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The intracellular survival of Vibrio alginolyticus and Vibrio parahaemolyticus in large yellow croaker 
macrophages of Pseudosciaena crocea was investigated. In addition, the effects of N

G
-monomethyl-L-

arginine (NMMA) and catalase on the interaction of V. alginolyticus with macrophages from head kidney 
and on macrophages reactive nitrogen intermediate (RNI) and reactive oxygen intermediate (ROI) in 
vitro were determined. V. alginolyticus ND-01 was able to survive in macrophages from head kidney of 
large yellow croakers for at least 3 h, while V. paraheamolyticus 1.1614 could not survive in the 
macrophages for 1 h. Intracellular bacterial survival was affected by the addition of specific inhibitors of 
macrophage oxidative function. Exposure of macrophages to NMMA and catalase decreased the 
number of viable cells of V. alginolyticus inside large yellow croaker macrophages. Furthermore, a 
close correlation was observed between the number of intracellular survival bacteria with the amount of 
NO and H2O2 produced by macrophages.   
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INTRODUCTION 
 
The large yellow croaker (Pseudosciaena crocea) is one 
of the most important cultured marine fish in China (Mai 
et al., 2005). In recent years, with the rapid expansion of 
intensive one-species aquaculture of large yellow 
croaker, infectious diseases caused by bacteria, mainly 
Vibrio, are spreading, resulting in great economic losses. 
V. alginolyticus is a Gram-negative short bacillus which 
widely distributed in the ocean and estuary environment 
(Molitoris et al., 1985). V. alginolyticus has been 
commonly associated with the epidemic vibriosis which 
leads to mass mortality of cultured large yellow croaker,  
and resulting in considerable losses (Yan et al., 2009).  
 
 

 
*Corresponding author. E-mail: yanqp@jmu.edu.cn. Tel: +86-
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 Macrophagesplay an important role in the early immune 
response by killing invading microorganisms through 
phagocytosis and release of bactericidal substances such 
as reactive oxygen intermediate (ROI) (Neumann et al., 
2001). Given that the macrophage is one of the cell types 
which pathogens are likely to encounter soon after entry 
into the host and its prominent role as an effector cell in 
the immune response, it is not surprising that certain 
pathogens have adapted to live inside the macrophage 
for part of their life, using the cell as a shield against 
other cell-mediated and humoral immune responses 
(Kaufmann, 1993). 

Intracellular survival is an important factor determining 
virulence of bacilli (Herdt et al., 1995). By surviving within 
phagocytes, pathogens, such as Streptococcus 
pyogenes, can also exploit the free-trafficking privileges 
of these cells within the host to systemically disseminate 
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from a local focus of infection (Medina et al., 2003). 
Several fish pathogens, such as Mycobacterium spp. 
(Chen et al., 1998), Piscirickettsia salmonis (McCarthy et 
al., 2008) and Yersinia ruckeri (Ryckaert et al., 2010) 
have been reported to resist killing by macrophages. 

To survive within phagocytes, pathogens should 
withstand ROI and RNI such as superoxide (O

2−
) and 

nitric oxide (NO) produced by the cells (Nathan and 
Shiloh, 2006). Chan et al. (1992) had previously 
demonstrated that intracellular survival of Mycobacterium 
tuberculosis in murine macrophages was effectively 
inhibited by IFN-γ and tumor necrosis factor alpha (TNF-
α) or Escherichia coli lipopolysaccharide (LPS). The 
intracellular survival of M. tuberculosis in RNI-producing 
macrophages correlated with the amount of nitrogen 
oxides generated and was inhibited by NOS inhibitors 
(Chan et al., 1995). Virulent Edwardsiella tarda strains 
are able to adhere to, survive and replicate within blue 
gourami (Trichogaster trichopterus) phagocytes at least 
6.5 h postinfection but fail to stimulate reactive oxygen 
intermediates (Rao et al., 2001). Piscirickettsia salmonis 
is capable of survival and replication within native 
salmonoid head kidney macrophages and its survival 
may depend on an ability to escape destruction within 
phagolysosomes, not utilise actin-based motility (ABM) 
as a means of evasion and intercellular spread 
(McCarthy et al., 2008). Yersinia ruckeri is able to survive 
inside macrophages in vitro as well as in vivo and is 
possessed by both SOD and catalase which can interfere 
with the ROI produced by the macrophages early after 
infection, thus conferring protection against early killing 
(Ryckaert et al., 2010).  

However, intracellular survival of V. alginolyticus in 
macrophages and the effects of drugs on the intracellular 
survival of V. alginolyticus have not been reported. In the 
present study, we examined the effects of N

G
-

monomethyl-L-arginine (NMMA) and catalase on the 
intracellular survival of V. alginolyticus within 
macrophages and on the production of RNI and ROI, for 
a better understanding of the intracellular survival of V. 
alginolyticus.   
 
 

MATERIALS AND METHODS 
 

Bacterial strain and culture conditions 

 
V. alginolyticusND-01 was isolated from the spontaneously infected 
large yellow croakers and confirmed as the pathogen by artificial 

infection (Yan et al., 2001). V. parahaemolyticus 1.1614 was 
obtained from China Center for Type Culture Collection .Both 
strains were grown on beef extract-peptone agar with 2% NaCl at 
28°C. After incubation for 18 h, bacterial cells were harvested and 
resuspended in phosphate-buffered saline (PBS, pH7.4). The 
density of bacterial suspension was adjusted according to the value 
of OD550. 
 
 

Preparation of macrophages suspension  

 
Head   kidney   macrophages   were   collected   according   to   the  

 
 
 
 
procedures of Bayne (1986) with some modifications. The tissue 
overlaying the pronephros of each side was removed, and the 
organ was placed in 2 ml ice-cold Leibovitz L-15 medium (Biological 
Industries, Israel) supplemented with 10 IU heparin per ml 100 IU 
S/P/ml and 2% fetal calf serum. All head kidneys were sheared, and 
pushed through 100-order nylon net. The cell suspensions from the 
two organs were then loaded onto a 34/51% discontinuous Percoll 
(Amersham Pharmacia Biotech, UK) density gradient with a syringe 
and centrifuged at 400×g for 30 min at 4°C. The band of cells at the 
34/51% interface was collected, then washed twice by 
resuspending in L-15 medium and centrifugated at 400×g for 10 
min at 4°C, and the living and dead cells were counted by trypan 
blue staining. And then the cells were counted with hemocytometer, 

and adjusted to 2.4×10
7
 cells/ml in L-15 medium with 10% FCS, 

100IU S/P/ml
 
and 10 IU heparin/ml and transferred to six pore 

plates at 1 ml/well. 
 
 
Transmission electron microscopy (TEM) analysis 
 
The cells were transferred to six pore plates at 1 ml/well before the 
bacteria were added. The bacterial suspension [multiplicity of 

infection (MOI) =100(100 bacteria per macrophage added)] was 
added to each well and incubated at 28°C. After 0.5 h of incubation, 
the cells were pooled in sterile tubes. The tubes were centrifuged at 
400×g for 10 min at 28°C and the supernatant was discarded, then 
2.5% glutaraldehyde in PBS was added for 30 min at 4°C to fix the 
macrophages. Then was rinsed twice in PBS for 5 min each time 
and macrophages were resuspended in PBS by gentle rocking. A 
300-mesh Formvar-coated copper grid was placed on a drop of 
macrophages suspension for 5 min. Duplicates were performed for 

each type of bacteria and the images were obtained using JEOL 
1010 transmission electron microscope (JEOL, Ltd., Tokyo, Japan) 
at an acceleration voltage of 80 kV with calibrated magnification. 
 
 
In vitro infection assay 

 
The in vitro infection assay was performed as described by Larsen 

et al. (2001) with some modifications. The cells were transferred to 
six pore plates at 1 ml/well before the bacteria were added, denoted 
as time point -2 h. 1 ml of the bacterial suspension [multiplicity of 
infection (MOI) = 100 (100 bacteria per macrophage added)]  was 
added to each well and incubated at 28°C. After 0.5 h of incubation, 
the cells were pooled in sterile tubes. The tubes were centrifuged at 
100×g for 5 min at 28°C and the supernatant was carefully removed 
without disturbing the packed cells. After washing twice by 
resuspending in 3 ml PBS and centrifuged for 5 min at 100×g at 
28°C, the packed cells were resuspended in 2 ml PBS. Then the 
cell suspensions were treated with 3000 U Gentamycin/ml for 20 
min at 4°C and were washed twice as above. The supernatant fluid 
was withdrawn for sterility test by plate counting. The packed cells 
were resuspended in fresh L-15 medium with 10 IU heparin/ml, 
10% FCS and 100 units S/P, and the time point was denoted as 
zero. The cells suspension was allowed to be incubated at 28°C in 
5% CO2 for 0, 30, 60, 120, and 180 min, respectively. After 
incubation, the cells were centrifuged for 5 min at 100×g at 28°C 
and the supernatant was aspirated, then 1 ml of sterile distilled 
water was added for 30min to lyse the cells. The CFU number of 
the cell lysate was determined by plate counting (McCarthy et al., 
2008; Ryckaert et al., 2010).  
 
 
The effects of timing of NMMA and catalase treatment on the 
intracellular fate of V. alginolyticus  

 
The effects of timing of NMMA and catalase treatment on the 
intracellular fate of V. alginolyticus were performed as described  by  
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Figure 1. Transmission electron micrographs of macrophages phagocytosis. (A) A bacteria was 

phagocytosing by the macrophage (×6000); (B) a bacteria had been devoured by a macrophage (×8200).  
 

 
 

Zhao et al. (1997) with some modifications. Macrophages in the 
wells of six-pore plates were divided into 8 groups. Group C and D 
were pre-incubated in 1 ml L-15 culture medium with 250 μg/ml 
NMMA, and group G and group H were incubated in 1 ml L-15 
culture medium with 1 mg/ml catalase. Groups A, B, E, F, I, J and K 
were pre-incubated in 1 ml L-15 culture medium without NMMA or 
catalase. After 2 h of pre-incubation, the macrophages were 
subjected to infection by V. alginolyticus at a MOI of 100. After 1 h 
of infection, the cell suspensions were treated with 3000 U 
Gentamycin/ml for 20 min at 4°C and were washed twice as above. 
1 ml fresh L-15 medium was added to every pore. Groups B, C and 
J was cultured in 1 ml L-15 medium with 250 μg/ml NMMA, and 
Groups F, G and K was cultured in 1 ml L-15 medium with 1 mg/ml 
catalase. In addition, Groups A, D, E, H and I was not exposed to 
NMMA or catalase. All groups of macrophages were cultured for 3 h 
after infection, and the numbers of intracellular V. alginolyticus cells 
were then assessed by plate counting.  
 
 
Measurement of NO2

- 

 
To determine the production of nitric oxide by macrophages, its 
stable end product, NO2

-
, was analyzed by the Griess reaction 

(Green et al., 1982). Briefly, conditioned media were collected and 
centrifuged (400 × g) for 10 min. Aliquots (100 μl) of the conditioned 
media were then distributed in a 96-well microtiter plate, and then 
equal volumes of the Griess reaction solutions (0.1% naphthyl-
ethylenediamine dihydrochloride and 1% sulfanilamide in 2.5% 

phosphoric acid) were added. The reaction was allowed to proceed 
for 10 min at room temperature, and the absorbance at 550 nm was 
measured by a microplate reader (BIO-RAD). The analysis was 
conducted in triplicate for each sample. The amounts of NO2

-
 in the 

samples were calculated by extrapolation from a sodium nitrite 
standard curve prepared for each experiment. 
 
 
Measurement of hydrogen peroxide 

 
The production of hydrogen peroxide by macrophages was 
determined according to hydrogen peroxide kit  (Nanjing  Jiancheng 

Bioengineering Institute) based on the oxidative polymerization of 
molybdic acid to a complex compound reaction product. Briefly, 
Aliquots (0.1 ml) of conditioned media were collected in 5 ml 
centrifuge tube, homogenized and centrifuged (10000 × g) for 10 
min. 0.1 ml supernatant and 1 ml reagent I (pre-heated at 37°C) 
were incubated in 4 ml centrifugal tube at 37°C for 1 min, then 1 ml 
reagent II was added. The absorbance at 405 nm was measured by 
a microplate reader (BIO-RAD). The bank and standard group was 
done as below. The analysis was conducted in triplicate for each 
sample. The amounts of hydrogen peroxide in the samples 
(gprot/L) were calculated by [(Aexperiment- Ablank)/Astandard- Ablank)] × 
standard concentration (163 mmol/L)÷ proten concentration of the 
sample.  
 
 
Statistical analysis 

 
The results were expressed as mean ± standard deviation. Student’s 
t-test was used to determine the difference between two groups. 
Values of P<0.05 and P<0.005 were considered significant 

difference and extremely significant difference, respectively. 

 
 
RESULTS 
 
Phagocytosis micrographs 
 
As visualized using TEM, the cell membrane of a 
macrophage invaginated and formed the pseudopod and 
A. hydrophilia was phagocytosing by the macrophage 
(Figure 1A). Then the bacteria had been devoured by a 
macrophage (Figure 1B).  
 
 
Intracellular survival ability of 2 strains  
 
V.    alginolyticus    exhibited    considerable    intracellular  

 
A      B 
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Table 1. Survival of two strains of Vibrio in cultured macrophages from head kidney of the large yellow croaker. 
 

Strains 
Bacteria survive (CFU/ml） 

0 min 30 min 60 min 120 min 180 min 

V. alginolyticus 2755000 ±145000 560000 ±150000 365000 ±85000 109167±4922 66567±5406 

V. parahaemolyticus 10±5 14±6 0 0 0 
 
 
 

Table 2. Effects of NMMA treatment on the intracellular fate of V. alginolyticus. 
 

Treatment ways 
Number of V. alginolyticus viable (CFU/ml) 

0 h 1 h 3 h 

A(no NMMA) 3480000±11314 292000±8485 48300±4667 

B(NMMA added after infection) 3480000±11314 118667±18148 10267±2715 

C (NMMA added before and after infection) 3230000±4243 52000±11314 15600±3292 

D(NMMA added before infection) 3230000±4243 251000±15556 62900±4384 
 

 
 

Table 3. Effects of catalase treatment on the intracellular fate of V. alginolyticus. 

 

Treatment ways 
Number of V. alginolyticus viable (CFU/ml) 

0 h 1 h 3 h 

E(no catalase) 2500000±42426 162000±8485 42800±2828 

F(catalase added after infection) 2500000±42426 102000±9165 38400±5103 

G (catalase added before and after infection) 2410000±15556 39267±1701 18900±707 

H(catalase added before infection) 2410000±15556 73330±8080 36267±1617 
 
 

 

survival ability in macrophages of large yellow croaker, 
while V. parahaemolyticus showed very low intracellular 
survival ability. Despite the numbers of viable V. 
alginolyticus in macrophages from head kidney of the 
large yellow croaker decreased from 0 to 180 min after 
infection, the number of viable cell still remained on a 
high level (66567±5406 CFU/ml). However, no viable cell 
of V. parahaemolyticus was detected at 60, 120 and 180 
min postinfection (Table 1). 
 
 
Intracellular survival of V. alginolyticus in durg-
treated macrophages  
 
The number of intracellular viable V. alginolyticus in 
macrophages pre-treated with NMMA and pre-treated 
without NMMA at 0 h were 3480000±11314 and 
3230000±4243 CFU/ml, respectively. There was no 
significant difference (P>0.05) between different groups. 
In macrophages pre-treated with NMMA, V. alginolyticus 
in group D at 1 and 3 h exhibited stronger intracellular 
survival ability than group C (P<0.05). In macrophages 
pre-treated without NMMA, V. alginolyticus in group A at 1 
and 3 h exhibited stronger intracellular survival ability 
than group B (P<0.05). There was no significant 
difference between group A and D and between group B 
and C at 1 and 3 h (P>0.05). In macrophages without 

treatment with NMMA, the number of intracellular viable 
V. alginolyticus was 48300±4667 CFU/ml at 3 h 
postinfection (Table 2, treatment A). In macrophages 
exposed to NMMA after infection with V. alginolyticus, the 
percent decline of intracellular V. alginolyticus was 78.7% 
at 3 h after infection (Table 2, treatment B). In 
macrophages pretreated with NMMA and continuously 
incubated with NMMA thereafter the percent decline of 
viable V. alginolyticus was 67.7% at 3 h after infection 
(Table 2, treatment C). In macrophages which pretreated 
with NMMA, there was a 30.2% increase at 3 h 
postinfection (Table 2, treatment D). 

The number of intracellular viable V. alginolyticus in 
macrophages pretreated with catalase and pre-treated 
without catalase at 0 h were 2500000±42426 and 
2410000±15556 CFU/ml, respectively, exhibiting no 
significant difference (P>0.05). In macrophages pre-
treated with catalase, V. alginolyticus in group H at 1 and 
3 h exhibited stronger intracellular survival ability than 
group G (P<0.005). In macrophages pre-treated without 
catalase, the number of viable V. alginolyticus in group E 
at 1 h was greater than group F (P<0.05) and exhibited 
no significant difference with group F at 3 h. In 
macrophages without treatment with catalase, the 
number of viable intracellular V. alginolyticus was 
39867±5460 CFU/ml at 3 h postinfection (Table 3, 
treatment E). In macrophages exposed  to  catalase  after  
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Table 4. The intracellular fate of V.alginolytics in macrophages pretreated with NMMA and catalase and continuously 
incubated with NMMA and catalase. 
 

Treatment ways 0 h 1 h 2 h 3 h 

I(control) 2245000 ±10500 150000 ±56569 107500±10607 44250±354 
J(NMMA) added after infection 2245000 ±10500 405000 ±91924 192500±10607 22500±2828 
K(catalase) added after infection 2245000 ±10500 75000 ±7071 55000 ±7071 24833±4481 

 
 
 

 
 
Figure 2. Effects of NMMA and catalase on macrophages reactive nitrogen intermediate.  

 
 
 
infection with V. alginolyticus, the percent change of 
intracellular V. alginolyticus was 10.3% at 3 h 
postinfection (Table 3, treatment F, P<0.05). In 
macrophages pretreated with catalase and continuously 
incubated with catalase thereafter the percent decline of 
viable V. alginolyticus was 8.3% at 3 h after infection 
(Table 3, treatment G, P<0.05). In macrophages that 
were pretreated with catalase but not exposed to 
catalase after infection, there was a 15.3% decline at 3 h 
postinfection (Table 3, treatment H, P<0.05). 
 
 
Effects of NMMA and catalase on intracellular 
survival of V. alginolyticus  
 
The number of intracellular viable V. alginolyticus in 
macrophages treated with catalase or NMMA or 
untreated with drugs at 0 h were 2245000±10500 
CFU/ml. V. alginolyticus in group J at 1 h reflected 
stronger intracellular survival than group I and K 
(P<0.05), and there was not significant difference 
between group I and K (P>0.05). V. alginolyticus in group 
J at 2 h still showed stronger intracellular survival than 
group I and K (P<0.05), and there was significant 
difference among the three groups (P<0.005). At 3 h, 
group J and H exihibited the same intracellular survival 

(P>0.05), and group I showed the stronger survival 
compared with the other groups. In control group, the 
number of viable intracellular V. alginolyticus was 
44250±700 CFU/ml at 3 h postinfection (Table 4, 
treatment A). In macrophages pretreated with NMMA and 
continuously incubated with NMMA, the percent decline 
of viable V. alginolyticus was 49.2% at 3 h postinfection 
(Table 4, treatment B). In macrophages pretreated with 
catalase and continuously incubated with catalase, the 
percent decline of viable V. alginolyticus was 43.9% at 3 
h postinfection (Table 4, treatment C). 
 
 
Effects of NMMA and catalase on macrophages NO

2-
 

 
Treatment of macrophages with catalase increased the 
production of NO

2-
 significantly (Figure 2, P<0.005), while 

the treatment with NMMA did not show significant effect 
on the production of NO

2- 
(Figure 2, P>0.05). NO

2-
 

produced by infected macrophages of control group 
(without treatment with NMMA or catalase) was increased 
somewhat in infected macrophages treated with catalase 
(Figure 2, P<0.005), while was not influenced when 
NMMA was added to macrophages (Figure 2, P>0.05). 
NO2

-
 produced by infected macrophages treated with 

catalase   was   1.0 00±0.043  μmol/well   at    1  h    after  
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Figure 3. Effects of NMMA and catalase on macrophages reactive oxygen intermediate. 

 
 
 
infection. NO2

-
 produced by infected macrophages 

treated with NMMA was no significant difference with the 
control group (P>0.05), while there was a significant 
difference with the group treated with catalase (P<0.005). 
 
 
Effects of NMMA and catalase on macrophages 
hydrogen peroxide 
 
Hydrogen peroxide produced by infected macrophages 
treated with NMMA or catalase decreased compared to 
that of infected macrophages without treatment of NMMA 
or catalase (Figure 3, P<0.05). Hydrogen peroxide 
produced by infected macrophages treated with NMMA or 
catalase was significantly difference with the control 
group (Figure 3, P<0.05). Hydrogen peroxide produced 
by infected macrophages treated with NMMA decreased 
during 1 and 2 h, followed by an increase and the value 
was 4.468 μmol/gprot at 3 h after infection (Figure 3, 
P<0.05). Hydrogen peroxide produced by infected 
macrophages treated with catalase decreased during 1 
and 2 h, followed by an increase and the maximum value 
was 3.253 μmol/gprot (Figure 3, P<0.05). The trend of 
hydrogen peroxide produced by infected macrophages 
treated with no NMMA and no catalase was the same 
with that of hydrogen peroxide produced by infected 
macrophages treated with catalase.  
 
 
DISCUSSION  
 
The capability of survival inside the host phagocytes is 
considered to be a bacterial virulence factor as it 
facilitates the spreading and infection of the pathogens. A 
virulent E. ictaluri strain was killed by channel catfish 
(Ictalurus  punctatus)  macrophages   (Shoemaker   et al., 

1997), while virulent E. tarda strains were capable of 
survival and replication in head kidney phagocytes of 
blue gourami (Trichogaster trichopterus) at least 6.5 h 
postinfection (Rao et al., 2001). In the present study, V. 
alginolyticus ND-01 was able to survive in macrophages 
from head kidney of large yellow croakers for at least 3 h, 
while V. paraheamolyticus 1.1614 could not survive in the 
macrophages for 1 h, which indicated the virulent of V. 
alginolyticus ND-01 to large yellow croakers. 

In order to survive within the macrophage, pathogens 
must avoid being killed by the cell’s numerous defense, 
and have evolved a variety of survival or escape tactics 
(McCarthy et al., 2008). NMMA is a nonspecific iNOS 
inhibitor which affects the L-arginine-dependent cytotoxic 
pathway mediated the potent antimicrobial function of 
macrophages, decreasing the generation of NO and RNI 
in mammalian (Chan et al., 1995). Conflicting results 
have been reported about the effect of NMMA on the 
survival of pathogens inside host phagocytes. NMMA was 
reported to exacerbate murine listeriosis (Beckerman et 
al., 1993; Boockvar et al., 1994), suggesting that 
macrophages treated with NMMA was not able to 
ineffectively kill or inhabit intracellular Listeria. Cross et al. 
(1999) demonstrated that exposure of ferret 
macrophages to NMMA did not significantly affect the 
intracellular survival and growth of Mycobacterium bovis. 
However, Gregory et al. (1993) demonstrated that when 
NMMA was used in another murine listeriosis model in 
which treatment was administered once at the time of 
infection, it appeared to decrease tissue listerial burden. 
In the present study, treating macrophages of large 
yellow croaker with NMMA inhibited the intracellular 
survival of V. alginolyticus. The results indicate that 
NMMA is unsuitable for the cure of vibriosis of large 
yellow croaker.  

Catalase  facilitates  bacteria   to   survive   inside   host 

(Fig. 3)    
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macrophage by catalyzing the breakdown of hydrogen 
peroxide to water and oxygen (Day et al., 2000). The 
results of Day et al. (2000) indicated that catalase 
provided resistance to hydrogen peroxide in vitro and 
contributed to the survival of Campylobacter jejuni in 
BALB/c mice macrophage, suggesting a novel 
mechanism of intracellular survival. Cross et al. (1999) 
demonstrated that exposure of ferret macrophages to 
catalase did not significantly affect the intracellular 
survival and growth of M. bovis. The results of our study 
showed that catalase inhibited the intracellular survival of 
V. alginolyticus. Since there is no report about survival of 
pathogen inside fish phagocyte treated with NMMA and 
catalase, it is still unknown whether the pathogens or the 
hosts lead to the conflicting results.  

Free soluble nitrite is an indicator of nitric oxide 
synthesis. Ferret macrophages (Cross et al., 1999) and 
human monocyte-derived macrophages (Cameron et al., 
1995; Murray and Teitelbaum, 1992) did not produce 
measurable levels of free soluble nitrite. However, oyster 
hemocytes produce considerable ROI and RNI after 
bleeding even without stimulation by zymosan or PMA 
(Lambert et al., 2007). In the present study, fish 
macrophages activated in vitro can produced some 
amounts of NO2

-
.  

Different results have been reported on the effect of 
NMMA and catalase on RNI production of mammalian 
and bivalve. The release of nitric oxide from monocytes 
infected by Mycobacterium avium was found to be 
inhibited by NMMA (Zhao et al., 1997). Similar results 
were recorded from mice (Chan et al., 1995) and rats 
(Upchurch et al., 2001). However, Goedken et al. (2004) 
suggested that NMMA failed to inhibit the production of a 
respiratory burst in oyster haemocytes. Lambert et al.,  
(2007) demonstrated that NMMA was a potent inhibitor of 
hyalinocyte ROI/RNI production (27 to 33% decreases) 
and had no significant effect on granulocytes in 
Crassostrea gigas. In the present study, NMMA did not 
significantly inhibit macrophages infected with V. 
alginolyticus from producing the RNI, identifying with the 
results of Goedken et al. (2004) and Lambert et al. 
(2007). The results in the present study showed that 
catalase can lead to the suppression of H2O2, which in 
accord with Cross et al. (1999), who reported that 
catalase caused a mean of 82% suppression of H2O2 in 
ferret macrophages. NMMA also caused the suppression 
of H2O2, it is possible that NO reacts very rapidly with 
oxygen radicals (Oliveira et al., 2006), resulting in the 
decrease of H2O2. 

In conclusion, V. alginolyticus can survive in large 
yellow croaker macrophages for at least 3 h. The 
intracellular survival of V. alginolyticus was inhibited by 
NMMA and catalase. Catalase promoted the production 
of NO

2-
 by macrophages. NMMA and catalase resulted in 

the decrease on the amount of H2O2 in macrophages. 
And this study provided a better understanding of the role 
of ROI and RNI production and suggested that there is a  
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correlation between intracellular survival bacteria with the 
amount of RNI and ROI produced by macrophages. 
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