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The antifungal efficiency of Zinc oxide nanoparticles (ZnO NPs) was investigated against two 
pathogenic fungal species, F. oxysporum and P. expansum. The two fungi were identified at molecular 
level by nuclear ribosomal DNA internal transcribed spacer (ITS) identities. They have been submitted 
to the GenBank with accession numbers of AB753032 and AB753033 for F. oxysporum and P. 
expansum, respectively. The antifungal activity of ZnO NPs was found to be concentration dependent. 
Hence, maximal inhibition of mycelial growth corresponded to the highest experimental concentration 
(12 mg L

−1
), where 77 and 100% growth inhibition was observed for F. oxysporum and P. expansum, 

respectively. The effect of ZnO NPs on the mycotoxins fusaric acid and patulin production by F. 
oxysporum and P. expansum, respectively, was investigated using HPLC quantification. It was 
observed that ZnO NPs prevented both mycotoxins synthesis in a concentration dependent manner. 
Fusaric acid was reduced from 39.0 to 0.20 mg g

-1
 while patulin production was reduced from 14.2 to 

1.10 mg g
-1

 in control and 12 mg L
−1

 ZnO NPs treated samples, respectively. The scanning electron 
microscopy (SEM) revealed obvious deformation in the growing mycelia treated with ZnO NPs in F. 
oxysporum which may be the cause of growth inhibition. 
 
Key words: Zinc Oxide Nanoparticles (ZnO NPs), antifungal efficiency, Fusarium oxysporum, Penicillium 
expansum. 

 
 

INTRODUCTION 

 
Fungal growth and pathogenicity are the main cause of 
considerable economic loss during postharvest and hand-
ling of vegetable crop and fruits. Fusarium oxysporum is 
a cosmopolitan fungus that includes pathogenic and 
saprophytic members. The pathogenic members are best 
known for causing Fusarium wilt diseases of many eco-
nomically important crops (Tripathi et al., 2009). Until 
now, synthetic fungicides are used as primary means to 
control Fusarium wilts. While Penicillium expansum 
causes severe postharvest fruit diseases including grey 

and blue mold even when the most advanced post-
harvest technologies are applied (Spadaro et al., 2004), it 
primarily causes the rot of stored apples and pears 
(Cabanas et al., 2009). Furthermore, P. expansum is 
regarded as the major producer of a mycotoxin, patulin, 
which is commonly found in rotting apples. U.S. Food and 
Drug Administration (FDA) limits patulin to 50µg/L in 
apple juices (Moake et al., 2006). 

Today a number of synthetic fungicides have been found 
to cause adverse effects to humans and the environment
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and for this reason many of them have been banned. It is 
difficult to control fungal growth because fungi have 
developed resistance to many conventional fungicides 
such as benzimidazoles and dicarboximides (Elad et al., 
1992). Moreover, these traditional fungicides are beco-
ming ineffective due to the development of new physio-
logical races of the pathogens (Ocamb et al., 2007). To 
overcome resistance, it is important to explore novel anti-
fungal agents, which may replace current con-trol strate-
gies. In recent years, nanoparticle (NP) mate-rials have 
received increasing attention due to their unique physical 
and chemical properties, which differs significantly from 
their conventional counterparts (Stoimenov et al., 2002).  

Recent studies have demonstrated antimicrobial effi-
cacy against bacteria, viruses and eukaryotic microorga-
nisms of various NP materials, including silver (Kim et al., 
2008; Kumar et al., 2008), copper (Cioffi et al., 2005), 
titanium dioxide (Kwak et al., 2001), magnesium, gold 
(Gu et al., 2003), alginate (Ahmad et al., 2006) and zinc 
oxide (Liu et al., 2009). Highly ionic nanoparticulate metal 
oxides such as MgO, CaO and ZnO nanoparticles (NPs) 
are unique in that they can be produced with high surface 
areas and with unusual crystal structures (Klabunde et 
al., 1996).  

Compared to organic materials, inorganic materials 
such as ZnO possess superior durability, greater selecti-
vity, heat resistance (Padmavathy and Vijayaraghavan, 
2008) and the mineral element is essential to human 
health ZnO NPs also have good biocompatibility to hu-
man cells (Padmavathy and Vijayaraghavan, 2008). The 
antibacterial and antifungal activity of bulk ZnO powders 
has been already demonstrated (Yamamoto, 2001; 
Sawai and Yoshikawa, 2004).  

In agriculture, zinc compounds are mainly used as 
fungicides (Waxman, 1998). The 50% lethal dose (LD50) 
of oral toxicity for ZnO is relatively high reaching 240 
mg/kg for rats (South, 2002). It is believed that smaller 
sizes of ZnO, correlated with its stronger antimicrobial 
activity (Yamamoto, 2001).  

Preliminary studies show that the antibacterial activity 
of ZnO NPs might be related to the formation of free 
radicals on the surface of the NPs, and the damage to 
the lipids in bacterial cell membrane by free radicals, 
which consequently lead to the leakage and breakdown 
of bacterial cell membrane (Brayner et al., 2010; Reddy 
et al., 2007). However, to the best of our knowledge, the 
effect and mode of action of ZnO NPs on the growth of 
fungi such as F. oxysporum and P. expansum have not 
been studied. Therefore, in the current study the anti-fun-
gal activity of ZnO NPs against two important plant patho-
genic fungi,  F.  oxysporum and P. expansum was investigated. 
 
 

MATERIALS AND METHODS  
 
Nanoparticle materials 

 

ZnO NP suspensions with size of 70±15 nm were purchased from  

 
 
 
 
Sigma Aldrich. An aliquot of ZnO NP suspension was vacuum 
filtered through an aluminum oxide membrane filter with a 20 nm 
pore size and 25 mm OD (Anodisc; Whatman Inc., Clifton, NJ, 
USA), resulting in a NP-free solution. The composition of the NP-
free solution was analyzed, and its effect on bacterial growth was 
examined. The original ZnO NP suspension (12 mg L

−1
) and NP-

free solution were then diluted with potato dextrose agar (PDA, con-
taining per liter the extract from 200 g boiled potato, 20 g glucose 
and 20 g agar) to make a series of media containing ZnO NPs with 
concentrations of 0, 2, 4, 6, 8 and 12 mg L

−1
, respectively and NP-

free solution. 
 
 

Isolation and identification of fungal isolate 
 

Fungal samples were taken from different infected plant tissues. 
The pure culture was maintained on PDA media (Hi media Labora-
tories Ltd. Bombay, India) at 25±1°C. Identification of the fungal 
isolates was carried out by morphological and microscopic exami-
nation using the identification keys of Moubasher (1993) and Raper 
and Fennell (1985) followed by nuclear ribosomal DNA internal 
transcribed spacer (ITS) sequencing. The genomic DNA was isola-
ted by CTAB extraction method using standard protocols (Sam-
brook et al., 1989). Internal transcribed spacer (ITS) regions were 
amplified using primers ITS1 and ITS4 with 5'-

TCCGTAGGTGAACCTGCGG and 5'-TCCTCCGCTTATTGATATGC 

sequences (White et al., 1990). Amplified products were sequenced 
using ABI prism DNA sequencer by BigDye terminator method. The 
sequence obtained has been deposited in the GenBank database. 
The ITS sequence information was used to match the most closely 
retrieved fungal isolates with the NCBI BLAST program. The align-

ments of the ITS sequences were performed using ClustalW, and 
phylogenetic tree constructed with the maximum parsimony method 
and MEGA ver. 5 (http://www.megasoftware.net) (Felsenstein, 1985). 
 
 

Antifungal test 
 

F. oxysporum and P. expansum were cultured on PDA at 25°C. 
Antifungal tests were performed by the agar dilution method 
(Fraternale et al., 2003) with slight modifications. The autoclaved 

PDA media with ZnO NPs at concentrations of 0, 2, 4, 6, 8 and 12 
mg L

−1
 and a NP-free solution were poured into the Petri dishes (9 

cm diameter). A plug (1 cm) of fungal mycelia was taken from the 
edge of 7-day-old plate, placed in the center of each Petri dish and 
incubated at 25°C. The efficacy of ZnO NP treatment was evalua-
ted at the time intervals of 2, 4, 6, 8, 10 and 12 days by measuring 
the diameter of fungal colonies. All tests were performed in triplicate 
and the diameters were expressed in centimeters. 
 
 

Scanning electron microscopy (SEM) 
 

SEM was used to examine morphological changes of F. oxysporum 

and P. expansum hyphae before and after treatment with ZnO NPs. 
Pieces of mycelial material cut from 7-day-old cultures were inocu-
lated onto the PDA containing 12 mg L

−1
 ZnO NPs in comparison 

with control containing no ZnO NPs, followed by incubation for 12 
days. Then, pieces of mycelia were cut from the edge of the fungal 

cultures, and directly subjected to SEM analysis under the environ-
mental mode. SEM images were taken by FEI Quanta 600F Envi-
ronmental SEM (FEI Company, Hillsboro, OR, USA) at a voltage of 
7 or 10 kV and a pressure from 525 to 619 Pa. 
 
 

Mycotoxins estimation 
 

Fusaric acid Toxin of Fusarium oxysporum  

 
The production and extraction of fusaric acid was performed accor-
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Figure 1. Phylogenetic analysis of Penicillium spp based on the gene sequences showing the relationship of P. expansum to other 

Penicillium spp. The phylogenetic tree was constructed based on internal transcribed spacer sequences us ing the maximum parsimony 
method on MEGA ver. 5. 
 
 

 

according to method described by Bacon et al., 1996. Separation 
was carried out by using HPLC (Shimadzu, Japan) with SPD-10 AD 
UV spectrophotometric detector and LCI 100 integrator on a rever-
sed phase column RP-18 Licrospher 100, 5 µm particle size (250 × 

4 mm). The mobile phase (HPLC quality) used in the chromatogra-
phic run consisted of methanol (A), water (B) and 1% dipotassium 
hydrogen phosphate in water adjusted to pH 7.25 with concentrated 
phosphoric acid  (C). Elution conditions reported by Amalfitano et 
al. (2002) were slightly modified and started with A: B: C (55:10:35), 
which was changed according to a linear gradient over 20 min. to A: 
B: C (70:10:20); with restoring the initial conditions over 5 min. The 
column was re-equilibrated under these conditions for 15 min 

before starting the next run. The flow rate was 1 ml/min, and 20 µL 
aliquots of samples were injected for analysis. Detection was car-
ried out at 268 nm, and HPLC calibration curves were performed 
using solutions of both standards in methanol in the range of 0.10 
to 1.00 µg. Samples for HPLC analysis were prepared as follows: 
fungal culture filtrates (10 ml) were extracted with methanol (5 ml), 
the methanol suspensions were passed through disposable filters 
and aliquots (maximum 20 µl) were analyzed. 
 

Patulin Toxins of Penicillium expansum 
 

Patulin extraction was illustrated by Fred and MCcalla, 1969. Analy-
sis of Patulin was performed on a model 'HP1050' HPLC equipped 
with UV detector. Separation and determination of patulin was 
performed on RP18 (ODS) column (length 250mm). 
 
 

RESULTS AND DISCUSSION  
 

Amplification and sequencing of fungal rRNA genes 
resulted in 620 and 750 bp long nucleotide sequence, 
which have been submitted in NCBI GenBank (Accession 
Numbers: AB753032 and AB753033) for F. oxysporum 
and P. expansum, respectively. The sequences were 
compared using BLAST algorithm and the closely related 
sequences were selected, which confirmed that isolated 

strains exhibited 98 and 97% similarity with F. oxysporum 
and P. expansum, respectively. A phylogenetic tree was 
generated using the maximum parsimony method and 
MEGA ver. 5 (Figures 1 and 2). 

ZnO NPs are usually present in a form of agglomerates 
during its manufacturing process (Zhang et al., 2007). 
Two methods, ultrasonication and addition of dispersants, 
are often used to break down NP agglomerates. Com-
monly used dispersants include polyvinylpyrolidone, poly-
ethylene glycol, and other chemicals (Brayner et al., 2006). 
Figures 3 and 4 represent the growth of F. oxysporum 
and P. expansum cultivated on PDA containing different 
con-centrations of ZnO NPs (0, 2, 4, 6, 8 and 12 mg L

−1
) 

and incubated at 25°C for 12 days. Generally, the use of 
ZnO NPs suspension efficiently inhibited fungal growth of 
both F. oxysporum and P. expansum. The average 
mycelial growth inhibition in F. oxysporum has been 
ranged from 19.3 to 77.5% as ZnO NPs concentration 
increase from 2 to 12 mg L

-1
 (Figure 3). For P. expansum, 

the reduction rate of fungal growth significantly varied 
from 25.3 to 100% as the concentration of ZnO NPs 
increased from 2 to 12 mg L

-1
 with a near complete 

inhibition at 6 mg L
-1
 (Figure 4). The efficacy of ZnO NPs 

was found to be con-centration dependent in both two 
fungal species. These results suggest that ZnO NPs may 
disrupt and damage the conidia of fungi. Consequently, 
the growth was deeply inhibited. 

P. expansum proved to be more sensitive than F. 
oxysporum to the ZnO NPs treatment. Hence, different 
antifungal effects may result from different growth mor-
phologies of fungi. P. expansum tends to grow more 
densely on the surface of the medium than F. oxysporum, 
so it has a larger contact area with ZnO NPs than F. oxy-
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Figure 2. Phylogenetic analysis of Fusarium spp based on the gene sequences showing the relationship of F. oxysporum to other Fusarium 
spp. The phylogenetic tree was constructed based on internal transcribed spacer sequences using the maximum parsimony method on 

MEGA ver. 5. 
 
 
 

 
 

Figure 3. Effect of ZnO NPs on the colony diameter of F. oxysporum. 
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Figure 4. Effect of ZnO NPs on the colony diameter of P. expansum. 

 
 

 

oxysporum. Another possible reason for the difference in 
antifungal efficacy among fungi could be the constitutive 
tolerance of each fungus to ZnO NPs.  

He et al. (2011) found that ZnO NPs at concentrations 
greater than 3 mmol L

-1
 can significantly inhibit the growth 

of Botrytis cinerea and P. expansum. Sawai and Yoshikawa, 
(2004) reported the minimum inhibitory concentration of 
bulk ZnO powder against Saccharomyces cerevisiae, Can-
dida albicans, Aspergillus niger, and Rhizopus stolonifer 
was over 100 mg ml

-1
 (~1.2 mol L

-1
) by an indirect con-

ductimetric assay (Sawai and Yoshikawa, 2004). ZnO 
NPs show great enhancement in the antimicrobial activity 
due to their unique properties such as large surface area. 
However, Kasemets et al. (2009) found nano and bulk 
ZnO were of comparable toxicity against S. cerevisiae. 

To investigate the mechanism by which ZnO NPs affect 
the growth of F. oxysporum and P. expansum, SEM ana-
lysis was employed to examine the structural changes of 
fungal samples after ZnO NPs treatment. PDA media 
containing 12 mg L

-1
 ZnO NPs were prepared, and fungal 

samples were then inoculated onto the PDA plate and 
incubated at 25°C for 12 days. 

Figure 5 shows the images of mycelia obtained from 
the edge of F. oxysporum and P. expansum culture. In 
the control (untreated sample), hypha with typical net 
structure and smooth surface were observed. After 
treatment with 12 mg l

−1
 ZnO NPs, the hypha lost their 

smoothness and appeared swollen and crumbled (Figure 

5). This indicated that ZnO NPs growth inhibition in F. 
oxysporum and P. expamsum may be due to deformation 
in the structure of fungal hypha. SEM has been suc-
cessfully used to assess morphological changes of micro-
bial cells induced by ZnO NPs (Brayner et al., 2006; 
Zhang et al., 2007) and fungal hyphae treated with other 
chemicals (Sharma and Sharma, 2008; Yen et al., 2008). 
Some studies proposed that ZnO NPs may cause struc-
tural changes of microbial cell membrane, causing cyto-
plasm leakage and eventually the death of bacterial cells 
(Sawai and Yoshikawa, 2004; Brayner et al., 2006). Endo 
et al. (1997) have reported that the inhibition of bud 
growth by Ag-NPs correlates with membrane damage. 
This  report suggests  that Ag-NPs inhibit the normal bud-
ding process, probably through the destruction of mem-
brane integrity.    

F. oxysporum and P. expansum are well-known as 
mycotoxins producers. Table 1 revealed that the 
production of mycotoxins by the tested fungi gradually 
decreased with the increase of ZnO NPs concentrations 
to reach a minimum value at the highest concentration 12 
mg L

−1
. The total mycotoxins at 12 mg L

−1
 were recorded 

to be 0.20 and 1.1 mg g
-1
 as compared to 39.0 and 14.2 

mg g
-1 

in control, in cases of F. oxysporum and P. 
expansum, respectively. This inhibition of mycotoxin syn-
thesis may be attributed to inactivation of certain enzy-
mes in the biosynthesis pathway of these toxins by ZnO 
NPs. 
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Figure 5. Scanning electron microscopy images of F. oxysporum and P. 

expansum without (A and C) or with (B and D) the treatment of ZnO NPs 
(12 mgl L

-1
).  

 
 
 

Table 1. Effect of ZnO nanoparticles at different concentrations on production of mycotoxins (mg g
-1

 dry 
mass) by Fusarium oxysporum and Penicillium expansum. 
 

ZnO nanoparticle conc. (mg L
-1

 ) 
Fusarium oxysporum Penicillium expansum 

Fusaric acid Patulin 

0 39.00
a
 14.20

a
 

2 35.02
b
 12.32

b
 

4 13.00
c
 9.56

c
 

6 10.51
d
 4.73

d
 

8 6.32
e
 4.15

e
 

12 0.20
f
 1.10

f
 

 
a
,significant difference (P<0.05) according to Duncan test. 
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