC27952, a mutant strain 
derived from S. peucetius ATCC29050 (Arcamone et al., 
1969) and it is commonly used in the treatment of a wide 
range of cancers including bladder, breast, stomach, lung, 
ovaries, thyroid, soft tissue sarcoma, multiple myeloma 
and others (Alfaro et al., 2013). Increasing DXR produc-
tion is very important because the chemical synthesis of 
DXR is a tedious process and also it is chemically labile. 
On the other hand, multistep reactions requiring electro-
philic bromination limited yield of DXR during its semi-
synthetic production using daunorubicin (DNR) (Lown, 
1993). Although a number of organisms produce DXR, S. 
peucetius ATCC27952 is the only organism reported to 
produce DXR (Grein, 1987). Therefore, the generation of 
industrial strain of S. peucetius ATCC27952 for DXR 
production is important. In this study, we found two genes, 
SP4635 and SP1750, in S. peucetius ATCC27952 which 
are orthologous genes of nsdA and nsdB in S. coelicolor, 
respectively. We studied the level of DXR production and 
morphological differentiation by gene disruption in S. 
peucetius. 
 
 
MATERIALS AND METHODS 
 
Bacterial strains, culture conditions and vectors 
 
Escherichia coli were grown in Luria-Bertani (LB) broth (Difco) and 
maintained on LB agar medium at 37°C. S. peucetius were grown 
in R2YE (50 ml, 5% sucrose, 0.02% potassium sulfate, 1% magnesium 

 
 
 
 
chloride, 1% glucose, 0.5% yeast extract, and 0.01% Difco casamino 
acid) and maintained on R2YE agar medium at 28°C. DNA mani-
pulation was carried out in E. coli XL1-Blue (Stratagene). pGEM-T 
easy vector (Promega, USA) was the routinely used cloning vector 
for DNA manipulation, and pKC1139 was used as E.coli-
Streptomyces shuttle vector for gene inactivation. 
 
 
DNA manipulation 
 
We compared the genome of S. peucetius, and found two genes 
(SP4635 and SP1750) which have high sequence similarity with 
nsdA and nsdB in S. coelicolor. For disruption of SP4635 (SP_nsdA) 
and SP1750 (SP_nsdB) in S. peucetius, the upstream and down-
stream fragments (SP4635U, SP4635D, SP1750U and SP1750D) 
were amplified by polymerase chain reaction (PCR). The primer 
sequences were as follows: SP4635UF (5’-GTC GAG CTG GGC 
CTC GAT GAG GTC-3’), SP4635UR (5’-TCT TCT AGA ACC GGA 
GGG TCA GAC-3’), SP4635DF (5’-GGT TCT ACT CGT ACG ACC 
GGT TCG-3’), SP4635DR (5’-GCG GAA TTC GAC GAT CCG CAT 
TCC-3’), SP1750UF (5’-ACA AGC TTC TGC AG ATA CGC CC CA-
3’), SP1750UR (5’-AAT CTA GAC GGC CGG ACT CAT CGA-3’), 
SP1750DF (5’-GTT CTA GAA ACC CGC CTC TTC GAG-3’) and 
SP1750DR (5’-GGG AAT TCG GCT CGA GGG-3’). PCR was 
carried out under the following conditions: denaturation at 94°C for 
7 min, and in each cycle, annealing at 55-65°C for 1 min and 
polymerization at 72°C, denaturation at 94°C for 1 min, for total of 
30 cycles and finally gap filling at 72°C for 7 min. 
 
 
Construction of recombinants 
 
Amplified DNA fragments of SP_nsdA and SP_nsdB were cloned 
into the pGEM-T easy vector and then transformed into E. coli XL1-
Blue. The upstream fragment of SP4635U was digested with HindIII 
and XbaI, and the downstream fragment of SP4635D was digested 
with XbaI and EcoRI; then they were cloned into pKC1139. The 
upstream fragment of SP1750U and the downstream fragment of 
SP1750D were digested and cloned as mentioned above. For the 
final construct, SP_nsdA and SP_nsdB recombinants were 
digested with XbaI and then ligated with the fragment of the 
thiostrepton resistance gene (1.0 kb) obtained from pIBR25 (Thuy 
et al., 2005), thereby resulting in pOJH0117 and pOMK1228. All 
these plasmid were confirmed by enzyme digestion and PCR 
sequencing. pOJH0117 and pOMK1228 were transformed into the 
E. coli ET12567 used as demethylation host, and then finally 
transformed into the wild type strain of S. peucetius ATCC 27952 
(Flett et al., 1997). 
 
 
DNA sequence accession number 
 
The nucleotide sequences of SP_nsdA and SP_nsdB reported in 
this paper have been deposited in the NCBI nucleotide sequence 
database under accession numbers KF500401 and KF500402, 
respectively. 
 
 
Transformation into S. peucetius 
 
The protoplast transformation and the selection of thiostrepton-
resistant transformants were performed using previously described 
methods (Jnawali et al., 2011). Wild-type S. peucetius ATCC 27952 
strain was cultured in a 50-ml R2YE medium for 36 h at 28°C. The 
culture broth was transferred to a 50-ml tube and washed with 10.3% 
sucrose. The protoplasts were generated by incubating the mycelia 
at 37°C for 55 min with the addition of 3 ml of lysozyme (5 mg/ml). 
The  recombinant DNA was transformed into S. peucetius, and the
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