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A biofilm is an assemblage of microbial cells which is irreversibly associated with a surface and 
enclosed in a matrix of primarily polysaccharide material. It may form on a wide variety of surfaces, 
including living tissues, medical devices, industrial or potable water system pipe or natural aquatic 
systems. A well-diversified organism such as algae, bacteria, protozoa, arthropods, etc. may be 
observed in the biofilm assemblage. The biofilm structure depends on the nature of substratum, 
hydrodynamics of system, nutrient availability, light and grazing capacity of organism. It has been 
observed that the introduction of substrata for the development of biofilm in the aquaculture system 
play a significant role. Biofilm organisms are microscopic and highly nutritious.  The organisms of 
biofilm may serve as single cell protein and are easily harvested by all size of cultured species in 
aquaculture as compared to planktonic organism in the water column. Biofilms are considered as good 
quality protein source (23-30%). Microalgae and heterotrophic bacteria are rich source of immune 
enhancers, growth promoters, bioactive compounds and dietary stimulants which can enhance growth 
performance of cultured organism. Substrata minimize the mortality by providing shelter and hiding 
places to cultured organisms. The attached nitrifying bacteria  contained in biofilm improve the water 
quality by lowering  ammonia waste from culture system through nitrification process. Biofilm based 
low cost technology will help resource poor farmers in generating protein rich nutrient in sustainable 
manner from aquaculture. An attempt has been made to review the role of biofilm in aquaculture. 
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INTRODUCTION  
 
Aquaculture has evolved on a large scale during the last 
two decades and has become a major source of protein 
for a large population of the world. The current worldwide 
growth rate of the aquaculture (8.9–9.1% per year since 
1970s) is needed in order to cope with short supply of 
protein rich food, particularly in the developing countries 
(Gutierrez-Wing and Malone, 2006; Matos et al., 2006; 
Subasinghe, 2005). Aquaculture has emerged as one of 

the important branches of food production. Sustained 
productivity along with enhanced production is the major 
goal of aquaculture.  Expansion of pond area and 
intensive farming in the pre-existing ponds has great 
potential for further development of aquaculture 
throughout the world. However, high stocking densities 
and frequent use of water, feeds and fertilizers in 
aquaculture   intensification,   leads   to   increased waste    
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production (Beveridgeet al., 1997). On the other hand, 
operation of intensive aquaculture also demands huge 
investment and technical expertise, which are not affor-
dable by resource-poor farmers. However, environmental 
considerations and economic conditions of poor farmers 
are the major limitations in the growth of aquaculture. 
Especially, intensive aquaculture coincides with the pollu-
tion of the water by an excess of organic materials and 
nutrients that are likely to cause acute toxic effects and 
long term environmental risks (Piedrahita, 2003) by 
increasing waste production (Beveridgeetal., 1997). To 
keep dissolved nutrients at low level, large amount of 
water must be exchanged, increasing the costs of pro-
duction in aquaculture. An alternative way to maintain 
high water quality is biological treatment such as use of 
filters with a high surface-volume ratio, pre-colonized by 
microorganisms that absorb excess nutrients from the 
water (Wheaton, 1977). The relatively new alternatives to 
previous approaches are the application of bio-flocs and 
biofilm in aquaculture (Avnimelech, 2006). Biofilms - a 
microbial consortium associated with a matrix of extra-
cellular polymeric substances bound to any sub-merged 
surfaces are responsible for many biogeochemical cycles 
in aquatic ecosystems, especially nitrogen cycling 
(Decho, 1990; Meyer-Reil, 1994). The major driving force 
is the intensive growth of heterotrophic bacteria to reduce 
the overload of unwanted components in the aquaculture. 
The presence of biofilms in aquaculture reduces the cost 
of shrimp production by minimizing water exchange 
(Thompson et al., 2002). It was also demonstrated in 
several studies that in the presence of biofilm, reduction, 
or even suppression of water exchange, did not cause 
any damage to the cultured organisms faced due to 
stress (Hopkins et al., 1995; McIntosh, 2000).  

Thompson et al. (2002) indicated that nitrogen uptake 
by a biofilm may help to reduce the occurrence of patho-
genic bacteria in culture system, as these pathogenic 
microorganisms normally occur in situations where nitro-
genous compounds reach extremely high values (Austin 
and Austin, 1999; Brock and Main, 1994). Moreover, 
many microalgae present in biofilms are able to produce 
antibiotics that prevent pathogenic bacterial growth 
(Austin and Day, 1990; Alabiet al., 1999). Inhabiting pro-
tozoa in biofilms can also control the abundance of 
pathogenic bacteria through grazing (Thompson et al., 
1999). Thus, it is possible that biofilm removal can 
increase the risk of developing pathogenic bacteria 
(Thompson et al., 2002). 

The manipulation of C:N ratio by use of biofilm on sub-
strata in freshwater finfish and prawn production in 
extensive pond enhances aquaculture production (van 
Dam et al., 2002; Azim and Little, 2006; Hargreaves, 
2006). The development of biofilm requires installation of 
hard substrata or application of cheap carbohydrates 
resources which could potentially be produced within the 
farmer’s traditional agricultural systems (Asaduzzaman et 
al., 2008). It has been observed that both survival and 
growth of  freshwater  prawn were significantly higher due 
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to provision of substratum as compared to traditional pro-
duction system without substratum (Cohen et al., 1983; 
Tidwell and Bratvold, 2005; Uddin et al., 2006). The 
biofilm acts as additional natural food,  shelter to mini-
mize territorial effects, improves water quality through 
trapping of suspended solids, organic matter breakdown, 
enhances nitrification through the microbial activity and 
heterotrophic production of single cell protein (McIntosh, 
2000; Hari et al., 2004; Crab et al., 2007; Avnimelech, 
2007). The main objective of this review is to assess the 
effect of biofilm in enhancing  aquaculture production in a 
sustainable manner. 
 
 
BIOFILM FORMATION IN AQUATIC ENVIRONMENT 
 
Biofilms may form on a wide variety of surfaces, including 
living tissues, medical devices, industrial or potable water 
system pipe or natural aquatic systems (Donlan, 2002; 
Kordmahaleh and Shalke, 2013). Biofilm formation begins 
with the accumulation of organic molecules on any sub-
merged surface. Few hours after the establishment of the 
macromolecular film, bacterial colonization begins (Whal, 
1989). The main advantage of biofilm formation is the 
protection of the organisms from the effects of an ad-
verse environment. A multispecies microbial culture can 
provide and maintain appropriate physical and chemical 
environments for further growth and survival (King et al., 
2008). 

Biofilm formation is a dynamic process, capable of 
responding to environmental stimuli. Initially, cells orga-
nize themselves into micro-colonies,  followed by division 
and cell recruitment, they grow and encase themselves in 
an extracellular matrix. Within this matrix, complex and 
differentiated associations can be formed, which facilitate 
nutrient uptake (Hall-Stoodley et al., 2004; Toutain et al., 
2004). The redistribution of attached cells by surface 
motility is one of the most important mechanisms of bio-
film formation (Hall-Stoodley and Stoodley, 2002). The 
development of biofilm depends on constituents of the 
organism(s), the properties of the surface being colonized 
and the physico-chemical conditions of the aqueous 
environment. Detachment from biofilms can be caused by 
a number of factors including external perturbations or 
internal processes, though many species appear to use 
dispersal as an active means of colonizing new niches 
(Sauer et al., 2002; Hall-Stoodley et al., 2004). Biofilm 
formation is generally thought to proceed as follows: (1) 
individuals colonize a surface, (2) individuals form micro-
colonies and (3) microcolonies form biofilms (Johnson, 
2008). 
 
 
Nutrient availability in aquaculture ecosystem 
 
Nutrients supply energy for the growth and development 
of heterotrophic bacterial population. Pradeep et al. 
(2004)  reported  increase in aerobic heterotrophic bacte- 
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rial populations in water over due course of time and 
reached at peak during the 4th week, followed by sub-
sequent decrease, attributing to the role of nutrients avai-
lability. Initially, higher levels of nutrients lead to bacterial 
multiplication and with reduction in nutrient levels, the 
population starts declining. The change in the diversity of 
bacterial community strongly depends on tem-poral 
change in the quality and quantity of organic sub-strata 
available (Gatune et al., 2012). Inorganic nutrients have a 
strong effect on periphyton biomass (Aizaki and 
Sakamoto, 1988; Lohman et al., 1992; Ghosh and Gaur, 
1994). Mattila and Raeisaenen (1998) found that peri-
phyton biomass and productivity can be used as an 
indicator of eutrophication in natural waters. In the most 
freshwater studies, phosphorous was identified as the 
limiting nutrient (Ghosh and Gaur, 1994; Vymazal et al., 
1994), but sometimes nitrogen (Barnese and Schelske, 
1994) and carbon (Sherman and Fairchild, 1989) may 
also act as limiting factors. Aquaculture ponds are ferti-
lized with phosphorus and nitrogen, which serves as 
important source of nutrients for biofilms as well. 

Action of nitrogen and carbon, as limiting factor, de-
pends on the algal species and on other environmental 
factors such as hardness and acidity. High silicon: phos-
phorus (Si:P) and nitrogen: phosphorus (N:P) ratios 
favoured diatoms while low N:P and Si:P ratios favoured 
cyanophytes in a reservoir in Patagonia (Baffico and 
Pedroso, 1996). Similarly, high Si:N or Si:P ratios 
favoured diatoms but low N:P ratios favoured cyanophytes 
and high N:P ratios favoured chlorophytes in periphyton 
of the Baltic Sea (Sommer, 1996). Dissolved organic 
matter may play a role in determining the structure of the 
biofilm. Biofilm communities treated experimentally with 
dissolved organic carbon contained less mucilage than 
untreated controls (Wetzel et al., 1997). Molobela et al. 
(2010) reported that nutrients boost the biofilm cells 
growing in the medium which enhance extracellular poly-
meric substance (EPS) production. 
 
 
Effect of grazing 
 
Grazing is one of the most important determinants of 
biofilm biomass. Bacterial abundance is controlled by the 
grazing exerted by flagellates and ciliates (Thompson et 
al., 2002). Grazing has an overriding effect on biomass 
while the effect of nutrients has much less apparent effect 
due to the ability of the periphyton to recycle and utilize 
nutrients from the substratum (Hill et al., 1992; Steinman 
et al., 1992; Pan and Lowe, 1994). On plastic substrates 
in tilapia cages in Bangladesh, filamentous Chlorophy-
ceae and Myxophyceae dominated the periphyton before 

fish stocking, whereas after stocking of the fish, diatoms 
became more abundant (Huchette et al., 2000), indicating 
the effect of grazing. Biofilms provide easy availabilityof 
food to the cultured organisms and thus help in enhance-
ment of fish production. 

 
 
 
 
Suitable species for biofilm-based aquaculture 
 
It has been noticed that consumption pattern and feeding 
efficiency on biofilm depend on the grazing efficacy of 
cultured species. However, fishes are found to be fast 
grazers than crustaceans (Asaduzzaman et al., 2010). 
Biofilm has already been considered an important food 
source for Nile tilapia (Shrestha and Knud-Hansen, 1994) 
and carp (Ramesh et al., 1999). Azim et al. (2001) de-
monstrated that rohu (Labeorohita) and orangefinlabeo 
(Moruliuscalbasu) are more suitable candidates for peri-
phyton based aquaculture than kurialabeo (L. gonius). In 
penaeid shrimp culture, consumption of periphyton deve-
loped over submerged substrate significantly improved 
growth of penaeid shrimp, Fenneropenaeus paulensis 
(Ballester et al., 2007; Thompson et al., 2002), 
Penaeusesculentus (Burford et al., 2004), L. vannamei 
(Audelo-Naranjo et al., 2011; Moss and Moss, 2004) and 
P. monodon (Anand et al., 2012; Khatoon et al., 2007). 
The culture performance of the freshwater prawn 
Macrobrachium rosenbergii improves in the presence of 
artificial substrata (Tidwell et al., 1998). Similar grazing 
activity was reported by Erler et al. (2004) who found that 
Farfantepenaeus merguiensis grazed on epibiota on 
AquaMats® and significantly reduced the attached 
biomass. P. monodon grown over periphytic microalgae 
attained significant improvement in body weight 
compared to the control (Anand et al., 2012; Arnold et al., 
2009). Bourne et al. (2006) applied  biofilm  within a larval 
rearing tank of the tropical rock lobster 
(Panulirusornatus). Biofilm can be used to promote the 
growth of bottom feeder fishes like Cirrhinusmrigala 
(Bharti et al., 2013; Mridula et al., 2006). The biofilm was 
considered a good tool during F. brasiliensis nursery 
phase, mainly due to enhancement  of survival through  
maintenance of water quality (Viau et al., 2013). 
 
 
Enhancement of production 
 
Shrimp showed a higher final weight in the tanks with 
biofilm, leading to higher biomass at the end of the 
experiments (Thompson et al., 2002). Ramesh et al. 
(1999) observed that easily biodegradable sugarcane 
bagasse, having more fibre and surface area favoured 
better growth of fish through bacterial biofilm than paddy 
straw and Eichhornea. The growth of rohu (L. rohita) in 
the presence of sugarcane bagasse, paddy straw and 
dried Eichhorneafor settlement of biofilm, was higher by 
47.5, 29.1 and 17.6%, respectively than the control. 
Similarly, they observed the growth of common carp 
(Cyprinuscarpio) in the presence of substrata like sugar-
cane bagasse, paddy straw and dried Eichhornea was 
higher by 47.4, 32.9 and 20.7%, respectively than the 
control. Umesh et al. (1999) conducted an experiment 
with sugarcane bagasse as substratum and found that 
the  growth  of fish was remarkably high in the treatments  



 

 
 
 
 
with an average of 50% over the controls. Natural biode-
gradable substrata like paddy straw and sugarcane 
bagasse favoured better growth of the fish than non-
biodegradable substrata like plastic sheet and tile, with 
paddy straw turning out to be the best substratum for 
aquaculture of C. mrigala (Bharti et al., 2013). Keshavanath 
et al. (2012) evaluated the culture of rohu and common 
carp in  the presence of periphyton developed on dif-
ferent types of substrata namely sugarcane bagasse, 
palm leaf, coconut leaf and bamboo mat in poultry-
manured ponds and found that all the four substrata 
induced significantly high growth, production and survival 
rate in both fish compared to substrate free culture 
system, indicating the importance of biofilm in aqua-
culture. The growth of rohu under sugarcane bagasse, 
palm leaf, coconut leaf and bamboo mat treatment was 
93.69, 103 and 44% higher, respectively than that of the 
control, while common carp performed 98, 74, 100 and 
20% better than the control in the same treatments, 
respectively.  

Schveitzer et al. (2013) observed that the final bio-
mass of L. vannamei was 31.4% more and the  survival 
rate was also significantly high in the tank with substrata. 
Asaduzzaman et al. (2008) found that the addition of 
biofilm on substrata increased net yield of prawn from 
370 to 456 kg ha-1 120 day-1 that is 23% higher yield than 
absence of biofilm. 

Azim et al. (2002a) found the highest  net yield of 2098 
kg ha-1 in  bamboo treatment, followed in diminishing 
order by 2048 kg ha-1 (jutestick), 2032 kg ha-1 (kanchi), 
1960 kg ha-1 (feed) and 1226 kg ha-1 (control). Azim et al. 
(2001) and Keshavanath et al. (2001) have shown that 
the use of various substrata contributed to the growth and 
production of different aquaculture species in freshwater 
ponds through the development of biofilm on the 
substrata. Tidwell et al. (1998) reported that adding sub-
strate in freshwater ponds increased prawn production by 
20% as well as average size by 23%. Easy availability of 
food through biofilm as well as its positive impact on 
water quality helps in attaining better growth and higher 
production of finfish and shellfish. 
 
 

Improvement in water quality 
 

Biological nitrification can be accomplished in two types 
of systems like suspended and attached growth. Under a 
suspended growth environment, the microorganisms are 
freely mobile in the liquid media  being in direct contact 
with the bulk water. In an attached growth system, on the 
other hand, microorganisms are grown in a viscoelastic 
layer of biofilm that are attached on the surface of a solid 
support medium. Thus, this process is also called a fixed 
film process in which the individual bacteria are immo-
bilized. Attached growth on a fixed biofilm system offers 
several advantages when compared to suspended 
growth processes, such as handling convenience, increa-
sing process stability in terms of withstanding shock  
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loading and preventing the bacterial population from 
being washed off (Fitch et al., 1998; Nogueira et al., 
1998). Pradeep et al. (2003b) observed  improved water 
quality with application of probiotic and biofilm during the 
culture of fingerlings of Catlacatla. Lower level of total 
ammonia concentrations in the substrata based treat-
ments was recorded compared to feed and control treat-
ments. This might be due to higher nitrification rates in 
substrata treatments (Azim et al., 2002a).  

Several researchers have demonstrated that the pre-
sence of nitrifying bacteria in the biofilm decreased 
ammo-nium level in the cultured water (Bharti et al., 
2013; Langis et al., 1988; Ramesh et al., 1999). In fact, 
decrease in ammonium and parallel augmentation in 
nitrite and nitrate concentrations in the experiment indi-
cates that nitrifying bacteria present in the biofilm play a 
significant role in water quality management (Kaiser and 
Wheaton, 1983). On the other hand, ammonium is also 
absorbed by the microalgae that use this element to 
produce new biomass (Thompson et al., 2002). Nitrogen 
uptake by a biofilm may help to reduce the occurrence of 
pathogenic bacteria, since these microorganisms nor-
mally occur in situations where nitrogenous compounds 
reach extremely high values (Austin and Austin, 1999; 
Brock and Main, 1994). The direct discharge of large 
amount of waste water from hatcheries may cause 
eutrophication in rivers and coastal waters, but use of 
different periphytic microalgae in aquaculture can 
significantly reduce ammonia and nitrite levels from the 
system (Ziemann et al., 1992).  In Oscillatoria tanks, total 
ammonia nitrogen (TAN), NO2-N and soluble reactive 
phosphorus (SRP) levels were reduced more than 80% 
against approximately 60% in Amphora, Cymbella, and 
Navicula tanks in spite of no water exchange during the 
16-day culture period.  

The use of biofilm to reduce excess nutrients in 
hatchery tanks does not only maintain the water quality, 
but also reduces the risk of pathogen introduction since 
the system does not require water exchange (Khathoon 
et al., 2007). They observed that the water was very clear 
in the experimental tanks even without water exchange 
compared to the control tanks which was turbid. Biofilm 
can reduce phosphorous (Bratvold and Browdy, 2001; 
Hansson, 1989) and other nutrients in the water. In addi-
tion, biofilm communities reduce water turbidity by trap-
ping organic matter in the column (van Dam et al., 2002). 
Anand et al. (2013) used bamboo as substratum for the 
culture of P. monodon and found the water quality para-
meters across the treatments were within desired range 
and were optimum for growth of cultured shrimp. The low 
concentration of nitrite observed during the culture period 
with practice of raceway system indicates the complete 
oxidation of ammonia to nitrate (Cohen et al., 2005). The 
low concentration of ammonia and nitrite in the aqua-
culture without exchange of water is accomplished by 
microbial activities which remove these compounds 
through nitrification process (Ebeling et al., 2006).  
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The addition of substrate in freshwater fish ponds 
improved water quality by lowering total ammonia con-
centration through the biofilm formation on substratum 
(Dharmaraj et al., 2002; Ramesh et al., 1999). Azim et al. 
(2002b) reported that the average total ammonia concen-
tration in substratum-based freshwater aquaculture ponds 
(0.56 mg L−1) was significantly lower than the substratum-
free ponds (0.95 mg L−1)and biofilm on substratum 
reduces the nitrite-nitrogen concentration of the water 
column as well (Asaduzzaman et al., 2008). Natural and 
biodegradable substratum in aquaculture provides favou-
rable water quality parameters for the culture of carp 
(Keshavanath et al., 2012). The nitrite concentration was 
significantly high in the feed treatment compared with 
biofilm  (Viau et al., 2013). 
 
 

Biofilm as food source 
 

Many trials in fish culture ponds have demonstrated the 
utility of submerged substratum in enhancing  fish pro-
duction (Azim et al., 2005; Asaduzzaman et al., 2008; 
Jana et al., 2004; Keshavanath et al., 2002). Microalgae 
and probiotic bacterial products are well-known for their 
nutritional benefits (Ju et al., 2009) and widely used as 
dietary stimulants to shrimp juvenile (Ju et al., 2009; 
Wang, 2007). Burford et al. (2004) showed that  epi-
phytes contributed substantially (39–53%) to shrimp 
requirements of carbon and nitrogen. Azim and Wahab 
(2005) reported that in substratum-based freshwater fish 
ponds, periphyton served as an additional food source. 
Khatoon et al. (2007) observed that the specific growth 
rate of shrimp post-larvae increased 28% in the presence 
of substratum. Ballester et al. (2003) determined that 
growth and survival of F. paulensis post-larvae did not 
enhance in the presence of artificial substrata that had 
their biofilm periodically removed, indicating the impor-
tance of biofilm as food. Therefore, though there may be 
a synergism of physical and biological aspects related to 
the use of artificial substrata, it seems that the nutritional 
role of the biofilm is most likely the important aspect 
affecting the culture of F. paulensis post-larvae in cages. 
The biofilm formed on the substrata is composed of 
organisms that belong to the natural diet of penaeid 
shrimp and serve an additional source of nutrition for the 
post-larvae having a high quality diet (Ballester et al., 
2007).  

Feeding with substrate based biofilm had a significant 
effect on the production of Tor khudree and L. fimbriatus, 
as net production that was 30–59% greater than that of 
fish in tanks without substratum (Keshavanath et al., 
2002). The growth response of Heteropneustes fossilis, 
in the presence of sugarcane bagasse as a substratum, 
was observed to be high in comparison to absence of 
substratum (Radhakrishnan and Sugumaran, 2010). 
Similarly, Bratvold and Browdy (2001) reported high 
shrimp production and low feed conversion ratio (FCR) 
during the culture of L. vannamei in a high density culture  

 
 
 
 
system with artificial substrata (Aquamats™). They also 
reported that artificial substrata increased the nitrification 
in the tanks, which resulted in decreased concentrations 
of NH3 nitrogen. Moss and Moss (2004) reported en-
hancement in the production of L. vannamei post-larvae 
stocked at different densities in a flow-through system 
provided with Aquamats™. The authors suggested that 
increased shrimp growth in the presence of substrata 
was due to the availability of attached particulate organic 
matter and that the use of artificial substrata could lessen 
the negative effects of high stocking density during the 
nursery phase. 
 
 
Nutritive quality of biofilm 
 
It has been documented that nutritional composition of 
biofilm can be broadly considered as appropriate to fish 
dietary needs (Azim et al., 2002a; Dempster et al., 1993; 
Makarevich et al., 1993). Proximate composition of bio-
film varied from 23-30% for protein, 2-9% for lipid, 25-
28% for NFE and 16-42% for ash (Azim et al., 2005; 
Thompson et al., 2002; van Dam et al., 2002). Most fish 
farmers use complete diets comprising protein (18-50%), 
lipid (10-25%), carbohydrate (15-20%), ash (<8.5%), 
phosphorus (<1.5%), water (<10%), and trace amounts of 
vitamins and minerals (Craig and Helfrich, 2002). This 
indicates that nutritional quality of biofilm can be used as 
dietary supplement in the culture of fish and shrimps. P. 
monodon juvenile  needs 35 to 40% protein (Alava and 
Lim, 1983; Shiau, 1998) and up to 10% lipid (Akiyama et 
al., 1992).  The optimum requirement of protein for Indian 
major carps is 30% (Renukaradhya and Varghese, 1986). 
The protein supplementation has been observed by the 
microbial communities of biofilm (Buford et al., 2004; 
Wasielesky et al., 2006).  

Biofilms are considered as good quality protein source 
(Oser, 1959). Therefore, biofilm attributes better growth in 
fish as well as shrimps (Anand et al., 2013). Apart from 
being a source of macronutrients, microalgae and hetero-
trophic bacteria are rich source of immune enhancers 
(Supamattaya et al., 2005), growth promoters (Kuhn et 
al., 2010), bioactive compounds (Ju et al., 2008) and 
dietary stimulants (Xu et al., 2012) which can enhance 
growth performance of cultured shrimp. Hence, it can be 
inferred that these beneficial effects of algae and 
microbes in biofilm might have attributed to improved 
growth response in tiger shrimp juvenile. Fish and shrimp 
larvae are very sensitive to the deficiency of certain fatty 
acids (FA) such as the n-3 poly unsaturated fatty acids 

(PUFA) (Sorgeloos and Lavens, 2000; Watanabe et al., 
1983). This essential nutrient is ultimately derived from 
the natural food sources such as the phytoplankton, 
zooplankton and macro-invertebrates (Parrish, 2009). 
Even bacteria are abundant in the natural food sources 
and available as a potential food source for cultured 
species  (Azim  and  Wahab,  2005;  Burford  et al., 2004;  



 

 
 
 
 
Keshavanath and Gangadhar, 2005). Various studies 
have suggested that bacteria acted as an important nutri-
tional source for penaeid shrimp in promoting grazing 
ability, growth and survival when occurring as biofilm on 
structures in semi-intensive and extensive ponds (Azim 
and Wahab, 2005; Bratvold and Browdy, 2001; Keshavanath 
and Gangadhar, 2005). The presence of protozoans and 
nematodes in the biofilm is probably an important nutria-
tional increment for shrimp growth (Ballester et al., 2007). 
These organisms have a higher protein to energy ratio 
and, due to their ability to synthesize long chain polyun-
saturated fatty acids, they enrich the quality of microbial 
aggregates, such as the biofilm (Zhukova and Kharlamenko, 
1999). Lipid contents were high in periphyton derived 
from bamboo and kanchi and low in jutestick substrata. 
The ash content was high in periphyton from jutestick, 
followed by bamboo and kanchi. The energy content of 
periphyton was similar in bamboo and kanchi treatments 
and higher than jutestick treatment, while bottom sedi-
ments contained 93–95% ash and negligible amounts of 
protein and lipid (Azim et al., 2002). 
 
 
Autotrophic and heterotrophic biomass in biofilm 
 
Herbivore food chain reduces the loss of energy during 
transfer from one trophic level to another. Therefore, se-
lection of herbivore fish and enhancement of autotrophic 
biomass is one of the best strategies to boost the fish 
production in aquaculture by reducing the cost of pro-
duction. Biofilm serves as a good source of autotrophic 
and heterotrophic biomass because several types of 
phytoplankton as well as zooplankton are attached with it. 
The harvesting of energy from the attached biomass by 
fish and shrimp is easier as compared to planktonic form. 
Qualitative analysis of biofilm by Anand et al. (2013) 
indicated that the harvested biofilm was composed of 37 
genera of algae belonging to Bacillariophyceae (13 gene-
ra), Cyanophyceae (10), Chlorophyceae (11) and 
Euglenophyceae (3) and 5 genera of zooplankton 
belonging to Rotifer (3) and Crustacea (2). Viau et al. 
(2013) reported that the chlorophyll-a concentration in 
water was higher in biofilm and feed based treatment 
(1.36 µg L-1) than the feed treatment (0.49 µg L-1) alone. 
The biofilm bacterial density on substratum per unit 
weight was 100 times more than the water (Ramesh et 
al., 1999). Increasing the C:N ratio raised the total hetero-
trophic bacterial population in the water column, sediment 
and periphyton (Asaduzzamanet al., 2008). Karunasagar 
et al. (1996)  found the highest cell density on the plastic 
surface followed by cement slab and steel surface. On 
contrast to this, King et al. (2008) used six different types 
of substrata for growing of biofilm in recirculating aqua-
culture. Even, after three days of introduction of sub-
strata, they reported the numbers of bacteria remained 
constant throughout the experiment and at the same time 
they found that there was no significant difference in 
bacterial count on these different substrata.  
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Substrata enhance survival rate 
 
Abdussamad and Thampy (1994) observed high levels of 
shrimp damage in high density rearing systems due to 
cannibalism and reported increased chance of canni-
balism in the case of newly moulted specimens. The 
introduction of substrata in the culture system is one of 
the ideal methods to increase the survival through mini-
mizing the cannibalism. Substrata, apart from providing 
biofilm, provide shelter and protection from predators. 
This alone is an interesting feature since several studies 
have showed an inverse relation between stocking den-
sity and shrimp growth (Martin et al., 1998; Preto et al., 
2005; Wasielesky et al., 2001). Khatoon et al. (2007) 
showed the presence of post-larvae inside the PVC 
coated pipes which could have served as refugium to the 
moulting post-larvae leading to enhanced survival  as a 
significantly high survival (51–60%) was found compared 
to the control (37%). Sandifer et al. (1987) reported high 
survival (24%) in the nursery rearing of L. vannamei in 
the tanks where fiberglass window screens were pro-
vided. In addition to increasing food supply, the presence 
of substratum appears to reduce stress by acting as a 
shelter or hiding place for fish (Keshavanath et al., 2002). 
Ju et al. (2009) recorded significantly high growth and 
survival in L. vannamei with diet supplemented with 
microalgae.  

Ballester et al. (2007) reported that shrimp F. paulensis 
post-larvae reared in cages had a considerable increase 
in their biomass and survival with the addition of 
polyethylene substratum. During the experimental period, 
it was observed that shrimps were constantly occupying 
the substratum and feeding on the biofilm. Besides, the 
nutritional contribution provided by the biofilm, the phy-
sical presence of artificial substratum within the culture 
units promotes the enlargement of the area for shrimp 
distribution (Ballester et al., 2007). Bratvold and Browdy 
(2001) observed that the presence of artificial substratum 
delayed the negative effects of overcrowding, contributing 
to a better performance of L. vannamei reared in an in-
tensive culture system. Furthermore, Tidwell et al. (1998) 
were able to improve the culture performance of the 
freshwater prawn M. rosenbergii as they utilized artificial 
substrata to reduce the negative effects derived from the 
strong territorial behaviour of this species.  

Addition of periphyton substrata increased the survival 
of prawn 63 to 72% as compared to periphyton free 
treatment (Asaduzzaman et al., 2008). Survival of shrimp 
(F. brasiliensis) maintained in the biofilm  was signifi-
cantly  higher than that observed in the feed treatment 
(Viau et al., 2013). 
 
 
Use in vaccination  
 
Natural resistant property of bacterial biofilms for deve-
lopment of effective oral vaccines is simple and cheap 
approach.  Azad  et al. (1999) reported that the oral route  
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of vaccination is one of the simple, cheap and ideal 
techniques among the various methods of vaccination for 
mass administration to fish of all sizes. Oral vaccination is 
regarded beneficial in aquaculture as it is non-stressing 
and accessible to fish of any size, age and numbers 
(Quentel et al., 1997).  

However, direct administration of antigen during the 
oral vaccination showed poor response due to digestive 
degradation of antigens in the fore-gut before the vaccine 
reached immune-responsive areas in the hind-gut and 
other lymphoid organs (Johnson and Amend, 1983; 
Rombout et al., 1985). Strategies developed for improve-
ments of oral vaccination have attempted to avoid this 
gastric destruction especially by the use of encapsulated 
antigen microspheres (Dalmo et al., 1995; Piganelli et al., 
1994).  

Azad et al. (1997) developed and evaluated a biofilm of 
A. hydrophilafor oral vaccination of carp which induced 
significantly higher antibody titres and protection com-
pared to a free cell vaccine. Bacterial biofilm developed 
on substrata have been found to be resistant to anti-
biotics (Anwar and Costerton, 1990), phagocytosis and 
the killing effect of whole blood and serum (Anwar et al., 
1992) due to presence of a protective layer of glycocalyx.  

The glycocalyx of biofilm is a polymer of neutral 
hexoses which encapsulates and possibly protects the 
bacterial surface antigens even from digestion in the gut 
(Costerton and Irvin, 1981).  

This property of biofilm vaccine is reported to facilitate 
longer retention of antigens in the gut and lymphoid tis-
sue and hence, might have resulted in the early and hei-
ghtened primary antibody response (Azad et al., 2000). 
The importance of biofilm vaccine has more relevance for 
oral vaccination of carnivorous fish where stomach is well 
developed in the digestive system (Nayak et al., 2004).  
Bacillus spp. are prominent bacteria in biofilm (Pradeep 
et al., 2004) and B. subtilis has been shown to possess 
antitumor and immunomodulatory activities in fish (Cohen 
et al., 2003). Some studies have demonstrated that B. 
subtilis and spores of B. subtilis act as probiotics since 
they promote  growth and viability of the beneficial lactic 
acid bacteria in the intestinal tracts of humans and some 
animals (Hoa et al., 2000).  

Alya et al. (2008) showed that B. subtilis and Lactobacillus 
acidophilus inhibited the growth of A. hydrophila in the O. 
niloticus. The B. subtilis inhibited the establishment of P. 
fluorescens in the O. niloticus. The two Bacillus strains, 
B. subtilis 2335 and B. licheniformis 2336 are well cha-
racterised and a number of clinical studies have been 
used to demonstrate probiotic effects (Bilev, 2002). 
 
 

CONCLUSION  
 
Improved water quality and nutrient availability through 
biofilm enhance the survival rate and growth of fish in the 
substrate based aquaculture. Heterotrophic bacterial load 
is  very  high  in  biofilm in comparison to water indicating  

 
 
 
 
vast scope for biofilm utilization in production of fish and 
shellfish in aquaculture. Biofilm based microorganisms 
enhance the immune response of aquaculture species 
through oral vaccination. Locally available cheap natural 
biomass may be used as substratum for biofilm formation 
in aquaculture so as to convert them into a valuable 
resource within a pond ecosystem with a view to promote 
sustainable aquaculture especially in developing countries. 
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