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Micronutrients play a vital role in crop production and sustainable crop yield. High crop yield varieties 
make soil micronutrients deficient, without incorporating external inputs. Due to deficiency of 
micronutrients such as iron (Fe) and zinc (Zn), yield decline drastically. It limits more than 
macronutrients, but requirements of these plant nutrients are very less, but plants have self regulated 
mechanism, which secrete the phytosiderophore (PS) and mobilize the lower concentration of these 
metals to soil solution for easy uptake by plants. Phytosiderophore production is a general response of 
plants to Fe and Zn deficiency in particular. The uptake rate of PS-chelated Fe and Zn is 100 and 5 to 10 
times higher than that of free Fe and Zn, respectively. Higher amount of carbon containing organic 
compounds enhanced the microbial activities in rhizosphere and alter the plant nutrient chemistry in 
soil. This article discussed the importance of PS in microbial activity in soil and nutrient uptake 
mechanism in plants. 
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INTRODUCTION 
 
One of the widest ranging abiotic stresses in world 
agriculture arises from low iron (Fe) and zinc (Zn) 
availability in calcareous soils, particularly in cereals 
(Berg et al., 1993; Palmiter and Findley, 1995). A higher 
Zn acquisition efficiency, further, may be due to either or 
all of the following: an efficient ionic Zn uptake system, 
better root architecture that is long and fine roots with 
architecture favoring exploitation of Zn from larger soil 
volume (Richardson et al., 1989), higher synthesis and 

release of Zn-mobilizing phytosiderophore (PS) by the 
roots and uptake of Zn-PS complex (Dotaniya et al., 
2013a). Zinc and Fe are the two most important 
micronutrients in crop production. More than 50% of the 
Indian soils are suffering from zinc and iron deficiency. It 
is also a big problem in well aerated calcareous soil. The 
release of PS is one of the most important mechanisms 
which enhances the mobilization of Fe and Zn in soil and 
their uptake by crops (Ackland and McArdle, 1990;
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Figure 1. Origin of various pools of rhizodeposition (Dennis et al., 2010). 

 
 
 
Bar-Ness et al., 1992). Peanut/maize intercropping was a 
sustainable and effective agroecosystem that evidently 
enhances the Fe nutrition of peanuts in calcareous soils 
by the influence of PS (Xiong et al., 2013). 
 
 
PHYTOSIDEROPHORES 
 
Phytosiderophores are organic substances (such as 
nicotinamine, mugineic acids (MAs) and avenic acid etc) 
produced by plants (Figure 1) (Mori and Nishizawa, 1987) 
under Fe-deficient conditions, which can form organic 
complexes or chelates with Fe

3+
, and increase the 

movement of iron in soil (Ueno et al., 2007). It is non 
proteineous, low molecular weight acids released by the 
graminaceous species under the iron (Wallace, 1991) 
and Zn deficiency stress. The PS mobilize micronutrients 
Fe, Zn, Mn and Cu from the soils to plant in deficient 
condition (Takagi et al., 1984).  
 
 
Characteristics of phytosiderophores 
 
1) These are molecules with high affinity for Fe

3+
, and 

remove  the  Fe
3+

 from  minerals  and contribute  towards 

their dissolution. 
2) These Fe-chelates are highly soluble and stable over a 
wide pH range. 
3) They are of crucial importance for the zinc and iron 
transport in soils and its supply to plants. 
4) Zn-PS have similar structural confirmations as Fe-PS 
and a similar regulatory mechanism for the biosynthesis 
and/or release of PS under both Zn and Fe deficiencies. 
5) A plant releases PS at higher amounts about a few 
hours to the onset of the light period. Under continuous 
darkness or continuous light, the rate of release of PS is 
lower. 
6) There has been observed a sharp rise in PS 
production three hours after onset of the light period, 
which gradually declines thereafter. 
 
 
IRON DEFICIENCY: A GLOBAL CONCERN 
 
Fe deficiency chlorosis in crop plants is a widespread 
nutrient problem particularly in calcareous soils in arid 
and semiarid regions, which often results in significant 
yield losses (Mortvedt, 1991). Such yield reductions have 
been reported in many crops, such as upland rice, maize 
and sorghum (Jolley et al., 1996; Dotaniya et al., 2013b). 
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Figure 2. Strategy of Fe Acquisition by plants (Tagliavini and Rombola, 2001). 

 
 
 

Grazing induced Fe-deficiency chlorosis in wheat was 
also reported (Berg et al., 1993). Soil amendments and 
foliar sprays of Fe are common methods to correct Fe 
deficiency (Bashir et al., 2010). However, these methods 
are expensive, time-consuming and may not be effective 
for more than one cropping season. Alternatively, 
breeding of plant genotypes with higher efficiency in the 
acquisition of Fe from the soil is a realistic approach 
(Kobayashi and Nishizawa, 2012). Selection for resis-
tance, however, is difficult because of heterogeneous soil 
and highly variable environmental conditions that affect 
expression of Fe-deficiency chlorosis in the field (Nozoye 
et al., 2011). Yellow stripe 1 (ys1) and ys3 are recessive 
mutants of maize (Zea mays L.) that show typical 
symptoms of Fe deficiency, that is interveinal chlorosis of 
the leaves (Tomoko et al., 2013).  

A lack of understanding of the factors influencing 
chlorosis expression has also impeded the development 
of reliable screening methods in the laboratory, controlled 
greenhouse, or environmental-chamber environment 
(Jolley et al., 1996). So the development of reliable Fe-
deficiency chlorosis screening criterion is a necessary 
prerequisite for significant improvement of Fe-deficiency 
chlorosis resistance. Recently, many studies suggested 
that non-proteinogenic amino acids (PS) release has 
been linked to the ability of species and genotypes to 
resist Fe- deficiency chlorosis (Hansen et al., 1996; 
Romheld and Marschner, 1986). Therefore, PS release 
has been suggested as a selection criterion for Fe 
efficient graminaceous monocots. 
 
 
ZINC DEFICIENCY: A GLOBAL CONCERN 
 
Low availability of Zn in calcareous soils is one of the 
widest ranging abiotic stresses in world agriculture 
particularly in Turkey, Australia, China and India. Global 
studies initiated by the Food and Agriculture Organization 
(FAO) reported Zn deficiency in 50% of the soil samples 
collected from 25 countries (Hansen et al., 1996). It is 
one of the most widespread nutritional constraints in crop 

plants, especially in cereals. Among cereals, wheat and 
rice in particular, suffer from its deficiency. The yield 
reduction up to 80% along with reduced grain Zn level 
has been observed under Zn deficiency (Fageria et al., 
2002). This deficiency is a serious implication for human 
health in countries where consumption of cereal-based 
diets predominates. Further, plants grown on zinc-
deficient soils tend to accumulate heavy metals, which 
again is a potential human health hazard. 
 
 
STRATEGY OF FE AND ZN ACQUISITION BY PLANTS 
 
Iron and Zn deficiency induced chlorosis represents the 
main nutritional disorder in plants grown on calcareous 
and/or alkaline soils because of an extremely low 
solubility of soil Fe. Mechanisms of Fe acquisition in 
higher plants have been grouped into Strategy I and II 
(Figure 2). Strategy I plants (Tagliavini and Rombola, 
2001), which include dicotyledons and non-graminaceous 
monocotyledons, respond to Fe deficiency by extruding 
both protons and reducing substances (phenols) from the 
roots, and by enhancing the ferric reduction activity at the 
root plasma membrane. This strategy is similar to the Zn 
acquisition by plants. The solubilized Fe must be reduced 
from Fe

+3 
to Fe

+2 
 on the plasma membrane before Fe

+2 
 

is transported into the root cell through a specific Fe
+2  

transporter. Strategy II plants (graminaceous species) 
synthesize and secrete Fe-chelating substances, 
mugineic acids (MAs) from their roots to dissolve 
sparingly soluble Fe compounds in the rhizosphere 
(Figure 3) (Marschner et al., 1986) and affected by soil 
bacteria (Chattopadhyay, 2006; Dipanwita  and 
Chattopadhyay, 2013). Iron is transported across the 
plasma membrane as a complex of PS- Fe

+3
 through a 

specific transport system without prior reduction. 
The synthesis of mugineic acid is induced by Fe-

deficiency. The chemical constituents, number and 
amount of mugineic acid synthesized and secreted into 
the rhizosphere may differ among species and even 
cultivars (Xiong et al., 2013). In general, the amount of 
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Figure 3. Schematic representations of important processes in strategy II iron acquisition (Dotaniya et al., 2013a).  

 
 

 

MAs secreted correlates positively with the ability of the 
plants to tolerate Fe deficiency. But siderophore 
produced by microbes also enhanced the Fe uptake. If 
siderophores and PS are present at similar 
concentrations, Fe is preferentially bound to the 
siderophores, which may even remove Fe from the Fe-
PS complex. In contrast to many bacterial siderophores, 
rhizoferrin from the fungus Rhizopus arrhizus has only a 
slightly higher affinity towards Fe compared to PS 
(Crowley and Gries, 1994; Zelenev et al., 2005). 
Rhizoferrin is a good Fe source for barley, probably 
because of exchange of Fe from rhizoferrin to the PS 
(Yehuda et al., 1996). It can be amply surmised from the 
available literature that Zn  and Fe efficiency of cereals 
under deficiency is regulated by several factors, most 
importantly, the presence of an efficient Zn

2+
, Fe

+2 
and PS 

complex uptake system.  
Manipulation of phytosideriophore biosynthesis and 

release is a promising strategy to improve Fe and Zn 
efficiency in cereal crops (Wallace, 1991). In Alice maize 
cultivar, Zn uptake decreased with increasing stability 
constant of the chelate in the order: ZnSO4 (greater than 
or equal to) Zn-desferrioxamine > Zn-PS > Zn-EDTA. 
Adding a 500-fold excess of free PS over Zn to the 
uptake solution depressed Zn uptake in maize mutant 
ys1 almost completely (von Wiren et al., 1996). It may be 
quite plausible that iron and zinc deficiency tolerance of 
graminaceous species can also be achieved through 
manipulation of key enzymes of PS biosynthesis that is 
Nicotianamine synthase (NAS) and Nicotianamine amino-
transferase (NAAT). This will help in reducing and may 
be even totally eliminating the application of zinc and iron 
fertilizers to the soil. 
 
 

EFFECT ON MICROBIAL ACTIVITIES IN 
RHIZOSPHERE 
 

The rhizosphere is the narrow region of soil that is 
directly  influenced by  root secretions and associated soil 

microorganisms (Giri et al., 2005). Soil which is not part 
of the rhizosphere is known as bulk soil. The rhizosphere 
contains many bacteria that feed on sloughed-off plant 
cells, termed rhizodeposition and the proteins and sugars 
released by roots (Curl and Truelove, 1986). It is a 
densely microbial populated area of soil in which the 
roots must compete with the invading root systems of 
neighboring plant species for space, water, and mineral 
nutrients, and with soil-borne microorganisms, including 
bacteria, fungi, and insects feeding on an abundant 
source of organic material (Ryan and Delhaize, 2001). 

In 1904, the German agronomist and plant physiologist 
Lorenz Hiltner first coined the term "rhizosphere" to 
describe the plant-root interface (Figure 4), a word 
originating in part from the Greek word "rhiza", meaning 
root (Hiltner, 1904; Hartmann et al., 2008).  Microbial 
population is more affected by the amount and type of C 
in soil (Akiyama et al., 2005). Under long term study, it 
was found that microbial population is greater in organic 
soil as compared to inorganic farming plots (Tu et al., 
2005). In general 10-20% more biomass was measured 
in organic soils (Gelsomino et al., 2004). High 
secretion of PS in soil, improved the soil fertility and 
nutrient mobility in soil (Colmer and Bloom, 1998). 
Microbial biomass is an indicator of soil microbial 
activities. Generally, in crop production, more biomass 
means more fertile soil, which is a good indicator of plant 
nutrient (Becard et al., 1992, 1995; Trieu et al., 1997). 
Root secretions may play symbiotic or defensive roles as 
a plant ultimately engages in positive or negative 
communication (Stintzi and Browse, 2000; Stotz et al., 
2000), depending on the other elements of its rhizo-
sphere such as available nutrients, water, space CO2 

concentration and C. In contrast to the extensive 
progress in studying plant-plant, plant-microbe (Keyes et 
al., 2000) and plant-insect interactions that occur in 
above ground plant organs such as leaves and stems, 
very little research has focused on root-root, root-
microbe, and root-insect interactions in the rhizosphere
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Figure 4. Structure of the rhizosphere in soil (McNear, 2013). 

 
 

 

(Shannon et al., 2002). Bacterial siderophores are usually 
poor Fe sources for both monocot and dicot plants (Bar-
Ness et al., 1992; Crowley et al., 1992; Walter et al., 
1994). However, in some cases, microbial siderophores 
have alleviated Fe deficiency-induced chlorosis in dicots 
(Jurkevitch et al., 1988; Sharma et al., 2003; Wang et al., 
1993; Yehuda et al., 2000). On the other hand, plant-
derived Fe-PS complexes appear to be a good Fe source 
for bacteria (Jurkevitch et al., 1993; Marschner and 
Crowley, 1998).  

The organic compounds released through these 
processes can be further divided into high and low 
molecular weight (HMW and LMW, respectively). By 
weight, the HMW compounds which are those complex 
molecules that are not easily used by microorganisms 
(mucilage, cellulose) make up the majority of C released 
from the root (Chin-A-Woeng et al., 1997); however, the 
LMW compounds are more diverse and thus have a 
wider array of known or potential functions (Bauer and 
Mathesius,  2004). Rooting density has a large effect on 
uptake per unit PS secretion as a result of overlap of the 
zones of influence of neighboring roots (Von Wiren et al., 
1996). The list of specific LMW compounds released from 
roots is very long, but can generally be categorized into 
organic acids, amino acids, proteins, sugar, phenolics 
and other secondary metabolites which are generally 
more easily used by microorganisms. It provides the C 
source of energy and food, because of plenty of organic 
compounds released from roots enhanced the microbial 
activity and population. Further increase in microbial 
population accelerates the competition for water, C and 
space also (Baudoin et al., 2003). 
 
 
EFFECT OF FERTILITY AND ATMOSPHERIC CO2 
CONCENTRATION ON PHYTOSIDEROPHORE 
 
Root  exudates  is  secreted  from  root  in  two  way:   (1)  

actively released from the root and (2) by diffuseness 
which are passively released due to osmotic differences 
between soil solution and the cell (Dakora and Phillips 
2002), or lysates from autolysis of epidermal and cortical 
cells. These organic compounds may be sugar, non-
protein amino acids mugineic acid (of barley) and avenic 
acid (of oats) (Darrah, 1991). Das and Dkhar (2011) 
conducted a research with various organic and inorganic 
fertilizers and their effect on physico-chemical properties 
of rhizosphere (Table 1). They observed that the 
application of vermicompost resulted in most pronounced 
growth of microbial population compared to inorganic 
treatment. Also, application of organic treatments showed 
increased rhizosphere soil physicoche-mical properties 
which in return lead to the increased microbial population 
which is of great importance in nutrient availability of the 
studied soil (Kundu et al., 2013). The soil microbial 
population also secrets a significant amount of sidero-
phores in soil, however it promotes the root exudates 
from plants (Bais et al., 2001). The root exudates play an 
important role in root microbe interactions. Flavonoids are 
present in the root exudates of legumes that activate 
Rhizobium meliloti genes responsible for the nodulation 
process (Peters et al., 1986). Fertilizer and lime 
applications typically result in increased bacterial 
numbers and decreased fungal biomass (Lovell et al., 
1995). 

Bacterial communities in the rhizosphere are not static, 
but will fluctuate over time in different root zones, and 
bacterial composition will differ between different soil 
types, plant species, plant growth seasons and local 
communities (Semenov and Brooks, 1999). Changes 
induced in the soil by the growing root provide additional 
niches for soil microbes. Soil types and growth stages are 
important factors in shaping rhizobacterial community 
structure (Latour et al., 1996; Seldin et al., 1998; 
Herschkovitz et al., 2005) and may be the strongest 
factor affecting bacterial communities in potato rhizo-
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Table 1. Physico-chemical properties of rhizosphere soil influenced by organic and inorganic fertilizers (Das and Dkhar, 2011).  

 

Treatment pH 
Moisture 
content 

SOC 
(%) 

Total N 

(%) 

Av- P 

(μ/g) 

K 

(mg/g) 

Soil Respiration 

(mg/g) 

MBC 

(μ/g) 

Plant compost 5.6 24.90 1.80 0.32 1.18 0.04 65.1 1015.0 

Vermicompost 5.4 24.24 1.50 0.31 2.66 0.05 66.11 2145.7 

Integrated plant compost 5.6 24.68 1.75 0.35 2.01 0.04 64.56 1385.1 

FYM 4.6 23.82 1.27 0.31 2.24 0.08 56.5 940.9 

Control 4.9 23.39 1.60 0.28 2.01 0.05 56.56 656.5 

NPK 4.9 23.39 1.60 0.35 2.68 0.04 62.89 798.9 

 
 
 

 
 
Figure 5. Annual greenhouse gas emissions by sector (www.e-education.psu.edu). 

 
 
 
sphere (Van Overbeck and Van Elsas, 2008); plant 
species (Grayston et al., 1998; Smalla et al., 2001) and 
even ‘cultivar (genotype) within the same species 
(Andreote et al., 2009). The rhizosphere is a highly 
dynamic environment for bacterial communities and even 
small topographical landform changes can alter environ-
mental conditions that may accelerate or retard the 
activity of organisms (Ramette et al., 2005).  

Soil microbial activities affected the physical, chemical 
and biological activities and ultimately crop production. 
Increasing environmental factors like CO2 concentration 
and atmospheric temperature affected the root exudates 
and rhizospheric microbial population. Impacts of 
elevated CO2 on soil ecosystems, focuse primarily on 
plants and a variety of microbial processes. The 
processes considered include changes in microbial 
biomass of C and N, soil enzyme activity, microbial 
community composition, organic matter decomposition, 
and functional groups of bacteria mediating trace gas 

emission in terrestrial and wetland ecosystems. Except 
from CO2, other gases that is CH4, N2O and other gases 
play a significant role in global climate phenomena 
(Figure 5). 

The cocktail of chemicals released is influenced by 
plant species, edaphic and climactic conditions which 
together shape and are shaped by the microbial 
community within the rhizosphere. There is still very little 
known about the role that a majority of the LMW 
compounds play in influencing rhizosphere processes 
(Cheng et al., 1996). A growing body of literature is 
beginning to lift the veil on the many functions of root 
exudates as a means of acquiring nutrients (acquisition of 
Fe and P), agents of invasiveness (that is allelopathy) or 
as chemical signals to attract symbiotic partners 
(chemotaxis) (rhizobia and legumes) or the promotion of 
beneficial microbial colonization on root surfaces 
(Bacillus subtilis, Pseudomonas florescence) (Bais et al., 
2004, Park et al., 2003). 



 
 
 
 
FUTURE NEED OF RESEARCH 
 
1) More research should be on the biotechnological side, 
separation and insertion of high phytosiderophor 
responsible gene in crop plant, which is crucial for crop 
production in low fertility areas.  
2) Also, research should be done on the use of 
alternative combat methods, against elevated CO2 
concentration without compromising positive effect on PS 
release.   
 
 
CONCLUSIONS 
 
A healthy crop production requires a good status of plant 
nutrient. It play crucial role in plant metabolism and 
ultimately in edible part. In nutrient deficient condition, 
plant growth is limited and poor yield is obtained. 
Phytosiderophors are secreted from plant root, and it is a 
life saving mechanism in plants. It enhances the plant 
nutrient uptake and improves the soil health. Iron 
availability is low in most aerobic soil, and microorga-
nisms and plants release low molecular-weight com-
pounds (chelators) which increase Fe availability. It spe-
cially enhances the uptake of Fe and Zn in lower 
concentration. Increasing root exudates in soil enhances 
the soil fertility level as well as microbial biomass. These 
soil microbes play vital role in nutrient transformation 
reactions in soil and nutrient uptake by crop plants. 
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