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Acinetobacter baumannii is an opportunistic Gram negative coccobacillus that can grow easily in moist 
as well as dry conditions. During the last decade, A. baumannii emerged as one of the most resistant 
opportunistic pathogens responsible for nosocomial infections including ventilator associated 
pneumonia. The bug remains an important and difficult to treat pathogen whose pan-drug resistant 
nature has created a serious challenge. This has restricted the choice of treatment modalities. 
Currently, it appears as if all the available antibiotics are failing against this pathogen while single 
antibiotic therapy is certainly not working anymore. Thus, there is a strong need, thus, to explore new 
regimens to combat this resistant organism. A wide range of various combinations of drugs should 
therefore be tested for their synergistic activity against this pathogen. This study was aimed to find 
some effective combinations against extensively drug resistant (XDR) A. baumannii by combining 
various antibacterials. The microdilution checkerboard titration method was used for this purpose and 
fractional inhibitory concentrations (FICs) were calculated. In-vitro synergy was found in polymyxin B-
colistin (n = 3; 15%) and polymyxin B-rifampin (n = 3; 15%) combinations. Only additive effect was noted 
with polymyxin B-doxycycline (n = 12; 60%), polymyxin B-rifampin (n = 11; 55%), and polymyxin B-
colistin (n = 13; 65%). However, antagonism was detected in the polymyxin B-rifampin combination in 
one of the 20 strains evaluated for the purpose. Polymyxin B in combination with rifampin and colistin 
may be exploited against XDR A. baumannii. Synergy between polymyxin B and colistin have been 
demonstrated in only 15% of strains, this fully warrants the testing of more combinations.  
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INTRODUCTION 
 
The genus Acinetobacter is a ubiquitous group of micro-
organisms (Giamarellou et al., 2008) and is found in the 
environment. Acinetobacter baumannii was considered to 
be a pathogen of low grade pathogenecity and was 
ignored whenever isolated from clinical specimens until 

the 1970s (Zarrilli et al., 2009). It has recently emerged 
as one of the most troublesome nosocomial pathogens 
globally and has become a major cause of health care-
associated and community-acquired infections (Talbot et 
al., 2006; Davis et al., 2005). Management of MDR/XDR
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Abbreviations: A. baumannii, Acinetobacter baumannii; API 20NE, analytical profile index 20 Non-Enterobactericeae; ATCC, 
American type culture collection; FIC, fractional inhibitory concentration; FICI, fractional inhibitory concentration index; MBC, 
minimal bactericidal concentration; MDR, multi-drug resistant; MIC, minimal inhibitory concentration; PDR, pan-drug resistant; 
XDR, extensively drug resistant. 
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A. baumannii infections is a big challenge for physicians 
and clinical microbiologist. The organism’s capability to 
survive in hospital settings and to persist for long periods 
of time on various surfaces makes it a frequent cause of 
healthcare associated infections. Another problem 
regarding A. baumannii is its ability to cause a wide 
spectrum of infections which include wound infections, 
bacteremia, pneumonia, urinary tract infections, etc 
(Manchanda et al., 2010). A. baumannii is proven to have 
the capability to form biofilms that is believed to play 
central part in the process of colonization (Pour et al., 
2011). 

During the early 1970s, the clinical isolates of A. 
baumannii were usually susceptible to various antibiotic 
classes (Bergogne-Berezin and Towner, 1996). However, 
since 1975, increasing resistance to almost all groups of 
antibacterials started appearing (Manchanda et al., 2010; 
Montefour et al., 2008). From the year 2000 to date, 
various combinations of antibiotics have been evaluated 
for their synergistic activity or otherwise to combat this 
resistant pathogen (Rodriguez-Hernandez et al., 2000; 
Montero et al., 2004; Saballs et al., 2006; Tan et al., 
2011). 

The focus of this study was to determine the synergistic 
effect of polymyxin B with either of the antibiotics: 
rifampin, colistin and doxycycline by the checkerboard 
microtitration technique.  
 
 
MATERIALS AND METHODS 
 
Bacterial strains 

 
The extensively drug resistant A. baumannii (XDR-AB) phenotype 

was identified as an A. baumannii strain, resistant to all classes of 
the traditional antibiotics except tigecycline and polymyxin B using 
the disc diffusion method according to Clinical and Laboratory 
Standards Institute (CLSI, 2012) recommendations. These strains 
were isolated from various clinical samples, and collected from 
various patients hospitalized in Lahore, Pakistan in 2012. The 
strains were identified by their morphological and biochemical 
characteristics and, later by using API 20-NE (BioMerieux, France). 
The selected strains were stored in microbanks at -80°C.  
 
 
Antimicrobial agents and minimal inhibitory concentration 
determination 

 
The base materials of antimicrobial agents used in combinations 
were: polymyxin B (Glaxosmith Kline pharmaceuticals), rifampin 
(Pacific pharmaceuticals), colistin (Forest pharmaceuticals) and 
doxycycline (Pfizer Global pharmaceuticals). Stock solutions of 
antibiotics were prepared in their respective solvents (water for 
polymyxin B, colistin and doxycycline, methanol for rifampin) 
according to the CLSI 2012 guidelines and stored at -20°C for one 
week. Minimal inhibitory concentrations (MICs) of all strains for 
each antibiotic were determined by a standard agar dilution 
method. Bacterial inoculum equivalent to 0.5 McFarland (5x10

8
) 

was prepared and diluted 1:10 to achieve the final concentration of 
5x10

7
 CFU/ml. The concentration range of various antibiotics was 

prepared; 0.125 to 8.0 µg/ml (polymyxin B and colistin), 0.5 to 64 
µg/ml (doxycycline), 0.06 to 64 µg/ml (rifampin) in Mueller Hinton 
agar. The  plates were inoculated  with  the  bacterial  suspensions  

 
 
 
 
using multipoint inoculators (MAST Diagnostics UK). The same was 
incubated for 24 h at 37°C. Lowest concentration at which bacterial 
growth was inhibited was noted after incubation (CLSI 2012). 
Escherichia coli ATCC 25922 was used as a control strain. MIC 
results were read and interpreted according to the CLSI breakpoint 
criteria for A. baumannii. Since there are no CLSI interpretation 
criteria of rifampin, available, relevant to A. baumannii, the 
breakpoints for this antibiotic were based on the MIC standards of 
CLSI for Gram positive bacteria (CLSI, 2012).  
 
 
Synergy testing 
 

The synergistic activity of the antibiotic combinations was 
determined using the microdilution checkerboard titration method. 
The range of concentrations was chosen according to the 
previously determined MIC of each antibiotic for each isolate. 
Concentrations used ranged from 0.06xMIC to 8xMIC for each 
antibiotic. The interpretation of the checkerboard synergy testing 
results was determined by the method of Orhan et al. (2005). FICs 
and FICI were calculated for each antimicrobial combination using 
the formulas below:  
 

ƩFIC or FICI = FIC A + FIC B 
 

Where,  
 

              MIC of drug A in the combination 
                       MIC of drug A alone  
 
 
 

FIC A = 
 

 
and 

   

              MIC of drug B in the combination 
                        MIC of drug B alone 

 

FIC B = 
 

 

The combination was considered synergistic when the ƩFIC was 
≤0.5, additive when the ƩFIC was >0.5 to ≤1.0 indifferent when the 
ƩFIC was >1.0 to <2, and antagonistic when the ƩFIC was ≥2 
(Orhan et al., 2005). 
 
 

RESULTS 
 
The detail of the various clinical materials from which A. 
baumannii was originally isolated is shown in Figure 1. 
The highest number of A. baumannii strains were isolated 
from central venous catheter tips (n=9; 45%) followed by 
pus (n=8; 40%), urine (n=1; 5%), high vaginal swab (n=1; 
5%) and body fluids (n=1; 5%). Major isolation from CVC 
tips is mainly due to the capability of A. baumannii to 
survive on dry as well as moist conditions and also grow 
well on tubings of catheters and ventilators. The second 
highest source was pus which indicates its ability to 
colonize open wounds and from where it can invade into 
the blood stream to cause life threatening bacteremia. All 
isolates were resistant to all the classes of antimicrobials 
except polymyxin B (100% susceptible) and doxycycline 
(85% susceptible). However, all were resistant to colistin 
irrespective of their susceptibility or otherwise to 
polymyxin B and doxycycline. Their susceptibility patterns 
are shown in the Figure 2. 

MIC90 for polymyxin B, colistin, doxycycline and 
rifampin was 1, 8, 64 and 2 µg/ml respectively. Their MIC 
ranges and susceptibility rates are shown in Table 1. MIC 
for ATCC E. coli 25922 for polymyxin B, colistin, doxycy- 
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Figure 1. Sources of XDR A. baumannii isolates. 

 
 
 

 
 

Figure 2. Susceptibility of A. baumannii isolates to various antibiotics. PIP: piperacillin, SAM: 

ampicillin-sulbactam, TZP: piperacillin-tazobactam, TIM: ticarcillin-clavulanic acid, CAZ: 
ceftazidime, CRO: ceftriaxone, FEP: cefepime, IMP: imipenem, CN: gentamicin, DO: doxycycline, 
LEV: levofloxacin, SXT: cotrimoxazole, PB: polymyxin B, COL: colistin, RD: rifampin, TGC: 
tigecycline. 

 
 
 
cline, and rifampin are also shown in Table 1. MICs of 
XDR A. baumannii for four tested antibiotics by broth 
microdilution method are shown in Table 2. 

The results of the microtitration checkerboard method 
are shown in Table 3. Three isolates (15%): AB-02, AB-
14, and AB-20 strains showed synergistic effect in 
polymyxin B-rifampin combination while 55% additive 
effect was seen in this combination. In the case of AB-02 
and AB-20, the MIC of polymyxin B in combination was 

reduced to one fourth as compared to the individual MICs 
against these isolates. The MIC of rifampin was reduced 
to one eighth and one fourth for AB-02 and AB-20 
respectively. For the isolate AB-14, the MIC of polymyxin 
B and rifampin was reduced to one eighth and one fourth 
respectively.  

Indifference was detected in 25% of the isolates while 
AB-08 showed antagonism (5%) in this combination of 
antimicrobials. The MIC of polymyxin B was increased 
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Table 1. Minimal inhibitory concentrations (MICs), susceptibility rates and quality control (QC) ranges of XDR A. baumannii (n=20) and E. coli 
ATCC 25922 versus 4 different antibiotics. 
 

Antibiotic 

XDR A. baumannii (n=20) E. coli ATCC 
a
 25922 (n=1) 

MIC (µg/ml) Susceptibility rate (%) 
b
 MIC 

(µg/ml) 
MIC QC Ranges

d
 

(µg/ml) Range
c
 MIC50 MIC90 Susceptible Intermediate Resistant 

Polymyxin B 0.5 to 1.0 0.5 1.0 100 - - 0.5 0.25-2.0 

Rifampin 1.0 to 8.0 2.0 2.0 - - - 8.0 4.0-16 

Colistin 4.0 to 8.0 4.0 8.0 - - 100 1.0 0.25-2.0 

Doxycycline  1.0 to 64 1.0 64 85 - 15 1.0 0.5-2.0 
 

a: American Type Culture Collection; b: susceptibility was interpreted according to Clinical Laboratory Standard (CLSI) 2012 guidelines. c: 
Susceptibility range given by CLSI 2012 guidelines. d: Quality control ranges provided by CLSI 2012 guidelines against ATCC reference strain. 

 
 
 

Table 2. Minimal inhibitory concentrations (MICs) of XDR A. baumannii (n=20) 

versus 4 different antibiotics by broth microdilution method. 
 

Isolate no. 
MIC (µg/ml) 

Polymyxin B Colistin Doxycycline Rifampin 

AB-01 0.5 1.0 0.5 1.0 

AB-02 0.5 2.0 32 2.0 

AB-03 1.0 2.0 0.5 1.0 

AB-04 0.5 1.0 0.25 1.0 

AB-05 0.5 1.0 0.25 1.0 

AB-06 0.5 2.0 0.5 1.0 

AB-07 1.0 1.0 0.5 1.0 

AB-08 0.5 2.0 0.25 1.0 

AB-09 0.5 1.0 0.5 2.0 

AB-10 0.5 1.0 0.5 1.0 

AB-11 0.5 2.0 0.25 2.0 

AB-12 0.5 4.0 0.5 1.0 

AB-13 0.5 2.0 0.5 1.0 

AB-14 0.5 2.0 32 8.0 

AB-15 0.5 2.0 0.5 2.0 

AB-16 1.0 2.0 0.25 2.0 

AB-17 0.5 2.0 0.25 1.0 

AB-18 0.5 2.0 0.25 1.0 

AB-19 0.25 2.0 0.5 1.0 

AB- 20 1.0 2.0 64 8.0 
 
 
 

four times for AB-08 in combination with rifampin and 
showed antagonism. In polymyxin B-colistin combination, 
three strains: (15%) AB-06, AB-19, and AB-20 showed 
synergistic effect. In all the three isolates showing 
synergism, MIC of colistin was reduced by one fourth in 
combination with polymyxin B. For AB-19, MIC was 
dropped to one eighth, while for the rest of the two 
isolates it was reduced to one fourth in combination.  

Additive effect in this combination was found to be 
65%, and indifference was 20% while there was no 
antagonism detected in this combination. In the case of 
polymyxin B-doxycycline combination, no synergism or 
antagonism was shown. Additive effect was 60% while 
the remaining 40% was indifference shown in this 

combination. 
 
 
DISCUSSION 
 
A. baumannii has become a major challenge due to its 
multiple drug resistance. In recent years, more and more 
cases of mortality and morbidity due to MDR/XDR A. 
baumannii have come to light (Queenan et al., 2012; 
Karaiskos et al., 2013).  

Several studies have been done, both in-vitro and in-
vivo, to demonstrate the synergism of two or more 
antibiotics in combination against resistant pathogens 
(Gunderson et al., 2003; Lim et al., 2011; Fiori and Van
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Table 3. Synergy test results of antibiotic combination by checkerboard microtitration method. 

 

Strain 
no. 

PB - RD  PB - COL  PB - DO 

Conc. 

of PB 

Conc. 

of RD 
∑ FIC Activity 

 Conc. 

of PB 

Conc. 

of COL 
∑ FIC Activity 

 Conc. 

of PB 

Conc. 

of DO 
∑ FIC Activity 

AB-01 MIC 1/2 MIC 1.5 ID  1/2 MIC 1/2 MIC 1.0 ADD  1/2 MIC MIC 1.5 ID 

AB-02 1/4 MIC 1/8 MIC 0.375 S  1/4 MIC 1/2 MIC 0.75 ADD  1/2 MIC 1/4 MIC 0.75 ADD 

AB-03 1/2 MIC 1/4 MIC 0.75 ADD  1/2 MIC MIC 1.5 ID  1/2 MIC 1/4 MIC 0.75 ADD 

AB-04 MIC 1/2 MIC 1.5 ID  1/2 MIC 1/4 MIC 0.75 ADD  1/2 MIC MIC 1.5 ID 

AB-05 1/2 MIC 1/8 MIC 0.625 ADD  1/2 MIC 1/2 MIC 1.0 ADD  1/2 MIC MIC 1.5 ID 

AB-06 1/2 MIC 1/4 MIC 0.75 ADD  1/4 MIC 1/4 MIC 0.49 S  1/2 MIC 1/2 MIC 1.0 ADD 

AB-07 1/2 MIC 1/4 MIC 0.75 ADD  1/2 MIC MIC 1.5 ID  MIC 1/2 MIC 1.25 ID 

AB-08 4 MIC 1/2 MIC 4.5 AG  1/2 MIC MIC 1.5 ID  1/2 MIC MIC 1.5 ID 

AB-09 1/8 MIC 1/2 MIC 0.62 ADD  1/2 MIC MIC 1.5 ID  1/2 MIC 1/2 MIC 1.0 ADD 

AB-10 1/2 MIC 1/4 MIC 0.75 ADD  1/2 MIC 1/4 MIC 0.75 ADD  1/2 MIC 1/4 MIC 0.75 ADD 

AB-11 MIC 1/8 MIC 1.125 ID  1/2 MIC 1/2 MIC 1.0 ADD  1/4 MIC 1/2 MIC 0.75 ADD 

AB-12 MIC 1/4 MIC 0.75 ADD  1/8 MIC 1/2 MIC 0.62 ADD  1/8 MIC 1/2 MIC 0.62 ADD 

AB-13 1/2 MIC 1/4 MIC 0.75 ADD  1/8 MIC 1/2 MIC 0.62 ADD  1/2 MIC 1/2 MIC 1.0 ADD 

AB-14 1/8 MIC 1/4 MIC 0.37 S  1/2 MIC 1/2 MIC 1.0 ADD  1/4 MIC 1/2 MIC 0.62 ADD 

AB-15 1/8 MIC 1/2 MIC 0.62 ADD  1/2 MIC 1/4 MIC 0.75 ADD  1/4 MIC MIC 1.25 ID 

AB-16 1/16 MIC 1/2 MIC 0.56 ADD  1/2 MIC 1/2 MIC 1.0 ADD  1/4 MIC MIC 1.25 ID 

AB-17 MIC 1/4 MIC 1.25 ID  1/2 MIC 1/4 MIC 0.75 ADD  1/8 MIC MIC 1.125 ID 

AB-18 MIC 1/4 MIC 1.25 ID  1/2 MIC 1/4 MIC 0.75 ADD  1/2 MIC 1/2 MIC 1.0 ADD 

AB-19 1/2 MIC 1/2 MIC 1.0 ADD  1/8 MIC 1/4 MIC 0.37 S  1/2 MIC 1/4 MIC 0.75 ADD 

AB- 20 1/4 MIC 1/4 MIC 0.5 S  1/4 MIC 1/4 MIC 0.5 S  1/2 MIC 1/8 MIC 0.62 ADD 
 

AB: A. baumannii, S: synergism, ID: indifference, ADD: additive effect, AG: antagonism, PB: polymyxin B, RD: rifampin, COL: colistin, DO: doxycycline, FIC: fractional inhibitory concentration, Conc.: 

concentration. 

 
 
 
Dijck, 2012). Antimicrobial resistance in A. 
baumannii has considerably increased in the 
recent past (Lockhart et al., 2007). In our study, 
15% of XDR A. baumannii strains showed 
resistance to doxycycline. In a study done in 
2006, doxycycline resistance was reported to be 
22% for A. baumannii (Elmanama, 2006).  

In yet another study, 8% strains showed 
resistance to doxycycline (Timurkaynak et al., 
2006). All strains were susceptible to polymyxin B 

while all of them were resistant to colistin. The 
susceptibility of XDR A. baumannii to polymyxin B 
is found to be 100% in other studies as well (Kuo 
et al., 2012; Lim et al., 2011). Colistin resistance 
has been reported from various regions of the 
world. Colistin resistance was found to be 40.6% 
in Spain (Arroyo et al., 2009). In Kuwait, colistin 
resistance was found to be 12% (Al-Sweih et al., 
2011). In a study done by Chang et al. (2012) 
10.4% colistin resistance was found. In another 

study colistin resistance was found to be 7.1% 
(Rodriguez et al., 2010). Although the incidence of 
colistin resistance is low worldwide in contrast to 
our findings, it has been proved through in-vitro 
experiment that the rate of resistance 
development to colisitin is rapid among 
Acinetobacter (Tan et al., 2007). Colistin is being 
used against MDR and XDR Gram negative 
organisms especially Pseudomonas and A. 
baumannii due to its relatively low neurotoxicity
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and nephrotoxicity as compared to polymyxin B and 
aminoglycosides. So far no heteroresistance has been 
reported in polymyxin B, this could be the main reason 
behind the 100% susceptibility to it (Mammina et al., 
2012; Adams et al., 2009; Li et al., 2006) . In this study 
we intentionally took XDR strains of A. baumannii 
because these organisms have become a major problem 
and are untreatable in our setup. These isolates were 
resistant to colistin, however this might not represent the 
actual percentage of colistin resistance in our setup, as 
we did not take random isolates.  In addition to their 
resistance to various antimicrobials, all XDR A. 
baumannii were resistant to tigecycline as well. 
Decreased susceptibility to tigecycline is linked with efflux 
pumps, over expressed by MDR/XDR A. baumannii 
(Ruzin et al., 2007). Tigecycline resistance among MDR 
A. baumannii was found to be 78% by Li et al. (2007) and 
66% by Navon-Venezia et al. (2007). Al-Sweih et al. 
(2011) in contrast, reported 13.6% tigecycline resistance 
among 250 Acinetobacter isolates. The most probable 
reason for these contrasting results to our study could be 
the XDR strains in comparison with the susceptible and 
MRD strains which were used in the above mentioned 
studies. It is reported that A. baumannii showing resis-
tance to multiple antimicrobial agents are notorious for 
reduced susceptibility to tigecycline (Ruzin et al., 2007).    

Rifampin has been reported in various studies to have 
synergistic activity with different antibiotics against A. 
baumannii (Pachon-Ibanez et al., 2010). Thus synergistic 
activity of polymyxin B-rifampin in combination was found 
to be 15% in our study, although these strains were 
resistant to rifampin alone. Tan et al. (2011) reported 
19% synergism in polymyxin B-rifampin combination 
against A. baumannii by the checkerboard microtitration 
method and 56% by the time kill assay. These results are 
in accordance with our study when compared with the 
checkerboard microtitration method. Lim et al. (2011) 
found the highest synergistic activity in a polymyxin B-
rifampin combination out of all the tested combinations 
(41.9%) by time kill assay. Carl et al. (2010) reported 
60% bactericidal activity in polymyxin B-doripenem-
rifampin triple combination against MDR A. baumannii in 
a time kill assay. All MDR A. baumannii strains were 
resistant to carbapenems and rifampin when tested alone 
(Urban et al., 2010). Manikal et al. (2000) found a 50% 
synergistic effect of polymyxin B-rifampin combination 
against A. baumannii and a 50% additive effect by the 
checkerboard microtitration method. Antagonism was 
also noted in the polymyxin B-rifampin combination and 
was found to be 5%, however the additive effect was 
found to be 55%. In contrast to our study, none of the 
above mentioned studies reported antagonism of 
polymyxin B with rifampin (Tan et al., 2011; Lim et al., 
2011; Urban et al., 2010).   

Polymyxin B-colistin combination also showed 15% 
synergism. To our knowledge, a polymyxin B-colistin 
combination  has  not  yet  been  tested  against  XDR  A.  

 
 
 
 
baumannii. The highest additive effect was noted in this 
combination (65%). Although both the antibiotic agents 
have the same site of action, more extensive research is 
needed to find an effective combination showing higher 
rates of synergism against XDR A. baumannii. In the 
case of the polymyxin B-doxycycline combination, only 
additive effect/indifference (60/40%) was found. Our 
results are in accordance with another study in which 
doxycycline in combination with other antibiotics against 
A. baumannii showed either additive effect or indifference 
(Timurkaynak et al., 2006). There are several reports 
about the synergistic activity of polymyxin B when used in 
combination therapies with imipenem, rifampin and 
azithromycin (Yoon et al., 2004; Wareham and Bean, 
2006). It is noted that the results of synergy tests are 
highly strain and method dependent and in vitro synergy 
may or may not translate into in-vivo benefit (Pankey and 
Ashcraft, 2009).   

It is concluded that polymyxin B-rifampin and polymyxin 
B-colistin combinations have demonstrated synergism 
against XDR A. baumannii by the method used, that is, 
checkerboard microtitration. However, the gold standard 
method for synergy testing is time-kill assay, that is, our 
study limitation. More antibiotic combinations should be 
tested e.g., tigecycline in order to find more effective 
combinations against XDR A. baumannii. 
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