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sucrose and are considered virulence factors (Paes 
Leme et al., 2006). 

Exopolysaccharide synthesis is catalyzed by a group of 
bacterial enzymes termed glycosyltransferases (GTF) 
and fructosyltransferases (FTF), encoded by the genes 
gtf and ftf, respectively, which under certain conditions 
can be strongly associated with cell surfaces and which 
apparently mediate glucan induced agglutination (Li and 
Burne, 2001). 

S. mutans produces a surface antigen protein of the Ag 
I/II family. One of these is SpaP encoded by the spaP 
gene, which contributes to initial adherence and 
development of the microbial community, since it can 
interact with a large number of substrates (Ono et al., 
1994). 

Lactobacillus acidophilus is one of the pathogens 
associated with S. mutans, which is part of the diverse 
microorganisms termed non-cariogenic mutans (Marsh, 
2003). Lactobacilli can produce organic acids that 
decalcify the dentinal matrix and have been found in both 
superficial and deep caries (Byun et al., 2004). 
Lactobacilli represent approximately 1% of the culturable 
oral flora. Some studies have associated their presence 
with oral health (Haukioja, 2010). In a study by Martin et 
al. (2002), Lactobacillus sp. were found to be a 
numerically dominant species in human carious dentine. 
However, the presence of Lactobacilli delays the 
expression of adherence genes and the accumulation of 
glucose (Rooj et al., 2010). They possibly contend with S. 
mutans for the substrate and reduce the risk of caries 
(Baca-Castañón, 2014). 

The total number of bacteria and the composition of the 
oral flora associated with cavities can give indications of 
the individual risk and incidence of the disease. The 
bacteria involved in the initiation and development of 
dental caries are mainly Streptococci, Lactobacilli and 
Actinomycetes (Marsh, 2003). However, environmental 
factors such as the presence of sugar and non-mutans 
carbohydrate fermenting bacteria that promote a pH 
homeostasis that demineralizes enamel can change the 
biochemical composition of the biofilm or plaque 
(Takahashi and Nyvad, 2011). In these conditions, S. 
mutans is able to grow by increasing their adhesion 
factors due to their metabolic ability to decompose 
carbohydrate from the diet, from which they produce a 
large amount of organic acids (acidogenesis), and by its 
ability to withstand environmental stress, specifically a 
low pH (aciduricity) (Lemos and Burne, 2008).  

The aim of this study is to assess if Lactobacilli can 
positively or negatively influence the virulance of bacteria; 
therefore, the objective of this research is to determine 
whether the presence of glucose and L. acidophilus 
promote adhesion mechanisms that increase the 
expression of gtf, ftf and spaP of S. mutans. 
 
 

MATERIALS AND METHODS 
 
The gene expression of gtf, ftf and spaP in S. mutans was studied. 

 
 
 
 
S. mutans strain AU159 (ATCC 700610) and L. acidophilus strain 
LA3 (Lyofast LA3) were lyophilized and stored at −80°C. The 
lyophilized strains were activated in the medium appropriate for 
each bacterial culture: brain-heart infusion (BHI) broth (Becton, 
Dickinson and Company, Franklin Lakes, NJ) was used for S. 
mutans and Rogosa broth (Oxoid Ltd., Hampshire, UK) for L. 
acidophilus. 

Culture tubes were inoculated with 50 mL of BHI broth for S. 
mutans and incubated at 37°C for 12 h. L. acidophilus (50 mL) was 
inoculated in Rogosa broth and incubated at 37°C for 24 h. 
Subsequently, tubes containing 20 mL of BHI alone and BHI 
supplemented with 40% glucose (BHIG) were inoculated with a S. 
mutans : L. acidophilus culture ratio of 1:1, 1:10 and 10:1. These 
cultures were then incubated at 37°C. The exponential phase of S. 
mutans is 12 h and L. acidophilus 6 h. S. mutans was placed in a 
brain heart infusion with glucose. Lactobacillus was placed at 6 h in 
MRS (OD 600 nm, 0.5) in the same tube with S. mutans at 12 h. 
After six hours, the experiment was stopped to extract RNA. Both 
species fermented glucose, but Lactobacillus increased 
acidification. We wanted to observe the effect of Lactobacillus on S. 
mutans since L. acidophilus is not currently considered cariogenic 
but probiotic. This can be promoted together with other Lactobacilli 
as a controller of caries. S. mutans fermented the sugar and L. 
acidophillus had strong resistance to acid pH. This can be 
protective since it regulates the metabolism of other cells. 
A resulting biomass of 3 mL was taken from each culture and 
washed twice with Tris-HCl Buffer (10 mM, pH 8.0); lysozime 500 
µL (10 mg ml-1) was added and the mixture incubated at 37°C for 2 
h. Total RNA extraction was carried out using TriPure Isolation 
Reagent (Roche Diagnostics, Basel, Switzerland) according to the 
manufacture’s recommendations. Total RNA was read at 260 nm in 
a SmartSpec Spectrophotometer (Bio-Rad Laboratories, Inc., 
Hercules, CA). cDNA was generated using the Improm II Reverse 
Transcription System (Promega Corporation, Madison, WI). The 
pellet that resulted from the extraction process was resuspended in 
50 µL of DEPC water and was stored at -80°C until use. 

In order to confirm the identity of bacterium strains, primers 
based on the rRNA 16S of S. mutans and L. acidophilus were 
designed using specific sequences reported in GenBank 
(http://www.ncbi.nlm.nih.gov/). Oligonucleotides were designed 
based on DNA gene sequences in GenBank (Table 1). 

Quantitative PCR was performed in a LightCycler 480 (Roche) 
using the Light Cycler 480 Control Kit (Roche), according to the 
manufacturer’s recommendations. Gene amplification was done in 
a final volume of 50 µL, as follows: one denaturalization cycle at 
95°C for 5 min with a ramp rate of 4°C/s; 45 cycles at 95°C for 10 s 
with a 4°C/s ramp rate; 55°C for 15 s with a 2°C/s ramp rate; 72°C 
for 10 s with a 4°C/s quantification analysis ramp rate; finally, 1 
freezing cycle at 40°C for 30 s with a 20°C/s ramp rate. 
 
 
RESULTS 
 
An increase in gene expression was observed, especially 
with spaP with and without glucose and with a Sm : La 
ratio of 1:10. In order to quantify gene expression, cDNA 
samples from three different S. mutans and L. 
acidophilus (Sm : Lm) ratios (1:0/Sm alone) were diluted 
10-1, 10-2 and 10-3 and gene amplification was run. 
Representative results obtained with the 10-1 dilution are 
shown in Table 2. These results show that in pure culture 
(Sm), the level of gene expression of Sm gtf was 
approximately the same as that of GAPDH. The gene Sm 
ftf is downregulated as well as spaP. When S. mutans 
was cultured with L. acidophilus in different ratio
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Table 1. Primers and probes used to identify bacteria strains. 
 

Strand 5´-3 Sequence 
ΔG 
Selfdimer 

ΔG 
hairping 

ΔG 
heterodimer 

Tm 
CG
% 

Length 
Prod 
size 

nMoles 

ftf – NCBI: AE014133.2  

Fwd Primer 
GCCGTCATTAACAGGGTATCAG
A 

-4.85 0.04 
-11.16 

56.5 47.8 23 

71 

5.0 

Rvs Primer TGGCGAACGGCGACTTA -3.61 -1.42 57.1 58.8 17 5.0 

Probe 
/56-
FAM/TACTGGAAC/ZEN/AGCATA
ATAA/31ABkFQ/ 

-3.55 -2.3 -4.38/-3.14 45.3 31.6 19 2.5 

          
gtf – NCBI: AE014133.2 
Primer 
Fwd 

GTTTATGATTTTGCCCTGCCTAT
G 

-3.14 0.31 
-3.9 

54.6 41.7 24 

63 

5.0 

Primer 
Rvs 

ACGGTCAACCTTGCTCGAAT -6.76 -0.56 57 50 20 5.0 

Probe TGACGCTCTACAGCCTA -4.74 -0.81 -3.55/-3.14 45.3 31. 19 2.5 
          
spaP – NCBI: AE014133.2 
Fwd Primer AAGTCAGTGGCAACGATTTATCC -3.61 0.04 

-8.38 
55.4 43.5 23 

71 

5.0 

Rvs Primer 
TTATTCTTATAAGTTGCGCCATC
ATT 

-10.48 0.31 53.3 30.8 26 5.0 

Probe 
/56-
FAM/CAGTGGTCG/ZEN/GACAAG
T/31ABkFQ/ 

-3.61 0.6 -5.19/-5.02 51.4 56.3 16 2.5 

          
GAPDH 
Fwd Primer TTGGAACTGGAACACGTTGTG -6.3 -0.42 

-9.88 
55.8 47.6 21 

390  
Rvs Primer 

TAAAGCTATTGGTCTTGTTCCTG
AA 

-6.34 0.13 54.6 36 25 

 
 
 

Table 2. Expression levels of ftf, gt, and spaP in S. Mutans 
culture with glucose. 
 

S. mutans : L. acidophilus ratio ftf gtf spaP 

Sm 6.12 1.63 0.4492 
1:1 2.400 4.20 3.428 
1:10 3.830 7.10 4.43 
10:1 11.84 2.77 1.54 

 

Sm = S. mutans; Units represent the number of PCR product per 
cycle as compared to the housekeeping gene. 

 
 
 
conditions (1:1, 1:10 and 10:1), all genes were 
upregulated. 

S. mutans supressed adherence gene expression, 
mainly ftf in the presence of 40% glucose; however, its 
behavior was different in the presence of L. acidophilus 
since expression was 11.84 times less than when L. 
acidophilus and glucose were present. Something similar 
occured with gtf since glucose and a greater number of L. 
acidophilus increased spaP even more. spaP is a gene 
that codifies for adherence, which can also be supressed 

in the presence of glucose and when L. acidophilus is 
present in the environment. 

Primer specificity was also tested with pure cultures of 
S. mutans. The results of amplification of ftf, gtf, spsP 
and GAPDH in different repetitions are shown in Figure 1. 
In cycle 23 without glucose, gtf shows a positive signal, 
while in cycle 42 with glucose, gtf reduces its positive 
signal. The positive signal begins for the ftf initiators 
without glucose starting expression at cycle 33, and in 
the presence of glucose at cycle 44. Later, SpaP 
expression starts at cycle 34, and with glucose at cycle 
49. Finally, GAPDH showed a positive signal in cycle 39 
without glucose and at cycle 49 with glucose Figure 2. 
 
 
DISCUSSION 
 
In this study, S. mutans was grown in a culture medium 
with and without glucose. In addition, S. mutans was 
grown with Lactobacillus acidophilus, an important 
member of the oral microbiota. The presence of glucose 
and L. acidophilus increased expression of the genes 
studied, especially ftf. This is noteworthy since it has
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Stephenson and Hoch in 2002 suggested the use of 
bacterial tow-component signal transduction systems 
(TCSTS) as a good antimicrobial design strategy since it 
is capable of engaging phosphotransferase events 
between histidine residues and aspartate transmembrane 
sinases that are responsible for transcription regulation 
by binding to DNA and suppressing and/or expressing it 
(Smith and Spatafora, 2012). Some suggest that cross-
regulation between certain histidine kinases can regulate 
plaque formation (Chong et al., 2008). 

Our findings are similar to Shemesh et al. (2006) and 
Decker et al. (2014) who studied the effect of different 
carbohydrates. In addition to this, they investigated the 
expression of glucosyltransferases and other biofilm-
associated genes and found that the combined presence 
of carbohydrates stimulate the upregulation of glucan- 
and biofilm-associated genes in a different way than 
glucose alone. Shemesh et al. (2006) also found that 
gene expression was dependent on the growth phase. 
We did not use biofilms in our study since our objective 
was to determine whether the presence of glucose and L. 
acidophillus promote adhesion mechanisms that increase 
the expression of gtf, ftf, and spaP. However, bacteria 
were harvested during their exponential phase to 
investigate gene expression.  

Dietary carbohydrates and L. acidophillus are important 
environmental factors in the development of biofilms that 
can cause oral infections. 
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