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The dye methyl red was completely decolorized at 24 h of incubation by Pseudomonas putida MR1 
isolated from the dyestuff contaminated soil, collected from the textile industrial area of Sanganer, 
Jaipur, Rajasthan. Maximum decolorization was achieved when the isolate was incubated at 34°C and 
pH 7. The decolorization was confirmed by studying the spectral analysis of the dye. 16S rRNA partial 
gene sequencing (772 bp) of isolate P. putida MR1 was also performed and a phylogenetic tree was 
prepared. 
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INTRODUCTION 
 
With the increasing use of a wide variety of dyes, 
pollution by wastewater contaminated with dyestuff is 
becoming increasingly alarming (Moosvi et al., 2005). 
Synthetic dyes are extensively used in textile dyeing, 
paper printing, colour photography, pharmaceutical, food, 
cosmetic and other industries (Rafii et al., 1990; Singh et 
al., 2012; Sahasrabudhe and Pathade, 2012). 
Approximately 10,000 different dyes and pigments are 
used industrially, and over 0.7 million tonnes of synthetic 
dyes are produced annually worldwide. Major classes of 
synthetic dyes include azo, anthroquinone and triaryl 
methane dyes, and many of them are toxic or contain 
carcinogenic compounds with long turnover times 
(Hartman et al., 1978). It has been estimated that 10 to 
15% of dyes are lost in the effluent during dying 
processes (Zollinger, 1987; Olligaard et al., 1999; Mathur, 
2012). 

Colour is the first contaminant recognized in textile 
wastewater which affects aesthetics, water transparency 
and gas solubilities in water bodies (Faraco et al., 2009; 
Satyawali et al., 2009) and has to be removed before 

discharging the wastewater into a receiving water body 
(Vijaya and Sandhya, 2003). 

Effluent discharged from the textile industries has 
variable characteristics in terms of pH, dissolved oxygen, 
organic and inorganic chemical content, etc. Pollution 
caused by dye effluent is mainly due to durability of the 
dyes in wastewater (Jadhav et al., 2007). Existing effluent 
treatment procedures utilize pH neutralization, 
coagulation followed by biological treatment, but they are 
unable to remove recalcitrant dyes completely from 
effluents. This is because of the color fastness, stability 
and resistance of dyes to degradation (Anjaneyulu et al., 
2005).  

Bioremediation is the microbial clean up approach 
which can transform various toxic chemicals to less 
harmful forms. Several reports suggest the degradation 
of complex organic substances, which can be brought 
about by bacterial enzymes like oxygenase (Ren et al., 
2006), laccase (Hatvani and Mecs, 2001), lignin 
peroxidase (Shanmugam et al., 1999), etc. Many 
microorganisms capable of decolorizing the dyes include 
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Gram- positive and negative bacteria (Sani and Banerjee, 
1999) and fungi (Balan and Monteneiro, 2001; Verma 
and Madamwar, 2005). Gram-negative bacteria are 
Pseudomonas, Acinetobacter, Alkaligenes, Moraxella, 
Achromabacter and Flavobacterium spp. The Gram-
positives include all in the actinomycete line and they are 
Mycobacterium, Nocardia, Rhodococcus and 
Arthrobacter spp. (Alexander, 1994). 

Pseudomonas putida is a rod-shaped, flagellated, 
gram-negative bacterium that is found in most soil and 
water habitats where there is oxygen. It grows optimally 
at 25 to 30°C and can be easily isolated. This bacteria is 
unique because it has most genes involved in breaking 
down aromatic or aliphatic hydrocarbons. Thus, 
researchers are attracted to using P. putida as the 
“laboratory ‘workhorse’ for research on bacteria-
remediated soil processes” (Kowalski, 2002). There is 
great interest in sequencing the genome of P. putida due 
to its strong effect in bioremediation (Marcus, 2003). 

The present study focuses on the use of P. putida 
strain MR1 isolated from the natural habitat of textile 
effluent environment, to degrade one of the frequently 
used textile dye, that is, methyl red. The effect of different 
physicochemical parameters on the growth and color 
removal were also studied. 
 
 
MATERIALS AND METHODS 

 
Isolation and identification  
 
The textile effluent contaminated soil and sludge samples collected 

from textile industrial region of Sanganer, Jaipur, Rajasthan, were 
used for isolation of dye decolorizing culture in mineral base 
medium with dye methyl red. One gram different samples were 
used to inoculate the 100 mL of medium containing 10 mg of methyl 
red and the flasks were incubated  in  the  orbital  shaker  at  37°C  
for  24  h. After 24 h of incubation in the liquid broth, the grown cells 
were streaked on the MBM agar plates with dye (100 mg L

-1
) in 

order to obtain the isolated colonies. The plates were incubated for 
24 h at 37°C. The dye decolorizing isolates were identified on the 
basis of the appearance of a clear zone around the colonies and 
purified by several streaking. The most promising bacterial isolate 
was used for further dye decolorizing studies. The isolate P. putida 
strain MR1 used in the present study is a Gram positive rod. 
Identification of isolate as P. putida strain MR1 was done by 16S r-
RNA sequencing at Microbial Type Culture Collection and Gene 
Bank (MTCC), Institute of Microbial Technology (IMTECH), 
Chandigarh and deposited in Genbank with accession number 
MTCC 10,014. Basic Local Alignment Search Tool (BLAST) was 

also performed. The phylogenetic tree was constructed by 
neighbour-joining method.  

Growth of pure culture of Pseudomonas was maintained on the 
mineral base medium with composition of:  mineral base 200 ml/L; 
yeast extract 2.0 g/L; 100 mg/L of methyl red dye; trace element 
solution and thiamine HCl solution (300 µg/100 ml) and pH 7.0. 
Optimum temperature for growth was 37°C. The composition of 
final medium include: mineral base 200 ml/L; yeast extract 2.0 g/L 

and 100 mg/L of methyl red dye. The final volume was adjusted to 
1000 ml with distilled water. The pH of the medium was kept at 7.0. 
The  medium  was  autoclaved   at   121°C   for   20 min   and   then  

 
 
 
 
supplemented with 100 ml/L of previously autoclaved trace element 
solution having the composition (g/L): CoCl2 0.2; H3BO3 0.3; 
ZnSO4.7H2O 0.1; MnCl2.4H2O 0.03; Na2MoO4.H2O 0.03; 

NiCl2.6H2O 0.02; CuCl2.2H2O 0.01 and 100 ml/L of autoclaved and 
filtered thiamine HCl solution (300 µg/100 ml).  
 
 
Chemicals  
 
All chemicals used were of analytical grade. The methyl red was 
obtained from Hi Media, India.  
 
 
Decolorization procedure 

 
The flasks containing mineral base medium (100 mL each) and 
methyl red (10 mg) were inoculated using loopful of isolate P. 

putida strain MR1. The uninoculated flask containing mineral base 
medium (100 mL) and methyl red (10mg) was taken as control. 
These flasks were incubated at 37°C for 24 h. The decolorization 

was determined by measuring the difference between optical 
density of control and inoculated flasks at 473 nm. The 
decolorization (%) was calculated as: 
 
Decolorization (%) = (Absorbance of control – observed 
absorbance) / absorbance of control × 100. 
 
The dye decolorization efficiency of the isolate P. putida strain MR1 
was also tested against other various dyes which included 

malachite green and some of the textile dyes like Red RH, Brown 
GR, Yellow FG, etc. 
 
 

Study of physicochemical parameters 
 
The isolated microbial strain P. putida MR1 was cultivated in liquid 
media under different physiological conditions to study the growth 

kinetics and also the decolorization process. These parameters 
included temperature, pH, dye concentration, addition of various 
carbon sources (sucrose, glucose, lactose, sodium acetate and 
starch) in the media, etc. The spectrophotometric analysis was 
carried out to study the effect of various parameters on the growth 
and the decolorizing ability of the isolate. The mineral base medium 
without the dye was used as a blank.  
 
 
Effect of temperature 

 
The effect of different incubation temperatures on growth and  
decolorization process was studied by keeping inoculated flasks, at 
different temperatures in the range of 30 to 40°C together  with  the  
control (0.1 g/L dye) for  24  h incubation. 
 
 
Effect of pH 

 
The effect of medium pH on the growth and decolorization 
efficiency of the isolate was investigated in the pH range of 6.5 to 
7.5. 

 
  
Effect of dye concentration 

 

To find out the most appropriate concentration of dye that could be 
decolorized in a shorter duration. The concentration of the dyes 
used was 50, 100 and 200 mg/L,  respectively.  These  flasks  were 
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Table 1. Spectrophotometric analysis of different dyes used by the isolate. 
 

Dye (0.1 g/L) Wavelength (nm) 
Absorbance 

Decolorization (%) 
Control isolate 

Methyl red 472 3.9133 No peak 100 

Malachite green 619 2.3064 0.6252 72.89 

Yellow FG 416 2.1210 2.0303 4.27 

Red RH 314 1.7792 1.4821 16.69 

Ponceau S 353 2.8929 2.8004 3.19 

Brown GR 468 1.6187 1.5007 7.28 

 
 
 
then incubated at 37°C.  
 
 
Effect of various carbon sources 

 
The decolorization efficiency of the isolate using methyl red (100 
mg L

-1
) was also evaluated in the presence of different carbon 

sources like glucose, lactose, starch, sodium acetate and sucrose 
in the mineral base medium at a concentration of 1g/L keeping all 
other parameters constant. 
 
 
Growth kinetics 

 
The isolate was also characterized in terms of their growth profile at 
optimal conditions in which the various parameters such as the 
increase in the cell biomass and the exact time of decolorization, 
etc, was monitored. 
 
 

RESULTS 
 

Isolation and identification 
 
Soil and sludge samples collected from contaminated 
sites around various dye industries in Sanganer, Jaipur 
were used for isolation of dye decolorizing culture in 
mineral base medium at pH 7.0. The isolate was Gram 
negative rod shaped bacteria. The partial nucleotide base 
sequencing (1529 base pairs) of 16S rRNA of isolate was 
done at Institute of Microbial Technology (IMTECH), 
Chandigarh. Basic Local Alignment Search Tool (BLAST) 
search (Table 3) for sequence homology at GenBank 
(www.ncbi.nlm.nih.gov) was also performed which 
showed that the bacteria had 100% homology with P. 
putida strain BASUP87 16S ribosomal RNA gene partial 
sequence, Pseudomonas monteilii strain SB3091 16S 
ribosomal RNA sequence, Pseudomonas sp. J4(2008) 
16S ribosomal RNA sequence and Pseudomonas sp. 
BJQ-D4 16S ribosomal RNA, P. putida strain LH-R1 16S 
ribosomal RNA gene and 99% identity with 
Pseudomonas sp. HB01 gene for 16S ribosomal gene 
partial sequence. 

A phylogenetic tree (Figure 1) suggests that the isolate 
shows very near evolutionary relationship with 

Pseudomonas oryzihabitans IAM 1568T (D84004). Thus, 
the isolate was identified as P. putida strain MR1 and 
deposited at Microbial Type Culture Collection and Gene 
Bank (MTCC), IMTECH, Chandigarh, with accession 
number MTCC 10,014. 
 
 
Decolorization performance 
 
The isolate P. putida strain MR1 could decolorize the dye 
methyl red as well as some other dyes to an appreciable 
extent as shown in Table 1. The effect of various 
physicochemical parameters like pH, temperature, 
carbon source on decolorization of dye methyl red by the 
isolate was studied in mineral base medium with 100 mg/l 
methyl red. 
 
 
Effect of temperature 
 
The  incubation  temperature  affected  the  growth  and  
activity  of  the  P. putida strain MR1. Based on the 
results of Figure 2, the maximum decolorization was 
obtained when the isolate was incubated at 34°C 
followed by 37°C. A very low efficiency of decolorization 
was obtained under lower and higher temperature of 
incubation. 
 
 
Effect of pH 
 
It was observed that maximum growth and maximum 
decolorization was achieved at pH 7.0. Even below and 
above the neutral pH, the isolate was able to grow and 
decolorize the methyl red (Figure 3). 
 
 
Effect of various methyl red concentrations 
 
The rate and extent of decolorization were affected by 
increasing concentrations of dye ranging from 50 to 200 
mg/L. The  spectrophotometric  analysis  (scanned   in   a   
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 T
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 T
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Figure 1. Phylogenetic tree of P. putida MR1. 
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Figure 2. Effect of temperature on cell growth and decolorization of methyl red (100 mg/L). 

 
 
 
spectrophotometer  under  the  range  of  200 to  600 nm) 
revealed that the maximum decolorization (99.65%) of 
the dye was seen at dye concentration of 100 mg/l within 

24 h, whereas lesser decolorization of 92.72 and 63.67% 
was seen at dye concentration of 50 and 200 mg/l, 
respectively. 
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Figure 3. Effect of pH on cell growth and decolorization of methyl red (100 mg/L). 

 
 
 

Table 2. Decolorization of methyl red by P. putida strain MR1. 

 

Time (h) 
Methyl red 

(control) 472 nm 

Absorbance 

472 nm 
Decolorization (%) 

6 3.2148 3.0679 4.57 

9 3.2148 1.5686 51.21 

12 3.2148 0.5461 83.01 

18 3.2148 0.4224 86.86 

24 3.2148 Not detected 100 

36 3.2148 Not detected 100 

48 3.2148 Not detected 100 

 
 
 
Effect of various carbon sources 
 
While trying to enhance decolorization performance of 
methyl red, extra carbon sources were added in the 
medium. The spectrophotometric analysis revealed that 
the percentage decolorization was maximum (95.39%) 
when no extra carbon source was added in the medium 
and 94.99 and 92% decolorization was seen with glucose 
and sucrose, respectively, while less decolorization was 
seen with starch (88%) and lactose (86%). 
 
 
Growth profile of isolate 
 
It was observed that with increase in incubation time, the 
decolorization efficiency of the isolate increased and the 
dye methyl red was completely decolorized at 24 h of 
incubation   (Table  2)   while   the    cell    biomass    also 

increased up to 12 h and then decreased (Figure 4). 
 
 
DISCUSSION 
 
The isolate P. putida strain MR1 could decolorize the dye 
methyl red (no peak) and some other dyes like Yellow FG 
(4.27%), Red RH (16.69%), Ponceau S (3.19%) and 
Brown GR (7.28%). The observed variation in percent 
decolorization of different dyes by the isolate was 
attributed to the difference in structure and complexity of 
each dye (Zimmermann et al., 1982; Sani and Banerjee, 
1999; Khehra et al., 2004). 

Different physicochemical parameters like temperature, 
pH, dye concentration and carbon source influence 
decolorization of textile dyes by the isolate. In our present 
investigation, the optimum pH and temperature required 
for the efficient decolorization  of  dye  methyl red  by  the  
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Table 3. NCBI BLAST: Nucleotide Sequence 772 letters of isolate P. putida MR1. 
 

GU396283.1 
Pseudomonas putida strain BASUP87 16S ribosomal RNA gene, partial 
sequence 

1426 1426 100% 0.0 100% 

GU191925.1 
Pseudomonas monteilii strain SB 3091 16S ribosomal RNA gene, partial 
sequence 

1426 1426 100% 0.0 100% 

EU372973.1 Pseudomonas sp. J4(2008) 16S ribosomal RNA gene, partial sequence 1426 1426 100% 0.0 100% 

GQ284476.1 
Pseudomonas monteilii strain PCWCW7 16S ribosomal RNA gene, partial 
sequence 

1426 1426 100% 0.0 100% 

GQ284471.1 Pseudomonas sp. PCWCW2 16S ribosomal RNA gene, partial sequence 1426 1426 100% 0.0 100% 

GQ284465.1 Pseudomonas sp. TSWCW20 16S ribosomal RNA gene, partial sequence 1426 1426 100% 0.0 100% 

AB456678.1 Pseudomonas sp. TIS1-127 gene for 16S ribosomal RNA, partial sequence 1426 1426 100% 0.0 100% 

FJ032013.1 Pseudomonas sp. CTN-2 16S ribosomal RNA gene, partial sequence 1426 1426 100% 0.0 100% 

FJ600361.1 Pseudomonas sp. BJQ-D4 16S ribosomal RNA gene, partial sequence 1426 1426 100% 0.0 100% 

EU439420.1 Pseudomonas putida strain LH-R1 16S ribosomal RNA gene, partial sequence 1426 1426 100% 0.0 100% 

EU103629.2 
Pseudomonas taiwanensis strain BCRC 17751 16S ribosomal RNA gene, 
partial sequence 

1426 1426 100% 0.0 100% 

AM911664.1 Pseudomonas sp. RW2S1 partial 16S rRNA gene, strain RW2S1 1426 1426 100% 0.0 100% 

AM911645.1 Pseudomonas sp. RD9PR3 partial 16S rRNA gene, strain RD9PR3 1426 1426 100% 0.0 100% 

AM911633.1 Pseudomonas sp. RD5PR1 partial 16S rRNA gene, strain RD5PR1 1426 1426 100% 0.0 100% 

AM911630.1 Pseudomonas sp. RD3SR3 partial 16S rRNA gene, strain RD3SR3 1426 1426 100% 0.0 100% 

AM911629.1 Pseudomonas sp. RD3SR2 partial 16S rRNA gene, strain RD3SR2 1426 1426 100% 0.0 100% 

AM911625.1 Pseudomonas sp. RD1PR2 partial 16S rRNA gene, strain RD1PR2 1426 1426 100% 0.0 100% 

DQ060242.1 Pseudomonas putida 16S ribosomal RNA gene, partial sequence 1426 1426 100% 0.0 100% 

AJ785569.1 Pseudomonas sp. Wt/3 partial 16S rRNA gene 1426 1426 100% 0.0 100% 

DQ301785.1 Pseudomonas sp. PHD-8 16S ribosomal RNA gene, partial sequence 1426 1426 100% 0.0 100% 

HQ270550.1 
Pseudomonas putida strain GPSD-19 16S ribosomal RNA gene, partial 
sequence 

1424 1424 99% 0.0 100% 

AM911666.1 Pseudomonas sp. RW7P2 partial 16S rRNA gene, strain RW7P2 1424 1424 99% 0.0 100% 

AM911639.1 Pseudomonas sp. RD7SR2 partial 16S rRNA gene, strain RD7SR2 1424 1424 99% 0.0 100% 
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Figure 4. Growth profile of the isolate in methyl red. 
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isolate P. putida strain MR1 in the liquid culture was 7.0 
and 34°C, respectively. 

Normally, dye decolorizing bacteria have a narrow pH 
range (Chen et al., 2003; Moosvi et al., 2005). Presently, 
it was found that maximum growth of isolate and 
maximum decolorization (94.63%) was achieved at pH 
7.0. This is in agreement with the studies previously 
conducted on degradation of methyl red by Adedayo et 
al. (2004) and Verma and Madamwar (2005).  

Increase in temperature proved to have a positive 
effect on the growth of the isolate and methyl red 
decolorization, which was maximum (0.828 and 91%, 
respectively) at 34°C. These observations could be 
attributed to the increase in enzyme activity and growth 
increase with the temperature (Asad et al., 2006). 
However, further temperature increase proved to be quite 
limiting for the growth and related decolorization of 
methyl red by the isolate.  

The isolate decolorized methyl red maximally (99.65%) 
at dye concentration of 100 mg/l. Further increase in dye 
concentration resulted in decrease in the percentage of 
decolorization and cell growth. This might be due to 
toxicity of dye through the inhibition of metabolic activities 
(Asad et al., 2006). 
 
 
Conclusion 
 

The dye methyl red was completely decolorized by a 
bacterium isolated from the soil samples collected from 
textile dyeing industrial region of Sanganer, Jaipur, 
Rajasthan. The isolate was identified as P. putida strain 
MR1 by MTCC, IMTECH, Chandigarh. The isolate 
decolorized dye methyl red within 24 h of incubation. 
Maximum decolorization was achieved at temperature 
34°C and pH 7. The partial gene sequence of 16S rRNA, 
BLAST search and phylogenetic tree of the isolate were 
also made. 
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