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We analyzed the phylogeny, amino acid variations, positive selection, and glycosylation patterns of
hemagglutinin (HA) and neuraminidase (NA) of A/H3N2 in Hong Kong from 1997 to 2006. The results
suggest that continuity and latency of influenza viruses might be the reasons why different influenza
viruses co-circulate within the same season. Many amino acid mutations were retained for two or more
successive years. The preferred antigenic sites of mutation are sites A and B in HAs, and site B in NAs.
An influenza pandemic may be caused by higher-than-threshold level of amino acid variations of the
virus.

Key words: Influenza virus, A/H3N2, phylogenetic analysis, selection pressure, N-glycosylation.

INTRODUCTION

As members of the family Orthomyxoviridae, influenza A al., 1992). Epidemics of influenza are estimated to affect
viruses are negative-strand RNA viruses that can be 3-5 million people per year across the world. In the last
categorized into several subtypes according to the anti- century, four influenza pandemics alone claimed more
genic properties of their surface glycoprotein such as than 50million lives (Stéhr, 2002). A/H3N2 and A/H1N1
hemagglutinin (HA) and neuraminidase (NA) (Webster et are the major influenza A subtypes in human populations.
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Influenza A virus causes epidemics and pandemics
through antigenic drift or antigenic shift (Yewdell, 2011).
Antigenic drift results from an accumulation of point
mutations leading to minor and gradual antigenic
changes, while antigenic shift involves major antigenic
changes by the introduction of new HA and/or NA
subtype into human populations (Webster et al., 1992).

How influenza A viruses evolve is a major research
topic (Kryazhimskiy et al., 2008). In the past decade,
there has been rapid accumulation of sequence data for
influenza viruses. Phylogenetic and evolutionary
analytical techniques have been developed with
advanced in high-throughput molecular biology and
computational biology. Detecting positive selection sites
of amino acid substitution may help track the evolution of
influenza A virus. Positive selection is defined as a
nucleotide replacement event. If the mutation of a
nucleotide is supported by positive selection, its corres-
ponding virus strain may grow to be the principal
influenza virus strain and hence cause influenza preva-
lence (Bush et al., 1999). Phylogenetic analysis is an
important way to understand molecular evolution of
influenza A virus. By studying 413 complete genomes of
human H3N2 influenza A viruses collected during 1997-
2005 in the United States, Nelson et al. (2006) identified
stochastic processes as the key determinant of influenza
A virus evolution. Bragstad et al. (2008) further
discovered that the evolution of influenza A virus was
stochastically influenced by small "jumps" in genetic
distance rather than constant drift, after studying 234
complete genomes of influenza A viruses during 1999-
2006 among the Danish.

Due to the absence of complete genomic sequences of
influenza A virus in most countries, many researches
usually use partial gene fragments to perform evolu-
tionary and mutation analysis (Mehle et al., 2012). The
influenza A virus invades human immunologic system
either by point mutation accumulation (drift) of principal
surface glycoprotein, hemagglutinin (HA) and neural-
minidase (NA), or by gene fragment rearrangement of
different influenza viruses in a infected cell. Generally,
HA1 area of HA proteins contains concentrated epitope,
and should experience the strongest positive selection
pressure (Nelson et al., 2007). However, it was detected
that no influenza gene had been strongly impacted by
positive selection pressure. Kryazhimskiy et al. (2008)
discovered that human influenza A virus with positive
selection evolution was strongly impacted by the long-
term sites and specific preferences of individual amino
acids.

Human H3N2 subtype of influenza A viruses that led to
the third largest human influenza pandemic in the 20"
century originated in 1968 in Hong Kong, which, along
with surrounding regions in Southern China, has been
referred to as the “epicenter” of pandemic influenza A
virus outbreaks (Kryazhimskiy et al., 2008). Hong Kong

is located in the subtropical region of the Northern
Hemisphere, where warm temperature (averaging 24°C)
and high humidity (averaging 79%) are major contributing
factors to the spread of influenza virus (Feng et al., 2012;
Shaman et al., 2011). A/H3N2 virus emerges from
February to March every year in Eastern and Southeast
Asia, where the virus mutated continually through cross
diffusion, eventually reaching North America and Europe
in six to nine months (Russell et al., 2008). The epidemic
could also take place from June to August (Khor et al.,
2012; Viboud et al., 2006).

Current studies on influenza A virus, particularly at the
sequence level, focus on the evolutionary mechanisms
and diffusion paths. It is very significant to analyze the
mutation patterns of influenza genomic sequences and
their relationships with the evolution, diffusion and
pathogenesis of A/H3N2. Comparisons between anti-
genic differences and phylogeny are essential to the
understanding how multiple lineages of influenza A virus
variants emerge. However, researcher studies on
influenza viruses in Southeast Asia are quite limited.
There has been no report of the relationship between
molecular evolution and the epidemic of viruses in the
region.

In this study, we analyzed and compared the genetic
diversity and mechanisms underlying the evolutionary
dynamics of HA and NA of influenza A/H3N2 viruses
isolated in Hong Kong from 1997 to 2006. We find that
continuity and latency of influenza viruses might be the
reasons why different influenza viruses co-circulate within
the same season. Many amino acid mutations are
retained for two or more successive years. The preferred
antigenic sites of mutation are sites A and B in HAs, and
site B in NAs. We discovered several positively selected
sites in HAs and NAs. We hypothesize that an influenza
pandemic may be caused by higher-than-threshold level
of amino acid variations of the virus.

MATERIALS AND METHODS
Epidemiological data and A/H3N2 sequences

The epidemiological data of Hong Kong during 1997-2006 were
downloaded from the Department of Health of Hong Kong web site,
at http://www.dh.gov.hk/eindex.html. We inferred that the influenza
prevalence in Hong Kong during the study period each month,
using the ratio of influenza viruses to influenza-like samples
recorded.

The HA and NA sequences of A/H3N2 were obtained from the
NCBI's influenza virus resource:
http://www.ncbi.nlm.nih.gov/genomes/FLU/FLU.html. In order to
ensure sequential comparability, we downloaded 335 full-length
HA’s sequences and 334 full-length NA’s sequences of A/H3N2 of
Hong Kong from 1997 to 2006. The sequences of the reference
vaccine strains used in this study were collected from the NCBI by
searching individual strain’s names. Sequences in other areas of
the world were randomly selected from the NCBI's influenza virus
resource, with three sequences per each region per year. We selected



USA, Taiwan, Australia, Denmark, Mainland China, and Japan as
the main region, because records about strains in these regions
have been kept for a long time.

Sequence alignment and phylogenetic analysis

The HA and NA sequences of A/H3N2 were aligned using BIOEDIT
v.7.0.9.0 (Tippmann, 2004) and edited using Mega4 (Tamura et al.,
2007). Phylogenetic analysis was performed by using region of
1650 bp for HAs and 1407 bp for NAs. Phylogenetic trees for both
HAs and NAs were inferred with the maximum likelihood (ML)
method available in the PHYML V3.0 package and SPR branch-
swapping (Guindon et al., 2003). In all cases, the simple HKY85
model of nucleotide substitution was used, because the sequences
in question are so similar that multiple substitutions can be
effectively ignored. The images of the trees were generated using
FigTree v1.3.1 (available at
http://tree.bio.ed.ac.uk/software/figtree/).

We calculated Pepitope values, the specific measure of antigenic
distance between two strains of influenza, by methods suggested
by Mufioz et al. (2005). The Pepitope value could also be
calculated as the total number of mutations within antibody
antigenic sites divided by the length of the antigenic sites. It is
assumed that an antigenic epitope which has the greatest ratio of
mutations is dominant, because the epitope is influenced by the
greatest selective pressure from the immune system. Pepitope
distance is defined as the fractional change in the dominant
antigenic epitopes of one strain over another strain. Residues in
antigenic epitopes were from references (Mufioz et al., 2005) . We
grouped the sequences according to their sublineage in the trees,
and computed amino acids distances between groups using the
MEGA software version 4 (Tamura et al., 2007).

Selection pressure analysis

Selection analysis was carried out by developing probabilistic
models of codon substitution with the CodeML program, which is
included in the PAML package version 4.0 (Yang, 1997) . This
program uses likelihood models that consider heterogeneous
substitution ratios (w = non-synonymous/ synonymous substitution
or dN/dS) among sites. We implemented models MO, M1a, M2a,
M3, M7, and M8, which are previously diagnosis for their
robustness in testing for positive selection (Yang, et al., 2000;
Yang, et al., 2005). The parameter w>1 is considered as an
indication of positive selection, whereas w<1 implies absence of
positively selected sites. Three comparisons were conducted. The
likelihood ratio test (LRT) compares the likelihood difference (2Ai)
twice with x2 distribution, if the degrees of freedom (df) are equal to
the difference in the number of free parameters between the two
models (detailed explanation of the models and the parameters can
be seen in refs (Wilson et al., 1981; Winter et al., 1981; Wolf et al.,
2006). LRT was performed using PAML (Yang, 1997; Yang et al,,
2000).

Prediction of glycosylation sites

Potential N-glycosylation sites (amino acids Asn-X-Ser/Thr, where
X is not Pro) were predicted by using nine artificial neural networks
at the NetNGlyc 1.0 Server (available at www.cbs.dtu.dk) (Gupta,
2004). A threshold value >0.5 average potential score was set to
predict glycosylated sites.
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RESULTS

In the last 13 years except for 2000, 2001, and 2006,
A/H3N2 virus was the dominating subtype in Hong Kong.
In 2000 and 2001, higher prevalence of A/HIN1 viruses
co-circulating with A/H3N2 viruses was observed. The
monthly occurrences of both A/H3N2 and A/H1N1 had
similar trends, while their annual dynamics showed
inverse trends.

Genetic evolution of influenza A/H3N2 virus

Figures 1 and 2 show the relationships between 335 HA
and 334 NA sequences of influenza A/H3N2 samples in
Hong Kong and World Health Organization (WHO)
(marked in yellow) influenza A/H3N2 vaccine strains.
Generally, HA and NA genes formed seasonal
phylogenetic clusters. The phylogenetic trees show
highly-branched evolution following a major linear trunk
route. We observed strains of different lineages and
clusters co-circulating within the same season.
Interestingly, HA and NA sequences from Hong Kong
clustered closely with the WHO vaccine strains
A/Sydney/5/97 and A/Moscow/ 10/99 before 2001;
however, they were scattered after 2001. On one hand,
fewer HA and NA sequences from Hong Kong clustered
with the WHO vaccine sequences, A/Fujian/ 411/2002
and  A/California/7/2004. On the other hand,
A/Wyoming/3/2003 and A/Kumamoto/102 /2002 clustered
with HA and NA sequences from Hong Kong very well in
the 2003/2004 season; so, did A/Wisonsin/67/2005 for
the 2005/2006 season.

The HA sequences of the 2002/2003 season evolved
from the 2000/2001 season with the appearance of
A/Fujian/411/2002-like  strains  (Figure 1). In the
2003/2004 season, HAs formed a subclade
(A/Wyoming/3/2003 and  A/Kumamoto/102/2002-like
lineage) evolving from the A/Fujian/411/02 (H3N2)-like
lineage from the 2002/2003 season. In the 2005/ 2006
season, A/California/7/2004 (H3N2)-like lineages in the
2004/2005 season continued to circulate together with a
slightly different A/Wisconsin/67/2005(H3N2)-like viruses.
In 1997/1998 season, the trunk split into three branches.
Thereafter in the 2003/2004 and 2005/2006 seasons, the
trunk further split into two branches. Although these
viruses may come from different sources via latency or
migration, they were co-circulating in the same season. In
the case of NAs, a multi-furcated tree was formed (Figure
2). The tree was interrupted in the 2001/2002 season and
the 2003/2004 season.

Generally, the occurrence of rearrangement can be
deduced by the fact that different gene fragments isolated
from the same ancestor strain are located at different
positions of the phylogenetic tree. We found several
possible recombinant events: A/Hong
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Figure 1. A maximum likelihood tree of 335 HA sequences from Hong Kong (1997-2006) with the HA sequences of 7 WHO seasonal influenza vaccine strains (A/California/7/2004,
A/Fujian/411/2002, A/AKUMAMOTO/102/2002, A/Moscow/10/99, A/Sydney/5/97, A/Wyoming/03/2003 and A/Wisconsin/67/2005, all of them are yellow highlighted in yellow boxes). The
sequences were aligned by BioEdit and edited by MEGA4. The tree was constructed by PHYML3.0 package and SPR branch-swapping with the HKY85 model of nucleotide substitution,
and displayed using FigTree, rooted at A/Sydney/5/97. The red boxes highlight sequences from different years in the same branch. The green boxes highlight sequences from different year
to the season sequences located. The blue boxes highlight strains which may be generated from rearrangement events.
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Table 1. HA’s Amino acid variations between sublineages of A/H3N2 viruses in Hong Kong.

Amino acid position 97-98 98-99 99-00

00-01

01-02 02-03 03-04 04-05 05-06

5
25
33

50C
75E
83E
131A

137A Y(F) S

144A (V) |

145A K

155B H

156B

159B

160B
172D
186B
189B
192B
193B
202
222
225
226D
227D
271
326
347
361
386
530

\

>MIVTOr®

P
~

< MA< XON<OS<nNHA0L®mWIX<<

G

G

L(1) |
G(ERV) G
H(Q) Q
E K
T(A) T
N(D) N

K(N) K K(N) N
H(T) T

S(N) N

S(N) S F

S(P) S(P) P
MV Vv

A(V) A

Amino acids in brackets indicate less than half but more than two substitutions at the given amino acid position within a season. A single amino
acid change in one position is not shown. Amino acids separated by '/ indicate equal substitutions of either amino acid at the given position. Letters
in upper case on the right of an amino acid position indicate the antigenic site location of the residue.

Kong/CUHK33915/1999, A/Hong Kong
/CUHK51431/2001, A/Hong Kong/CUHK53327/2002,
A/Hong Kong/CUHK53123/2002, and A/Hong
Kong/CUHK 52390/2004.

Amino acid variations

Patterns of antigenic site variations are observed by
aligning the amino acid sequences of the HAs. Thirty

amino acid sites changed, including 18 AA in the
epitopes (Table 1). Between four and seven amino acid
site season-to-season variations are observed, while two
to four sites belong to epitopes. Most amino acid variation
sites in the 1998/1999 and 2003/2004 seasons belong to
epitopes, while in the 2004/2005 season, variations of

four main amino acid sites are epitopes. A/H3N2 was
also prevalent in these three seasons. Most amino acid
variations in Table 1 were kept unchanged for two
additional years. For example, the amino acid position
S137 became stable in HAs after the 1998/1999 season;
after the 2002/2003 season, positions K83, T131, 1202
and A530 had also become stable. Between the seasons
of 2003/2004 and 2005/2006, all HAs acquired 125, Q75
and T155. Positions 144 and 225 had the highest
variability, which was illustrated by mutations more than
twice in addition to a reverse mutation. Reverse
mutations took place at several amino acid sites. For
example, in the 1999/2000 season, the amino acid at site
No. 5 mutated from G to V, but changed back to G in the
next season. Reverse mutations took place at sites 225
and 347 twice.
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Table 2. NA’s amino acid variations between sublineages of A/H3N2 viruses in Hong Kong.

Amino acid position 97-98 98-99 99-00

00-01 01-02 02-03 03-04 04-05 05-06

18
23
30
42
93
143
197B
199B
208
215
216
221B
249
265
267
307
385A
399A
431
432
437

K(N)

ooz

D(N) N

AXOGQ—-—-OmMIITXO<r>»

T(I) T

2
35 -
x
3
Z

E(D) D

SOXOXLZ

S(A) S
F
|
F
N(D) N D N

E(K) K

< -

Vv V()

Amino acids in brackets indicate less than half but more than two substitutions at the given amino acid position within a season. A single amino
acid change in one position is not shown. Amino acids separated by '/' indicate equal substitutions of either amino acid at the given position.
Letters in upper case on the right of an amino acid position indicate the antigenic site location of the residue.

There are 21 amino acid variation sites in NAs, and
only five sites belong to epitopes. This number is much
smaller than that in HA’s (Table 2). Five epitope sites
were found in the 1998/1999, 1999/2000 and 2004/2005
seasons. The sites D197, N208, K249, D399 and L437 in
amino acid sequence of NA had become fixed after the
1999/2000 season. All NAs possessed 130, F42, V143,
V216, and N385 after 2001/2002, but not those amino
acids which had been stable before 2001. After the
2004/2005 season, All NAs acquired K199, 1215, E221,
K431 and E432. Positions 93, 143 and 267 had the
highest variability, shown by more than two different
amino acids. Reverse mutations were also found in NAs,
such as site 93, which mutated from N to D in the
1999/2000 season and reversed back to N in the next
season. In addition, reverse mutations also took place at
sites 399 and 431.

We found five HA major amino acid variation sites in
the 1998/1999 season. The prevalence of A/H3N2
viruses increased dramatically in the 1998/1999 season
in association with mutations in residues Y137S at site A,
K160R at site B, and V347M in HA proteins. The
preferred variable antigenic sites between strains in the
successive seasons are A (Pepitope=0.280) and B
(Pepitope=0.255). By comparing the sequences between
the 2001/2002 and 2002/2003 seasons, we found seven

major amino acids variation sites, including three
epitopes, 83E, 144A, and 131A. The preferred antigenic
variation site is A (Pepitope=0.202). By comparing the
sequences between the 2003/2004 and 2004/2005
seasons, we found four major amino acids variation sites,
all of which are epitopes: 145A, 159B, 189B and 226D.
We further inferred that the preferred antigenic sites
between the 2003/2004 and 2004/2005 seasons are B
(Pepitope=0.543). In the 2003/2004 season, 25, 75 at site
E, 15 at site B and 156 at site B changed from L25, H75,
H155 and Q156 to 125, Q75, T155 and H156 in HA
protein, respectively. Both H155T and Q156H are located
at antigenic site B. T155 and H156 amino acids have
been maintained in all Hong Kong isolates after the
2003/2004 season. Positions 5, 33 and 271 changed
from G5, Q33 and D271 to V5, H33 and N271 in the
1999/2000 season and further to G5, Q33 and D271 in
the 2000/2001 season, respectively. Since then, these
residues (G5, Q33 and D271) have remained unchanged.
Position 144 at the HA protein changed from 1144 to
D144 in 2001/2002 and further to N144 in 2002/2003.
There were three major sites that changed in the
1999/2000 season. Among them, 197B and 399A belong
to epitopes. The preferred variable antigenic site between
strains in the 1999/2000 season and previous strains was
site B (Pepitope=0.172). We compared amino acids
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Figure 3. Amino acid distances of HAs and NAs between seasons. Sequences were grouped according to
the seasons in Figure 1 and Figure 2. The amino acids distances between groups were computed by MEGA

V4 software.

changed in the 2004/2005 season with those in the
2003/2004 season, showing that only 199B and 221B are
epitope sites. The preferred variable antigenic site
between strains in 2003/2004 and previous strains was
site B (Pepitope=0.346). There were four major amino
acids that changed from the 1999/2000 season to the
2000/2001 season, without epitope involvements.
Residues 1265T, Q267K, E399D at site A changed from
the 1997/1998 season to the 1998/1999 season in NA
proteins. Positions 215 and 431 at the NA proteins
changed from 1215, K431 to V215 and N431 in the
2003/2004 season and further to 1215, K431 in the
2004/2005 season, respectively. Position 225 at the HA
protein changed from G to D in the 2000/2001 season,
further to G in the 2001/2002 season, then to D in the

2002/2003 season, and finally to N in the 2005/2006
season. Position 93 at the NA protein changed from K to
N in the 1999/2000 season, further to D in the 2004/2005
season and finally to N in the 2005/2006 season.

Using seasonal evolutionary patterns of sequences as
groups, we computed amino acid distances between
groups using the software Mega version 4. The amino
acids of HAs varied dramatically during the 1998/1999
and 2002/2003 seasons, in which A/H3N2 were prevalent
(Figure 3). Generally, there were less amino acid
variations when prevalence was lower, but more
variations in the higher prevalence and turning seasons.
By comparing with the previous season, HAs had a
shorter distance in the 2004/2005 season, while NAs in
the 2001/2002 season had a longer distance. The turning
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Table 3. Log-likelihood values and parameter estimates for the selection analysis of HA and NA genes of A/H3N2 viruses in Hong Kong.

P

value for

Gene Model PP oLP LRT Estimates of parameters® Avg w tSitv
MO (one ratio) 1 -5614.03 0.31708 0.31708  4.62388
p0=0.84944, p1=0.13518,
M3 (discrete) 5  -5549.03 <0.0001 (p2=0.01538); we=0.11003 0.32366  4.54662
w1=1.27794, w,=3.73484
Py=0.78733 (P1=0.21267);
M1a (Neutral) 2  -5556.62 0.0006 10=0.07346 ( w;=1.00000) 0.27051 4.33857
HA Py=0.81725, P1=0.15479
M2a (Positive Selection) 4  -5549.14 (P2=0.02796); w=0.09758 0.32150  4.53517
(w1=1.00000), w2=3.11037
M7 (beta) 2 -5559.50 <0.0001 p=0.10084, q= 0.25511 0.28331 4.41238
p0=0.94592, p=0.40164,
M 8 (beta & w) 4 -5549.47 g=1.60989 (p2=0.05408) 0.32266  4.53860
w»2=2.52155
0 1 -5405.14 <0.0001 0.26784 0.26784 5.10390
po=0.79903, p1=0.19377 0.28824
3 5  -5309.03 (p2=0.00720); w=0.05821, 5.36253
w1=0.94501, w,»=8.14060
Py=0.81795 (P41=0.18205); 0.23103
1 2  -5331.60 <0.0001 (05=0.05988 ( w;=1.00000) 5.03506
NA
Py=0.81082, P1=0.18203 0.29170
2 4  -5309.07 (P2=0.00714); wo=0.06291 5.38093
(w1=1.00000), w,=8.21558
7 2  -5333.81 <0.0001 p=0.11021, q= 0.36840 0.23035  5.02546
p0=0.99264, p=0.13993, 0.28270
8 4  -5309.33 q=0.48039 (p>=0.00736) 5.33019

wo=7.98379

LRT: log likelihood ratio test for each comparison, a. The number of free parameters in each model, b. Log likelihood, c. The parameters in

parentheses are not free parameters.

season in the 2002/2003 season had fewer variations
than other seasons (such as in 1998/1999) in NAs, but
HAs had the longest distance.

Positive selection

The average dN/dS (avg. w) of HA’s amino acid sequen-

ces of A/H3N2 virus ranges from 0.27 to 0.32 in all codon
substitution models (Table 3). Thus, a non-synonymous
substitution rate is approximately 27-32% that of
synonymous mutations. The selections in M3, M2a and
M8 models successfully detected positively selected sites
and provided a much better fit to the data than with the
alternative one ratio MO, neutral M1a and beta
distribution M7 models, respectively, as determined by



LRT. At the 95% threshold level, only three amino acid
sites, i.e., residues 50(antigenic site C), 144 (antigenic
site A) and 500, are under positive selection in M3, M2a,
M8 together. Residue 193 is also under positive selection
in M3 and M8.

The average dN/dS (avg. w) of NA’s amino acid
sequences of A/H3N2 virus ranges from 0.23 to 0.29 in
all codon substitution models (Table 3). Thus, a non-
synonymous substitution rate is 23-29% as likely being
fixed as synonymous mutations. At the threshold 95%,
only three amino acid sites, namely residues 113, 259
and 361, are under positive selection in M3, M2a, and M8
simultaneously. Unlike HAs, none of the three amino
sites is at antigenic sites.

Glycosylation patterns

Point mutations can result in gain or loss of Asn-X-
Thr/Ser motifs and therefore, gain or loss of N-glycans,
which lead to the alteration of antigenicity and receptor
specificity of HAs. We analyzed the glycosylation
patterns. Nine putative N-glycosylation sites (residues 22,
38, 63, 122, 126, 133, 165, 246, and 285) are identified in
the HAs (Table 4). These glycosylation sites have been
conserved in our dataset from 1997 to 2006. An
additional site at position 144, due to the [144N
substitution within antigenic site A (Wilson et al., 1981),
was acquired by the strains collected in the 2000/2001
season. The N-glycosylation site was temporarily lost in
the 2001/2002 season, due to an N144D substitution, but
later was retained back in subsequent seasons.

In the case of NA, five potential N-glycosylation sites
(residues 61, 70, 86, 146, 200 and 234) were conserved
throughout the study period. The 93 predicted sequon
was partly seen from the 1998/1999 season due to K93N
substitution, and was retained in subsequent seasons
except 2004/2005 season due to N93D substitution. The
329 predicted sequon was only seen from 1997/1998
season, and lost in subsequent seasons. The potential
glycosylation at positions 200 appeared or disappeared
partly in 1997/1998 and 1998/1999 seasons.

DISCUSSION

The influenza subtype prevalence in Hong Kong was very
similar to those found in other parts of the world where
circulation of influenza A virus are often found. In the
1997/1998 season, Sydney-type influenza viruses
replaced the dominant Wuhan-type strains (Bridges et al.,
2000; Jong et al., 2000), whereas the Fujian-like viruses
replaced Sydney strains in 2003/2004 (Organization,
2004). In the 2000/2001 season, while A/H1N1 was the
dominating subtype in the world (Lin et al., 2004) , the
collection of A/HIN1 strains in Hong Kong was higher
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than in other years. All these showed the vital function of
virus disseminations on influenza prevalence.

The monthly epidemics of H3N2 and H1N1 are similar,
suggesting that the geographical conditions favorable for
the spread of these two influenza types is similar, and in
which influenza viruses can easily invade human body. It
is interesting to note that when the influenza A/H3N2
strain dominated, influenza A/H1N1 was extremely weak.
If a human is infected by one subtype of influenza
viruses, he/she will be immune to other influenza virus
subtypes (Rambaut et al., 2008).

Two virus strains from many successive seasons have
been found in one clade (colored red) (Figures 1 and 2),
and multiple sub-lineages in one season. The facts
showing the continuity and latency of influenza viruses
might be the reasons that different influenza viruses co-
circulate within the same season. We also found several
completely duplicated sequences from different seasons,
which may indicate the continuity of influenza viruses.

The introduction of the strains in the 2001/2002 season
caused a "jump" in the evolution of both HA and NA
genes. Many of the substitutions in HAs introduced in the
2001/2002 season have become fixed. After the "jump" of
influenza virus, the strains experienced a static period.
We believe that this reflects a more adapted virus status.

It is worthwhile to note that the strain A/Hong
Kong/1774/99 is much similar in antigenic and genetic
characteristics to A/H3N2 viruses circulating in pigs in
Europe during the 1990s. In addition, it is also closely
related to viruses isolated from two children in the
Netherlands in 1993 (Rambaut et al.,, 2008). This
highlights the potential of pigs as a vehicle of novel
human influenza viruses and the emergence of
amantadine-resistant human viruses. The influenza
viruses are possibly circulating continuously in the globe.

We found out that specific local epidemic strains in
Hong Kong from a certain season could cluster
phylogenetically with several strains. This supports the
local persistence of influenza strains. However, the
seasonal changes of influenza A/H3N2 may be mainly
due to one of the two major global migration patterns,
including 1) similar viruses appear in different countries at
different times, or 2) while one virus is popular within a
single location, it circulates continuously within this
population, and re-emerges during the next influenza
season with relatively little genetic change (Tang et al.,
2008).

Generally, there were more amino acid variations of
HAs and NAs in the seasons of influenza prevalence.
Particularly, amino acids in epitopes changed much more
frequently in prevalent seasons (Tables 1 and 2).
Moreover, the majority changes of amino acids were
observed during the early seasons of a lineage period.
Sequence analysis of HA shows high variation in HA1,
which may be due to its receptor-binding properties and
the sequence being targeted by neutralizing antibodies
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since it represents the membrane fusion glycoprotein of
influenza virus. Amino acid variations in NA distributed
uniformly. We found that some amino acids of the
isolates had undergone variations in two successive
seasons, demonstrating progressive evolution in each
protein segment.

We found the same epitope sites never prevail in either
different seasons or in the turning seasons of influenza.
In HA, for the 1998/1999 season, the Pepitope values of
epitopes A and B are higher than that for the 2002/2003
season, which explain that A/H3N2 strains caused more
severe outbreaks in 1998 than in 2002. There were at
most seven major amino acid variation sites in the
1999/2000, 2000/2001 and 2002/2003 seasons. We
would conclude that the cause for an influenza pandemic
may be either amino acid variations of epitopes
surpassing a threshold, or the key epitope sites having
changed.

Reverse mutations of amino acids show that they may
be important for viral escape from the host immune
system and for the overall adaptation of the virus. These
reverse mutations may be caused by qualitative similarity
between mutated amino acids and little effect of amino
acid changes on protein structure and function. Amino
acids changed in HAs and NAs are stochastic and
scattered in the proteins. The total number of mutations
in HAs is greater than that of NAs, suggesting that a
higher selective pressure is being imposed on HAs.

As shown in Tables 1 and 2, the prevalence of
influenza A/H3N2 in Hong Kong is closely related to the
amino acid variations of HAs and NAs. High distances do
not lead to high influenza prevalence. Random mutations
contribute much more to amino acid variations of
influenza genes, and we infer that the probable reason
leading to influenza pandemic is the amino acid
variations in epitopes surpassing a threshold. The
preferred antigenic sites for mutation are sites A and B in
HAs, and antigenic site B in NAs. Generally, HAs and
NAs experienced a stasis-period after turning seasons,
which might be an adaptive process between influenza
virus and human body.

In HA, there are several amino acid mutation sites.
Also, the year when the influenza viruses were prevalent
in Hong Kong and in which these amino acids mutated
was the same as that in Demark descript by Bragstad
(2008). The accordant amino acids mutation sites and
year would indicate the influenza viruses in the two areas
may originate from the same ancestor through influenza
circulation in the world. In NA, there are also many amino
acid mutation sites that are the same between influenza
viruses prevalent in Hong Kong and Demark, most of
which mutated latter in one or two years in Demark than
in Hong Kong. The reason may be that the evolution
pressure of NA is less than that of HA. Compared with
Demark, influenza viruses in Hong Kong lack the amino
acid mutations of 92E, 126A, 128B, 173D, 304C in HA

and 329C, 332C, 370C, 392A, 393A, 401A in NA,
respectively. It is interesting to note that these amino acid
sites in NA are adjacent. All of these differences indicate
the genetic diversities of influenza viruses. The influenza
viruses are still in evolution when they circulate in
different regions, which may bring about the genetic
differences between influenza viruses in different parts of
the worlds.

The average non-synonymous-to-synonymous substi-
tution ratios (dN/dS) for HA and NA genes in this study
did not exceed 1 under any of the models that allow for
positive selections. Hence, neither HAs nor NAs are
directly impacted by positive selection. Instead, they are
generally under purifying selection, which lowers the
frequency of mutations that impose a negative effect on
the fitness of the virus, and only certain sites are affected
by adaptive selection. At the threshold 95%, only six
amino acid sites, namely residue 50 (antigenic site C),
144 (antigenic site A) and 500 of HA, and 113, 29 and
361 of NA are under positive selection in M3, M2a, M8
together. Position 193 (antigenic site B) in HAs is under
positive selection in M3 and M8. Position 500 is different
from previous findings by Bragstad et al. (2008, 2009),
which suggests that positively selected sites may vary
within the dataset applied, method used and the
significance level selected for a site to be classified as
positively selected. In HAs, three (50C, 144A and 193B)
of four positions under positive selection are at antigenic
sites, which indicates the important role that epitopes
play in pathogenicity of influenza virus. On the other
hand, none of the three amino sites under positive
selection is at antigenic sites in NA. Combining the less
amino acid variation in NA than HA and the higher
selection pressure of HA than NA, we would conclude
that HAs play a more important role than NAs in the viral
entry mechanism and immune recognition.

An important function of N-linked glycosylation of
influenza virus proteins is to evade detection by the
immune system. The loss or gain of N-glycosylation sites
is an important mechanism in antigenic drift, which works
by masking or unmasking of the antigenic sites (Sun et
al., 2013; Tippmann, 2004).

In this study we predict there are 10-11 potential N-
glycosylation sites in HAs and 5-6 potential N-glycosy-
lation sites in NAs (Table 4). Most potential N-glycosy-
lation sites are stable in HAs and NAs. The predicted N-
linked glycosylation at position 144 of HAs at antigenic
site A has been observed since the 2000/2001 season
and half were lost in the following season due to a point
mutation (N144D). It is interesting to note that the posi-
tion 144 is under positive selection. However, this glycol-
sylation site was further retained in 2002/2003 season,
and was conserved in sequent seasons. The predicted N-
linked glycosylation at position 93 in NAs has been
observed occasionally since the 1998/1999 season and
was conserved in the following season. However, this
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Table 4. N-Glycosylation sites predicted in the HA1 protein of influenza A isolates.

Gene Season Amino acid position?
1997/1998 8, 22, 38, 63, 122,126, 133, 165, 246, 285, 483
1998/1999 8, 22, 38, 63, 122, 126, 133, 165, 246, 285, 483
1999/2000 8, 22, 38, 63, 122,126, 133, 165, 246, 285, 483,
2000/2001 8, 22, 38, 63, 122,126, 133, 144, 165, 246, 285, 483
HA 2001/2002 8, 22, 38, 63, 122,126, 133, (144)°, 165, 246, 285, 483,
2002/2003 8, 22, 38, 63, 122,126, 133, 144, 165, 246, 285, 483,
2003/2004 8,22, 38, 63, 122,126, 133, 144, 165, 246, 285, 483,
2004/2005 8, 22, 38, 63, 122,126, 133, 144, 165, 246, 285, 483
2005/2006 8,22, 38, 63, 122,126, 133, 144, 165, 246, 285, 483
1997/1998 61, 70, 86, 146, 234, 329
1998/1999 61, 70, 86, (93)°, 146, 234
1999/2000 61, 70, 86, 93, 146, 234
2000/2001 61, 70, 86, 93, 146, 234
NA 2001/2002 61, 70, 86, 93, 146, 234
2002/2003 61, 70, 86, 93, 146, 234
2003/2004 61, 70, 86, 93, 146, 234
2004/2005 61, 70, 86, 146, 234
2005/2006 61, 70, 86, 93, 146, 234

Bold numbers represent an antigenic binding site. bNearly half of the strains lost N-glycosylation at this position.

glycosylation site was lost in the 2004/2005 season due
to a point mutation (N93D). The site was further retained
in sequent seasons. These two positions may not play
any major roles in escape from the immune system.
There were also some occasional potential N-
glycosylation sites in both HAs and NAs, for example,
198 in HAs and 200 in NAs (not shown in Table 4). We
think these positions did not contribute significantly to the
prevalence of influenza A/H3N2 in the past years.

The influenza outbreak is a complex phenomenon. The
genetic make-up of influenza A viruses changes every
year. Hence, continuous antigen and genome sequence
surveillance of influenza A viruses is still a requirement.
In this study, we performed amino acid sequence
comparisons among Hong Kong’s strains, vaccine strains
provided by WHO, and some strains from other regions in
the world. We detected significant amino acid
substitutions in surface proteins from strains circulating in
Hong Kong over a period of ten years (1997-2006). The
accumulation of random mutation leads to quantitative
variations. We infer that the probable cause leading to
influenza pandemic is the amino acid variations in
epitopes surpassing a threshold. It is likely that "jumps" in
genetic distance rather than constant drift caused the
virus evolution (Bragstad et al., 2008). One of the most
important examples of influenza pandemic is gene
rearrangement (including bird influenza), which resulted
in several world-wide influenza pandemic in the 20th
century. Random mutations and gene rearrangements in

sequence between similar influenza strains may
contribute greatly to regional influenza prevalence. The
introduction of new influenza virus strains brought forth
by gene rearrangements among significantly different
strains may be the cause for their world-wide pandemics.
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