academicJournals

Vol. 8(53), pp. 4027-4040, 31 December, 2014 DOI: 10.5897/AJMR2014.7015 Article Number: 580D1E649725 ISSN 1996-0808 Copyright © 2014 Author(s) retain the copyright of this article http://www.academicjournals.org/AJMR

African Journal of Microbiology Research

Review

Review on common foodborne pathogens in Ethiopia

Edget Abayneh¹, Dagmar Nölkes¹ and Biruhtesfa Asrade^{2*}

¹College of Veterinary Medicine, Haramaya University, Ethiopia. ²School of Veterinary Medicine, Hawassa University, Ethiopia.

Received 15 July, 2014; Accepted 20 October, 2014

Foodborne pathogens are among the common causes of illness and death as well as public health problem which result in the loss of labor force both in developed and developing countries. The World Health Organization estimated that in developed countries, up to 30% of the population suffers from foodborne diseases each year, whereas in developing countries up to 70% of cases of diarrheal disease are associated with the consumption of contaminated food per year. Animal products such as meats, fish and their products are generally regarded as high-risk commodity in respect of pathogen contents, natural toxins and other possible contaminants. In Ethiopia, the widespread habit of raw beef consumption is a potential cause for foodborne illnesses besides, the common factors such as overcrowding, poverty, inadequate sanitary conditions, and poor general hygiene. In Ethiopia, as in other developing countries, it is difficult to evaluate the burden of food borne pathogens because of the limited scope of studies and lack of coordinated epidemiological surveillance systems. In addition, under-reporting of cases and the presence of other diseases considered to be of high priority may have overshadowed the problem of foodborne pathogens. This review focused on published report of common food borne pathogen specifically *Salmonella* spp., *Escherichia coli, Listeria* spp., *Staphylococcus* spp. and *Campylobacter* spp. in different parts of Ethiopia.

Key words: Campylobacter spp., Escherichia coli, Ethiopia, foodborne pathogen, Listeria spp., Salmonella spp., Staphylococcus spp.

INTRODUCTION

Foodborne pathogens are one of the leading causes of illness and death in developing countries resulting in the loss of labor force which could have contributed in the economic growth (Fratamico et al., 2005).

Food borne diseases occur particularly in Africa because of the prevailing poor food handling and sanitation practices, inadequate food safety laws, weak regulatory systems, lack of financial resources to invest in safer equipment and lack of education for food-handlers (WHO, 2004). Of the foods intended for humans, those of animal origin tend to be most hazardous unless the principles of food hygiene are employed. Animal products such as meats, fish and their products are generally regarded as high-risk commodity in respect of pathogen contents, natural toxins and other possible contaminants is an unavoidable consequence of meat processing (Jones et al., 2008). Data regarding meat borne diseases in Ethiopia are not well documented among which studies conducted

*Corresponding author. E-mail: biruhta@gmail.com.

Author(s) agree that this article remain permanently open access under the terms of the <u>Creative Commons Attribution License</u> <u>4.0International License</u>

in different parts of the country have shown the public health importance of several bacterial pathogens associated with foods of animal origin (Bayleyegn et al., 2003; Ejeta et al., 2004; Adem et al., 2008; Kumar et al., 2009; Tefera et al., 2009).

In Ethiopia, like other developing countries, it is difficult to evaluate the burden of food borne pathogens because of the limited scope of studies and lack of coordinated epidemiological surveillance systems. In addition, underreporting of cases and the presence of other diseases considered to be of high priority may have overshadowed the problem of foodborne pathogens (Oosterom, 1991).

The widespread habit of raw beef consumption is a potential cause for food borne illnesses in Ethiopia, besides the common factors such as overcrowding, poverty, inadequate sanitary conditions and poor general hygiene (Siddiqui et al., 2006).

In Ethiopia, there have been several studies conducted on foodborne pathogens among which are *Salmonella* spp., *Escherichia coli* O157:H7, *Listeria monocytogenes*, Staphylococcus *aureus* and *Campylobacter* spp. but there is no compiled document for easy access. Therefore, the objectives of this review paper are: To provide well organized data on available research works (published) on common foodborne pathogens in Ethiopia. And to show research gaps on foodborne pathogens in Ethiopia.

Salmonella spp.

Salmonella are the major food borne pathogenic bacteria in humans as well as in animals. Salmonella species are leading causes of acute gastroenteritis in several countries and salmonellosis remains an important public health problem worldwide, particularly in the developing countries (Rotimi et al., 2008). Salmonellosis is the most common food borne disease in both developing and developed countries, although incidence rates vary according to the country (Stevens et al., 2006). The fecal wastes from infected animals and humans are important sources of bacterial contamination of the environment and the food chain (Ponce et al., 2008).

Salmonella infection in meat animals, including cattle, swine and sheep, arises from intensive rearing practices and the use of contaminated feeds (D'Aoust, 1989). Cross-contamination of carcasses with Salmonella can also occur during slaughtering operations. Stress associated with transport of animals to abattoir augments shedding of Salmonella by carrier animals and this may contribute to the spread of the organism to other animals in the slaughter plant (Baird-Parker, 1990; Isaacson et al., 1999). Slaughtering procedures potentially involve many risks of both direct and cross-contamination of carcasses and meat surfaces. During slaughter, faecal contamination of edible organs with subsequent contamination of the carcass may occur. This can be carried through all slaughter procedures up to the processing of the raw products, which are important sources of *Salmonella* in the human food chain (Edwards et al., 1997).

It is usually difficult to evaluate the situation of salmonellosis in developing countries because of the very limited scope of studies and lack of coordinated epidemiological surveillance systems (Oosterom, 1991; Ache and Szyfres, 2001). In addition, under reporting of cases and presence of other diseases considered to be of high priority may have overshadowed the problem of salmonellosis in some developing countries including Ethiopia. The increased global population coupled with mass production of animal and animal food and the rapid international trade in agriculture, aquaculture and food products could worsen the problem (D'Aoust, 1994).

A periodic surveillance of the level of Salmonella contamination in the different food animals, food products and environment is necessary to control the spread of the pathogen and infection of man (Dawson, 1992). Therefore, the different studies conducted on food borne salmonellosis in different parts of Ethiopia by different researcher are systematically summarized and presented in Table 1.

From 2000-2013 almost 15 different studies were published on foodborne Salmonellosis which are concentrated in some parts of Ethiopia especially in Addis Ababa and Debre Zeit with 8 studies in Addis Ababa, 6 in Debre Zeit. There might be unpublished studies done in other place which helps to provide holistic figure of the overall foodborne Salmonellosis patterns in Ethiopia. As a recommendation, it is better to do region wide research to provide a representative estimate of foodborne Salmonellosis in Ethiopia.

Escherichia coli

Infection with *E. coli*O157:H7 is a major food borne and zoonotic pathogen responsible for hemorrhagic colitis and hemolytic uremic syndromes in humans. Transmission to human occurs through consumption of undercooked meat, unpasteurized dairy products, and vegetables or water contaminated by feces of carrier animals (Songer and Post, 2005).

Meats are a common source of *E. coli* contamination, which may be acquired during slaughter through fecal contact. *E. coli* outbreaks have been associated with meat (especially ground beef), dairy products, mayonnaise, apple cider, sprouts (radish), lettuce and spinach. *E. coli* outbreaks have also been associated with swimming pools and nursing schools (Arun, 2008).

Verocytotoxigenic *E. coli* (VTEC) (also referred to as Shiga toxin-producing *E. coli*), including serotype O157:H7, are one of such group, causing severe, chronic, and potentially fatal illness such as hemorrhagic colitis, hemolytic uremic syndrome, thrombotic thrombocytopenic purpura and, in severe cases, death, related

Location	Sample/source	Prevalence (%)	Serotypes	Antimicrobial susceptibility profile	References
D/Zeit	Feces MLN Abdo.muscle Diaph.muscle	2/323(0.6) 4/323(1.2) 9/323(2.8) 10/323(3.1)	S. Mishmarhaemek S. Typhimurium S. Enteritidis S. Guildford S. Dublin	Resistant to AMP, CEP, SMX, TIC, TET	Alemayehu et al. (2003)
A/A	Slaughtered cattle				Bayleyegn et al. (2003)
D/Zeit Dire– dawa Jigijiga	feces MLNs Muscle	7/370(1.9) 9/370(2.4) 63/1116(5.6)	S. Braenderup S. Dublin S. Saintpaul S. Typhimurium		,,
	Slaughtered Camel		S. Typhimurium var. Copenhagen		
	Feces MLNs Liver Spleen Muscle	18/119(15.1) 19/119(15.9) 14/119(11.8) 17/119(14.3) 48/238(16.2)	S. Anatum		
	Slaughter house personnel Human stool Supermarket	18/300(6)			
	Minced beef	46/380(12.1)			
	Chicken meat and giblet				
	Meat Liver Gizzard Heart	54/452(8.3) 33/111(29.7) 48/116(41.4) 18/85(21.2)			
A/A D/Zeit	Chicken meat Skin Liver Gizzard Heart	16/104(15.4) 8/104(7.7) 19/55(34.5) 23/56(41.1) 14/59(23.7)	S. Braendrup, Typhimuriumvar Copenhagen, Anatum, Kottbus, Typhimurium	Resistance to CEX	Molla and Mesfin (2003)

 Table 1. Systematic summary of publications on foodborne Salmonellosis in Ethiopia.

Table 1. Contd.

A/A	Minced beef	23/160(14.4)	S. Infantis, Braenderup, dublin, Saintpaul, Bovismorbificans, Anatum, vojle, S.I:8, 20		Ejeta et al. (2004)
	Mutton	12/85(14.1)	S. Infantis, Braenderup, Anatum, Bovismorbificans & S. I:47, z4, z23		
	Pork	9/55(16.4)	S. Infantis, Braenderup & Vejle		
D/Zeit	Feces MLN	5/107(4.7) 3/107(2.8)	S. Infantis, Butantan S. Infantis, Anatum, Zanzibar, Butantan, Typhimurium & Kingabowa		Woldemariam et al. (2005)
	Liver	2/107(1.9)	S. Infantis, Butantan, Braenderup & Kottbus		
	Spleen Diagh.muscle	7/107(6.5) 9/107(8.4)	S. Infantis & Butantan S. Infantis & Butantan & Gingabwa		
	Abdo.muscle	7/107(6.5)	S. Infantis, Braenderup & Butantan		
D/Zeit	Pork	94/501(18.8)	S. Anatum, Newport, Multidrug Enteritidis, Hadar, (<i>S.hadar</i> I Uganda, Eastnourne & Kentucky	resistant highest).	Molla et al. (2006a)
A/A Modjo	Feces MLN Liver Spleen Abdo. Muscle Diagh. Muscle	7/204(3.4) 10/204(4.9) 2/204(0.9) 1/204(0.5) 2/204(0.9) 0/204	S. Typhimurium, S. typhimu Give, Herdelberg, sulfisoxaz Reading, Poona & TMP) Enteritidis (STR, SU	ole, TET, S. reading	Molla et al. (2006b)

Table 1. Contd.

A/A	cecal content MLN Carcass swab	63/278(23) 99/278(36) 11/278(4)	S. Hadar, Eastnourne, Saintpaul, Typhimurium, & Var. Copenhagen, Enteritidis, Newport & Anatum.	Substantially multidrug resistant	Aragaw et al. (2007)
A/A	Chicken meat	29/208(13.9)	S. Braenderup, Hadar, Newport, Kentucky, Typhimurium , Bovismorbificans & Anatum.	S. braenderup(AMP, SPT, STR, SUL, SXT, TMP)	Zewdu and Cornelius (2009)
	Pork	22/194(11.3)	S. Newport, Haifa, Dublin , Infantis & Kottbus.	<i>S. kentucky</i> (AMP, AMC, CEF, CIP, GEN, NAL, SPT, STR, SUL,	
	Minced beef	12/142(8.5)	S. Newport, Dublin, Anatum, Infantis, Typhimurium, Kentucky & Saintpaul	TTC)	
	Mutton	23/212(10.8)	S. Newport, Hadar, Typhimurium, Dublin, Bovismorbificans,	S. Dublin (CRB, TTC)	
	Cottage cheese	4/190(2.1)	Infantis & Zanzibar S.Newport & Haifa		
	Fish	3/128(2.3)	S. Newport &		
	Ice cream	0/126	Zanzibar		
	Stool sample	5/68(7.4)	S. Newport		
A/A	Lettuce	8/40(20)	Salmonella spp.	All salmonella isolates resistant (PEN and	Biniam and Mogessie (2010)
	Green paper	4/40(10)		AMC)	

Table 1. Contd.

D/Zeit	Hide swab	31/100(31)	S. Anatum	(STR, TTC)	Sibhat et al. (2011)
	Hand swab(at fly	7/100(7)	S. Newport	(TTC, STR, SUL)	
	Hand swab (at evisceration) Carcass	2/100(2)	S. Eastbourne	(TTC)	
		2/100(2)	S. Uganda	-	
B/Dar	Liver	2/186(1.1)	S. Typhimurium S. Infantis	Multidrug resistant	Alemu and Zewde (2012)
	MLN Carcass swab	6/186(3.2) 9/186(4.8)	S. Newport S. Hidelberg S. Mishmarhaemak		
	Intestinal content sample	11/186(5.9)	S. Haifa		
Mekelle	Margarine Mayonnaise	0/10 2/10(20)			
	Sardine "wot"	2/10(20) 13/30(43.3)			Mekonnen et al. (2012a)
	Macaroni "fata"	2/10(20) 0/30	Salmonella spp.		
	"zahla"	4/10(40)			
	Mango juice Avocado juice	7/15(45) 4/17(23.5)			
	Fruit mix	2/8(25)			
	Table scraping	11/110(10)			
B/Dar	Ready to eat white lupine	23/40(57.5)	Salmonella spp.	Highest resistance to ERY (86.9%)	Mulgeta and Million (2013)
A/A	Whole egg	18/384(4.6	S. Enteritidis	-	Zinabu et al. (2013)

A/A: Addis Ababa B/Dar: Bahir Dar D/Zeit: Debre Zeit (current name Bishoftu).

to their ability to produce one or more toxins known as verotoxin or Shiga toxin (Tarr, 1995). Consumption of raw or undercooked foods of bovine origin has been the most common means of transmitting VTEC organisms in sporadic cases and in outbreaks of VTEC infection (Uhitil et al., 2005).

Outbreaks of *E. coli*O157 have been reported in different parts of the world and antibiotic use is

controversial because of the potential to increase production and secretion of Shiga toxins. Increase in antibiotic resistance has been noted over the last 20 years (Adem et al., 2008). Differentiation of pathogenic strains from the normal flora depends on the identification of virulence characteristics (OIE, 2008).

In Ethiopia, there were studies conducted by few researchers (Adem et al., 2008; Mersha et al.,

2009; Taye et al., 2013) to determine the occurrence and proportion of *E. coli* O157:H7 in faeces, skin swabs and carcasses of sheep, goat and cattle in Debre Zeit, Modjo and Haramaya University. Even though little is known about the prevalence and antimicrobial susceptibility pattern of this bacterium in Ethiopia either in humans or animal population or foods, there is no information in eastern Ethiopia generally and in Haramaya

University and its surrounding specifically, where large populations of cattle are reared for slaughter Taye et al., 2013).

Studies done on foodborne *E. coli* infection are few in number and little is known about the public health effect of foodborne *E. coli* due to lack of well documentation system and integrated surveillance system in Ethiopia. This review will provide a systematic summary of those studies conducted by few researchers on foodborne *E. coli* infection (Table 2).

Different researches were conducted on foodborne *E. coli* based on abattoir sample, butcher shop, dairy milk and different food which are ready to eat from 2008-2014 only in limited parts of Ethiopia. Out of seventeen research, six specially emphasized on *E. coli* O157:H7 serogroups.

As a remark since *E. coli* O157:H7 is an emerging foodborne and zoonotic pathogen, researchers should emphasis on the public health significance of this pathogen to assess the overall prevalence and public health importance of food borne *E. coli* O157:H7 in Ethiopia.

Listeria monocytogenes

Listeriosis is one of the important emerging bacterial zoonotic diseases that occur in a variety of animals and humans. It arises mainly from the consumption of contaminated food products (Acha and Szyfres, 2001; Malik et al., 2002). Reports indicate that listeriosis has emerged to be more important in developed countries but is reported less frequently in developing countries (Todar, 2003). This could be associated with lack of awareness of laboratory technicians or lack of diagnostic facilities and limited resources together with the presence of other disease epidemics that claim more priority than listeriosis in developing countries including Ethiopia.

A number of food borne outbreaks caused by L. monocytogenes, have so far been reported, which were known to cause serial deaths in a number of individuals and in different regions, especially in Europe and the USA (Todar, 2003). However, in most African countries, there are a few reports on Listeria and listeriosis, as compared to the Europe and USA (Molla et al., 2004). This is because; the organism has not been given much attention, and may be due to lack of adequate facility, life style differences and RTE foods are more common in USA and Europe than in Africa regardless of the habit of consumption of raw milk and milk product as well as raw meat. Published information on the status of food borne listeriosis is very limited both in the veterinary and public health sectors in Ethiopia and those studies which are published are presented in well summarized manner (Table 3).

Few researches were done on foodborne *L. monocytogenes* and other *Listeria* spp. in Ethiopia from 2000-2014 and all studies were done in Addis Ababa.

There may be unpublished study output which is kept on

shelf only, so this will not represent the overall status of foodborne *L. monocytogenes* in Ethiopia. This is a wide research area for researchers with emphases given on public health significance, prevalence and antimicrobial susceptibility profile of *L. monocytogenes* since little is known about the burden of *L. monocytogenes* in food specifically in raw milk and meat product and habit of consuming raw milk and meat in Ethiopia.

Staphylococcus aureus

S. aureus is one of the most common causes of food borne intoxication in most countries of the world. *S. aureus* is a facultative anaerobic Gram-positive coccus, nonmotile, catalase and coagulase positive of the micrococcaceae family (Bhatia and Zahoor, 2007).

Convenience food offers a suitable growth environment for toxin-producing bacteria such as *S. aureus*, which is able to grow and express virulence in a wide variety of foods such as milk products, mixed foods, meat and meat products, egg and egg products, cakes and ice cream (Silva et al., 2001).

Various fatal diseases caused by street food intoxications have been lately reported (Sina et al., 2011). In reported street food epidemiology studies, *S. aureus* is the most predominant virulent bacteria responsible for a wide range of human diseases. It represents the major causal agent of food intoxication through its enterotoxin products (Le Loir et al., 2003). Several studies have been conducted in Ethiopia but there is no properly documented file so this review provides a published research output in summarized manner in Table 4.

Various researches has been done on foodborne *S. aureus* intoxication in certain parts of Ethiopia but little is known about the status of *S. aureus* due to less priority given by researchers and public health professionals both in human and veterinary medicine in Ethiopia at large. From 2000-2014 only nineteen published studies were done among which are 2 in Jimma, 2 in D/Zeit, 1 in Jigjiga, 3 in Mekelle, 2 in B/dar, 1 in Adami-Tulu, 1 in Adama, 1 in Shashemene, 1 in Gondar, 1 in Hawassa, 1 in Yabello, 1 in Humera and Abergelle and 2 in A/A. Since *S. aureus* is a highly zoonotic foodborne pathogen, due emphases should be given to assess and determine the overall prevalence, public health significant and antimicrobial susceptibility profile of foodborne *S. aureus* in Ethiopia.

Campylobacter spp.

Campylobacteriosis is historically a zoonotic disease found among cats, goats, poultry, calves, lambs and dogs. Although uncommon, human-to-human spread is also possible through faecal-oral route. The crosscontamination of foods during preparation is also likely to

Meat Servype D/Zeit Beef 20/250(8) (KAN, STR, AMP, CEP, TTC, TRIM) Hiko et al. (2008) Modjo Mutton 6/243(2,5) E. coli 0157:H7 CEP, TTC, TRIM) Hiko et al. (2008) Skin swab 15/172(8,7) E. coli 0157:H7 CEP, TTC, TRIM) Hiko et al. (2009) Modjo Carcass before wash 14/172(8,1) - Mersha et al. (2009) Water 1/20 - Mersha et al. (2019) - Jimma Surface swab 33 Thermo tolerant - - Jimma Cow milk 164/218(75.22) E. coli (9.17%) - Tariku et al. (2010) Jimma Cow milk 164/218(75.22) E. coli (9.17%) - Tariku et al. (2011) Bidar Cow milk 164/218(75.22) E. coli (10.6%) - Molajagi et al. (2011) Sinashemene Cow milk 164/218(75.22) E. coli (10.6%) - Molajagi et al. (2011) Bidar Cow milk 19/132(17.2) E. coli (10.6%) - Desie et al. (2012)	Location	Sample/source	Prevalence (%)	E. coli	 Antimicrobial susceptibility profile 	Reference
D/Zeit Modjo Beef Mutton C/220(8) (2/4)(2/5) E. coli O157.H7 (KAN, STR, AMP, CEP, TTC, TRIM) Hiko et al. (2008) Modjo Feces Sin waba 8/172(4.7) (3/172(8.7) E. coli O157.H7 CP, TTC, TRIM) Hiko et al. (2009) Modjo Feces Sin waba 8/172(4.7) (3/172(8.7) E. coli O157.H7 Hersha et al. (2009) Modjo Sin waba 16/172(8.7) (3/2(4.3) E. coli (0.157.H7 Hersha et al. (2009) Jimma Vittio 1/2 Hersha et al. (2010) Hersha et al. (2010) Jimma Cow milk 16/4/218(75.22) E. coli (0.17%) (3/2) Intermo tolerant (al. (2012) Intermo tolerant (al. (2012) Haimanot et al. (2010) Jimma Cow milk 16/4/218(75.22) E. coli (0.17%) (al. (2014) Intermo tolerant (al. (2012) Intermo tolerant (al. (2012) Intermo tolerant (al. (2012) Intermo tolerant (al. (2012) Jimma Cow milk 16/4/218(75.22) E. coli (0.17%) (al. (2014) Intermo tolerant (al. (2012) Intermo tolerant (al. (2012) Intermo tolerant (al. (2012) Statemere Cow milk 16/4/218(75.2) E. coli (10.5%) Intermo tolerant (al. (2012) Intermo tolerant (al. (2012) Yabelo Cow milk 16/4/218(75.2) E. coli (10.5%) Intermo tolerant (al. (2012) Intermo tolerant (al. (2012)	Location	Sample/Source	Fievaletice (70)	Serotype		Kelerence
Modjo Muton 6/23/2.5/ (200 meat) E. coli 0157:H7 CEP, TTC, TRIM) Huko et al. (2008) Modjo Skin swab 15/17(24.7) (26 cacass before wash Water E. coli (0157:H7 CEP, TTC, TRIM) Mersha et al. (2009) Jimma Skin swab 15/17(24.7) (26 cacass before wash Water E. coli (0157:H7 Imma Mersha et al. (2009) Jimma Skin swab 14/17(2(8.7) (26 cacass swab E. coli (045%) Imma Haimanot et al. (2010) Jimma Swittfo' 12 (2000) E. coli (04%) Imma Mersha et al. (2010) Jimma Cow milk 16/4/218(75.22) E. coli (04%) Imma Modjang et al. (2011) Gondar Cow milk 16/4/218(75.22) E. coli (4.3%) ERY, AMP, TTC Molaign et al. (2011) Shashemene Cow milk 16/4/218(75.22) E. coli (10.6%) Imma Molaign et al. (2011) Yabelio Cow milk 16/4/218(75.25) E. coli (10.6%) Imma Gondar (2011) Yabelio Cow milk 21/704(50.6) E. coli (10.6%) Imma Gowalid et al. (2012)						
Modijo Nution 6243(2.5) E. col/ 015/117 CEP, TIC, TRIM) Modijo Geat meat 5/245(2) Modijo Faces 8/172(4.7) Sin swab 15/172(8.7) E. col/ 0157/17 Carcass before wash 15/172(8.1) - Mersha et al. (2009) Carcass after wash 15/172(8.1) - Mersha et al. (2010) Jimma Surface swab 33 Thermo tolerant isolates - Haimanot et al. (2010) Jimma Cow milk 164/218(75.22) E. col/ (64%) - Tariku et al. (2011) Gondar Cow milk 164/218(75.22) E. col/ (25%) - Molaign et al. (2011) Brance Cow milk 164/218(75.23) E. col/ (25%) - Molaign et al. (2011) Brance Cow milk 19/139(71.2) E. col/ (25%) - Molaign et al. (2011) Shashemene Cow milk 81/712(11.37) E. col/ (10%) - Deiset al. (2011) Yabelo Cow milk 81/712(11.37) E. col/ (10%) - Deiset al. (2012)						Hiko et al. (2008)
Feces 8/172(4.7) Skin swab E. coli 0157.H7 Modjo Carcass before wash (14/172(8.7)) Vater E. coli 0157.H7 Jimma 15/172(8.7) Vater Hersha et al. (2009) Jimma 120 Surface swab 12 33 Jimma Cov milk 164/218(75.22) Jimma Cov milk 164/218(75.22) Jimma Cov milk 164/218(75.22) Jimma Cov milk 164/322(50.9) Gondar Cow milk 164/322(50.9) Bridar Cow milk 164/322(50.9) Bridar Cow milk 164/322(50.9) Bridar Cow milk 164/322(50.9) Bridar Cow milk 217/364(59.6) Cow milk 217/364(59.6) E. coli (10.6%) Cow milk 217/364(59.6) E. coli (10.6%) Yabello Cow milk 21/20 Gondar Sheep milk 255 Bridar 0/10 Yabello Yabello Goat milk 210(20) sardine Sheep milk 210(20) sardine	Modjo	Mutton	6/243(2.5)	<i>E. coli</i> O157:H7	CEP, TTC, TRIM)	
Modjo Kin swab 15/17(8,7) E. coli 0157:H7 Modjo Carcass before wash Carcass ster wash 15/17(28,7) Mersha et al. (2009) Water 1/20 Mersha et al. (2009) Water 1/20 Mersha et al. (2009) Surface swab 12 Mersha et al. (2010) Jimma Coross swab 12 Mersha et al. (2010) Jimma Cow milk 164/218(75.22) E. coli (84%) - Jimma Cow milk 164/22(50.9) E. coli (4.3%) ERY, AMP, TTC Molang et al. (2011) Bridar Cow milk 99/13(2) E. coli (10.6%) - Molang et al. (2011) Shashemene Cow milk 217/364(59.6) E. coli (10.6%) - Molang et al. (2012) Yabelo Cow milk 217/364(59.6) E. coli (10.6%) - Molang et al. (2012) Yabelo Cow milk 217/364(59.6) E. coli (17%) - Gel et al. (2012) Yabelo Cow milk 217/364(59.6) E. coli (17%) - Gel et al. (2012) Margarine		Goat meat	5/245(2)			
Modio Carcass before wash Carcass after wash 15/172(8.7) Mersha et al. (2009) Water 123(4.3) Jimma Kittio' Carcass swab 12 3.3 Thermo tolerant 4.4/165(26.6) - Haimanot et al. (2010) Jimma Cow milk 164/218(75.22) $E.coli(4.3%)$ ERY, AMP, TTC Nibret et al. (2011) Gondar Cow milk 164/322(50.9) $E.coli(4.3%)$ ERY, AMP, TTC Nibret et al. (2011) Bidar Cow milk 164/322(50.9) $E.coli(4.3%)$ ERY, AMP, TTC Nibret et al. (2011) Bidar Cow milk 164/322(50.9) $E.coli(4.3%)$ ERY, AMP, TTC Nibret et al. (2011) Bidar Cow milk 164/322(50.9) $E.coli(4.3%)$ ERY, AMP, TTC Nibret et al. (2011) Shashemene Cow milk 164/322(50.9) $E.coli(10.6\%)$ - Adame et al. (2012) Humera&Aberg Sheep milk 135 $E.coli$ - Grwahid et al. (2012) Humera&Aberg Margarine 4/10(40) adsared to 1/03(3.4) - Grwahid et al. (2012a) Macaroni 0/10 10/30(3.3.4) - Margarine 4/10(40)		Feces	8/172(4.7)			
Carcass after wash 15/172(8.7) Water Autor Water 1/23(4.3) Water 1/23(4.3) Kittifo' 12 Jimma Carcass swab 33 Carcass swab 12 Jimma Cow milk 164/218(75.22) Jimma Cow milk 164/218(75.22) Gondar Cow milk 164/32(50.9) Gondar Cow milk 164/39(71.2) Bride Cow milk 91/39(71.2) Shashemene Cow milk 91/39(71.2) Yabello Cow milk 81/712(11.37) Yabello Cow milk 81/712(11.37) Yabello Cow milk 81/		Skin swab	15/172(8.7)	E. coli O157:H7		
Water 1/23(4.3) Jimma $\begin{array}{c} kitfo' & 120 \\ Surface swab & 23 \\ Carcass swab & 12 \\ Carcass swab & 44/165(26.6) \\ 44/165(26.6) \\ \end{array}$ - Haimanot et al. (2010) Jimma Cow milk 164/218(75.22) $\begin{array}{c} E. coli (84\%) \\ isolates \\ isolates \\ cow milk \\ \end{array}$ - Tariku et al. (2011) Gondar Cow milk \\ 000 mil	Modjo	Carcass before wash	14/172(8.1)		-	Mersha et al. (2009)
Jinma		Carcass after wash	15/172(8.7)			
Jinma 12 Surface swab 12 33Thermo tolerant E. coli (84%)-Haimanot et al. (2010)JinmaCov milk $164/218(75.22)$ $E. coli (9.17\%)$ isolates-Tariku et al. (2011)GondarCow milk $164/322(50.9)$ $E. coli (4.3\%)$ ERY, AMP, TTCNibret et al. (2011)B'darCow milk $164/322(50.9)$ $E. coli (2.5\%)$ -Molaigne et al. (2011)B'darCow milk $217/364(59.6)$ $E. coli (10.6\%)$ -Desice et al. (2011)ShashemeneCow milk $217/364(59.6)$ $E. coli (10.6\%)$ -Desice et al. (2011)YabelioCow milk $217/364(59.6)$ $E. coli (10.6\%)$ -Adane et al. (2012)YabelioCow milk $217/364(59.6)$ $E. coli (10.6\%)$ -Adane et al. (2012)Humera&Aberg elleSheep milk Goat milk 135 255 $E. coli (17\%)$ -GrWahid et al. (2012)Humera&Aberg elleSheep milk $433(31.4)$ 135 $43/390(21.5)$ $E. coli (17\%)$ -GrWahid et al. (2012)Mekele $\frac{135}{164^{23}}$ $2/10(20)$ $3/15(20)$ $E. coli$ -Mekonnenet al. (2012a)Mekele $\frac{125}{164^{23}}$ $2/10(20)$ $3/15(20)$ $E. coli$ -Mekonnenet al. (2012a)Mekele $\frac{1}{741^{23}}$ $2/10(20)$ $3/15(20)$ $E. coli$ -Mekonnenet al. (2012a)Mekono juice $3/15(20)$ $E. coli$ $E. coli$ Mekono juice $3/15(20)$ $E. coli$ <		Water	1/23(4.3)			
JimmaSurface swab Carcass swab $12 \\ 33 \\ 33 \\ Carcass swab$ Thermo tolerant 3 $B = coli (64%)$ -Haimanot et al. (2010)JimmaCow milk164/218(75.22) $E. coli (0.17\%) \\ isolates-Tariku et al. (2011)GondarCow milk164/322(50.9)E. coli (2.5\%)ERY, AMP, TTCNibret et al. (2011)B/darCow milk164/322(50.9)E. coli (2.5\%)-Molalign et al. (2011)ShashemeneCow milk217/364(59.6)E. coli (10.6\%)-Desie et al. (2011)YabelloCow milk81/712(11.37)E. coli (17\%)-Adane et al. (2012)Humera&AbergelleSheep milk135(255E. coli (17\%)-G(Wahid et al. (2012)Humera&AbergelleSheap milk135(24/390(21.5))E. coli (17\%)G(Wahid et al. (2012)Humera&AbergelleSheap milk10/30(33.4)G(Wahid et al. (2012)Mekele''Tata''10/30(33.4)''Tata''10/30(33.4)''Tata''10/30(33.4)''Tata''10/30(33.4)''Tata''10/30(33.4)''Tata''10/30(33.4)''Tata''10/30(33.4)''Tata''10/30(33.4)''T$		'Kitifo'				
Jimma 33 44/165(26.6) E. coli (84%) Haimanot et al. (2010) Jimma Cow milk 164/218(75.22) $E. coli (9.17%)isolates - Tariku et al. (2011) Gondar Cow milk 164/32(50.9) E. coli (4.3%) ERY, AMP, TTC Nibret et al. (2011) B/dar Cow milk 194/32(50.9) E. coli (2.5%) - Molaign et al. (2011) B/dar Cow milk 191/364(59.6) E. coli (10.6%) - Desie et al. (2011) Shashemene Cow milk 81/712(11.37) E. coli (17%) - Adane et al. (2012) Yabello Cow milk 81/712(11.37) E. coli (17%) - Adane et al. (2012) Humera&Abergelle Sheep milk 135(255 E. coli (17%) - GonWahid et al. (2012) Margarinemayonnaise 2/10(20)sardine 0/10 - GonWahid et al. (2012a) Mekele "Zahla" 0/10 - Mekonnenet al. (2012a) "Zahla" 2/10(20) E. coli - Mekonnenet al. (2012a) Margo juice 3/15(20)$				Thermo tolerant	_	
Jimma Cow milk 164/218(75.22) E. coli (9.17%) isolates - Tariku et al. (2011) Gondar Cow milk 164/322(50.9) E. coli (4.3%) ERY, AMP, TTC Nibret et al. (2011) B/dar Cow milk 99/139(71.2) E. coli (2.5%) - Molalign et al. (2011) Shashemen Cow milk 217/364(59.6) E. coli (10.6%) - Desie et al. (2011) Yabello Cow milk 217/364(59.6) E. coli (10.6%) - Molalign et al. (2012) Yabello Cow milk 217/364(59.6) E. coli (10.6%) - Desie et al. (2012) Yabello Cow milk 81/712(11.37) E. coli (17%) - Adane et al. (2012) Humera&Aberg elle Sheep milk 255 E. coli (17%) - G/Wahid et al. (2012) Margarine 4/10(40) - - G/Wahid et al. (2012) - Mekele - - - - - - "ada" 0/10 - - - - -	Jimma					Haimanot et al. (2010)
Jimma Cow milk 164/218(7.5.22) isolates - Tanku et al. (2011) Gondar Cow milk 164/322(50.9) E. coli (4.3%) ERY, AMP, TTC Nibret et al. (2011) B/dar Cow milk 99/139(71.2) E. coli (2.5%) - Molalign et al. (2011) Shashemene Cow milk 217/364(59.6) E. coli (10.6%) - Desie et al. (2012) Yabello Cow milk 217/364(59.6) E. coli (10.6%) - Adane et al. (2012) Yabello Cow milk 217/364(59.6) E. coli (10.6%) - Adane et al. (2012) Humera&Aberg elle Sheep milk 135 E. coli (17%) - GWahid et al. (2012) Humera&Aberg elle Margarine 4/10(40) - GWahid et al. (2012) - Wakele Margarine 0/10 - - Mekonnenet al. (2012a) "cahla" 0/10 - - - Mekonnenet al. (2012a) "cahla" 2/10(20) E. coli - - Mekonnenet al. (2012a)		Calcass swab	44/165(26.6)	<i>L. coll</i> (64 %)		
Gondar Cow milk 164/322(50.9) E. coli (4.3%) ERY, AMP, TTC Nibret et al. (2011) B/dar Cow milk 99/139(71.2) E. coli (2.5%) - Molalign et al. (2011) Shashemen Cow milk 217/364(59.6) E. coli (10.6%) - Desie et al. (2011) Yabello Cow milk 81/712(11.37) E. coli (10.6%) - Adane et al. (2012) Humera&Aberg elle Sheep milk Goat milk 135 255 E. coli (17%) - G/Wahid et al. (2012) Margarine mayonaise 2/10(20) sardine 6/100 - G/Wahid et al. (2012) Mekele "wot" 4/30(13.4) F. coli - Mekonnenet al. (2012a) Mekele "Zahla" 2/10(20) a/15(20) E. coli - Mekonnenet al. (2012a) Mekele "Zahla" 2/10(20) 3/15(20) E. coli - Mekonnenet al. (2012a) Mekono juice 7/17(41.1) F. coli - - - Mekono juice 7/17(41.1) F. coli - -	limma	Cow milk	164/218(75-22)	<i>E. coli</i> (9.17%)		Tariku et al. (2011)
B/darCow milk99/139/71.2)E. coli (2.5%)-Molalign et al. (2011)ShashemeneCow milk217/364(59.6)E. coli (10.6%)-Desie et al. (2011)YabelloCow milk81/712(11.37)E. coli-Adane et al. (2012)Humera&Aberg elleSheep milk Goat milk135 255 84/390(21.5)E. coli (17%)-G/Wahid et al. (2012)Margarine word*4/10(40) mayonnaise2/10(20) sardine-G/Wahid et al. (2012)Mekele"word* "tata"0/10 "tata"-Mekonnenet al. (2012a)Mekele"Zahla" Mango juice <i>E. coliE. coli</i> -Mekonnenet al. (2012a)Mekele"Zahla" Nungo juice <i>P. ColiE. coli</i> Avocado juice7/17(41.1) Fruit mix1/8(12.5)	Jirina		104/210(75.22)	isolates	-	
Shashemen YabelloCow milk217/364(59.6)E. coli (10.6%)-Desie et al. (2011)YabelloCow milk81/712(11.37)E. coli-Adane et al. (2012)Humera&Aberg elleSheep milk $\frac{135}{255}$ E. coli (17%)-G/Wahid et al. (2012)Margarine mayonnaise4/10(40) mayonnaise2/10(20) sardine-G/Wahid et al. (2012)Margarine mayonnaise0/10 (10) "wot"0/10 "fata"-Mekonnenet al. (2012a)MekeleMekonnenet al. (2012a)MekeleZahla" Mango juice2/10(20) (3/15(20)E. coli-Mekonnenet al. (2012a)Avocado juice Fruit mix7/17(41.1) 1/8(12.5)	Gondar	Cow milk	. ,		ERY, AMP, TTC	Nibret et al. (2011)
Yabello Cow milk 81/712(11.37) E. coli - Adane et al. (2012) Humera&Aberg elle Sheep milk Goat milk 135 255 E. coli (17%) - G/Wahid et al. (2012) Margarine 4/10(40) mayonnaise 2/10(20) sardine - Margarine 0/10 "wot" 4/30(13.4) Macaroni 0/10 - Mekonnenet al. (2012a) Mekele "Zahla" 2/10(20) 3/15(20) E. coli Mekonnenet al. (2012a) Avocado juice 7/17(41.1) Fruit mix 1/8(12.5) E. coli Mekonnenet al. (2012a)	B/dar	Cow milk	99/139(71.2)	E. coli (2.5%)	-	Molalign et al. (2011)
Humera&Aberg elle Sheep milk Goat milk 135 255 E. coli (17%) G(Wahid et al. (2012)) Margarine 4/10(40) mayonnaise 2/10(20) sardine 0/10 - <td>Shashemene</td> <td>Cow milk</td> <td>217/364(59.6)</td> <td><i>E. coli</i> (10.6%)</td> <td>-</td> <td>Desie et al. (2011)</td>	Shashemene	Cow milk	217/364(59.6)	<i>E. coli</i> (10.6%)	-	Desie et al. (2011)
Humera&Aberg elle Sheep milk 255 E. coli (17%) GWahid et al. (2012) elle 6ad milk 255 6/// 84/390(21.5) GWahid et al. (2012) Margarine 4/10(40) 4/// 90 6/// 90 6/// 90 sardine 0/10 6/// 90 6/// 90 6/// 90 wot* 4//30(13.4) 6/// 90 6/// 90 6/// 90 Mekele 7/// 70 7/// 70 6/// 90 6/// 90 Zahla" 2// 10(20) E. coli Mekonnenet al. (2012a) Avocado juice 7// 7// 11.1) Fruit mix 1/// 8(12.5) 6/// 90	Yabello	Cow milk	81/712(11.37)	E. coli	-	Adane et al. (2012)
elle Goat milk 255 Adv/390(21.5) Margarine 4/10(40) mayonnaise 2/10(20) sardine 0/10 "wot" 4/30(13.4) Macaroni 0/10 "fata" 1/30(03.4) Mekele E. coli Mekonnenet al. (2012) Mekonnenet al. (2012) Mekonnenet al. (2012)		Shoon milk	135	$E_{\text{ooli}}(17\%)$		
Margarine 4/10(40) mayonnaise 2/10(20) sardine 0/10 "wot" 4/30(13.4) Macaroni 0/10 "fata" 10/30(33.4) Mekele E. coli "Zahla" 2/10(20) Mango juice 3/15(20) Avocado juice 7/17(41.1) Fruit mix 1/8(12.5)		•	255	E. COII (1176)	-	G/Wahid et al. (2012)
mayonnaise 2/10(20) sardine 0/10 "wot" 4/30(13.4) Macaroni 0/10 "fata" 10/30(33.4) Mekele E. coli "Zahla" 2/10(20) Mango juice 3/15(20) Avocado juice 7/17(41.1) Fruit mix 1/8(12.5)	elle	Goal milk	84/390(21.5)			
mayonnaise 2/10(20) sardine 0/10 "wot" 4/30(13.4) Macaroni 0/10 "fata" 10/30(33.4) Mekele E. coli "Zahla" 2/10(20) Mango juice 3/15(20) Avocado juice 7/17(41.1) Fruit mix 1/8(12.5)		Margarine	4/10(40)			
sardine 0/10 "wot" 4/30(13.4) Macaroni 0/10 "fata" 10/30(33.4) Mekele E. coli "Zahla" 2/10(20) Mango juice 3/15(20) Avocado juice 7/17(41.1) Fruit mix 1/8(12.5)		-	2/10(20)			
"wot" 4/30(13.4) Macaroni 0/10 "fata" 10/30(33.4) Mekele E. coli "Zahla" 2/10(20) Mango juice 3/15(20) Avocado juice 7/17(41.1) Fruit mix 1/8(12.5)		-				
Macaroni 0/10 "fata" 10/30(33.4) Mekele E. coli "Zahla" 2/10(20) Mango juice 3/15(20) Avocado juice 7/17(41.1) Fruit mix 1/8(12.5)			4/30(13.4)			
Mekele E. coli "Zahla" 2/10(20) Mango juice 3/15(20) Avocado juice 7/17(41.1) Fruit mix 1/8(12.5) Mekonnenet al. (2012a) Mekonnenet al. (2012a)		Macaroni				
Mekele E. coli "Zahla" 2/10(20) E. coli Mango juice 3/15(20) Avocado juice 7/17(41.1) Fruit mix 1/8(12.5) Mekonnenet al. (2012a) Mekonnenet al. (2012a)			10/30(33.4)			
"Zahla" 2/10(20) Mango juice 3/15(20) Avocado juice 7/17(41.1) Fruit mix 1/8(12.5)	Mekele		. ,	E coli	-	Mekonnenet al. (2012a)
Avocado juice 7/17(41.1) Fruit mix 1/8(12.5)		"Zahla"	2/10(20)	E. COII		
Fruit mix 1/8(12.5)		Mango juice				
Fruit mix 1/8(12.5)		Avocado juice	7/17(41 1)			
Lanie scraning 32/110(29)		Table scraping	32/110(29)			

Table 2. Systematic summary of publications on foodborne *E. coli* including *E. coli* O157:H7 in Ethiopia.

Table 2. Contd.

	Meat				
Mekele	Butcher shop Abattoir Street meat sales	2/30(6.7) 2/5(40) 3/5(60)	E. coli E. coli32 (91.4%) E. coli O15:H7 3 (2.6%)	AMP, ERY, CL, NA, CHL, TRIM-SUL	Mekonnen et al. (2012b)
Mekele	Cow milk	128/174(73.56)	E. coli (27.3%)	<i>E.coli</i> (TTC (48.57%), C (28.86%), KEN (8.86%), SPT (5.7%), AMP (65.7%) AMC (66.67%))	Haftu et al. (2012)
Haramaya university	Carcass swab	35/113(30.97)	E. coli	<i>E.coli</i> O157:H7 (TTC (33.33%), AMP (100%), AMC (100%).	Taye et al. (2013)
B/dar	Ready to eat white lupin	29/40(72.5)	E. coli	Resistant to TTC	Mulugeta and Million (2013)
Holeta	Cow milk	183/224(81.7)	<i>E. coli</i> (11.6%)		Ayano et al. (2013)
A/A	Cow milk	80/118(67.8)	E. coli O157:H7 (6.9%) E. coli (18.7%)	-	Zeryehun et al. (2013)
Jigjiga	Camel carcass PES Meat	2/70(2.86) 6/90(6.67) 4/70(5.71)	<i>E. coli</i> O157:H7	-	Henok (2014)

Table 3. Systematic summary of study done on foodborne L .monocytogene in Ethiopia

Location	Sample/source	Prevalence (%)	Listeria spp.	Antimicrobial susceptibility profile	References
	Minced beef	29/61(47.5)	L. monocytogene (5.1%)		
	Pork	37/53(69.8)	L. innocua (21.2%)		
	Chicken	8/52(15.4)	L. seeligeri		
A/A	Fish	8/43(18.6)	L. welshimeri	-	Molla et al., 2004
	Cottage cheese	1/61(1.6)	L. murrayi		
	Ice cream	20/46(43.5)	L. gravi		

Table 3. Contd.

A/A	Raw meat Raw milk Cottage cheese	41/60(68.34) 6/60(10) 6/60(10)	L. monocytogene (19.7%) L. innocua (39.4%) L. seeligeri(4.5%) L. welshimeri (12.12%)	Firehiwot (2007)
	Cream cake	13/60(21.67)	L. murrayi (13.6%) L. grayi (1.5%)	
A/A	Pasteurized milk Cheese Ice cream Cake Minced beef Pork Chicken carcass	0/101 0/102 43/101(42.7) 12/101(12.1) 48/102(47.7) 63/102(62.5) 16/102(16.67)	<i>L. monocytogene</i> (4.8%) <i>Listeria</i> spp. (21.8%)	Desalegn et al. (2009)
A/A	Liquid whole egg Raw beef Raw milk Cottage cheese	37/115(32.2) 39/76(51.3) 22/100(22) 4/100(4)	L. monocytogene (5.4%) L. innocua (15.9%) L. seeligeri (1%) L. welshimeri (1.8%) L. murrayi (0.8%) L. grayi (0.8%) L. ivanovii (0.5%)	Gebretsadik et al. (2011
Jigjiga	Camel carcass PES Meat	0/70 0/90 1/70(1.43)	L. monocytogenes	Henok (2014)

Table 4. Systematic summary of studies conducted on foodborne S. aureus in Ethiopia

Location	Sample/source	Prevalence (%)	<i>Staphylococcus</i> spp.	Antimicrobial susceptibility profile	References (*=unpublished
B/dar	Cow milk	147/1347(10.9)	CNS (49.6%) S. aureus (17.8%) S. intermidius (5.2%)	TTC, ERY, OXA, CHL, CL, S	Alemaw (2004)*
D/Zeit	Pasteurized milk Milk from Udder Bucket milk Stored milk	94/100(94) 70/77(91) 77/77(100) 12/12(100)	S. aureus, S. intermidus, S. hyicus S. epidermidus	-	Wubete (2004)
Adami- tulu	Goat milk	374/680(55)	S. aureus (12.8%) CNS (9.6%)	CLO, METH ,OTTC, ERY, CHL	Wakwoya et al. (2006)
D/Zeit	Cottage cheese Bucket milk Tank milk	48/200(24) 33/100(33) 46/100(46)	S. aureus (7%) S. intermidius (7%) S. hyicus (5%) CNS (12.8%)	-	Mekonnen (2009)

Table 4. Contd.

B/dar	Cow milk	99/139(71.2)	S. aureus (20.3%) CNS (51.9%)	-	Molalign et al. (2010)
Adama	Cow milk	59/140(42.14)	S.aureus	AMP (36.1%), STR (5.6%), PEN (94.4%), TMP-SULFA (58.3%)	Abera et al. (2010)
Jimma	Kitifo Surface swab Carcass swab	120 12 <u>33</u>	<i>S. aureus</i> (28.1%) Other <i>Staph</i>	(AMP, STR, AMC,	Haimanot et al. (2010)
Shashemene	Cow milk	20/165(12.1) 217/364(59.6)	(22.1%)	ERY, OXA, VAN)	Desie et al. (2011)
Gondar	Cow milk	164/322(50.9)	S.aureus (16.5%) CNS (31.1%)	TTC,CAF, KAN, OXA, AMP, SU, S, ERY, CL	Nibret et al. (2011)
Jimma	Cow milk	164/218(75.22)	S.aureus (39.44) CNS (18.8%)	PEN-G, VAN, CHL,CAF, NAL, AMP	Tariku et al. (2011)
Yabello	Cow milk	577/712(81)	S.aureus (29.2%)	-	Adane et al. (2012)
Hawassa	Cow milk	78/160(48.75)	S.aureus	AMP, PEN-G, OXA	Dakaet al. (2012)
Humera & Abergelle	Goat milk Sheep milk	255 <u>135</u> 84/390(21.5)	S.aureus (27.7%) CNS (44.7%)	-	Gebrewahid et al. (2012)
Mekelle	Cow milk	128/174(73.56)	S. aureus (36%)	CHL, AMP, ERY, Trim-sulfa	Haftu et al. (2012)
Mekelle	Margarine Mayonnaise Sardine "wot" Macaroni "Feta " "zahla" Mango juice Avocado Fruit mix Table scraping	2/10(20) 0/10 1/30(3.34) 1/10(10) 5/30(16.7) 2/10(20) 5/15(33.3) 2/17(13) 0/8 55/110(50)	S. aureus	-	Mekonnen et al. (2012a)
Mekelle	Meat Bucher shop Abattoir Street meat sale	2/30(6.7) 2/5(40) 3/5(60)	S. aureus	-	Mekonnen et al. (2012b)

Table 4. Contd.

A/A	Cow milk	71/146(64.54)	S. aureus(21.13%) S. agalactiae (18.3%) CNS (11.2%)	-	Abunna et al. (2013)
A/A	Cow milk	80/118(67.8)	S. aureus(28.7%)	-	Zeryehun et al. (2013)
Jigjiga	Camel carcass PES Meat	6/70(8.57) 29/90(32.22) 11/70(15.7)	S. aureus	-	Henok (2014)

Pen-G-penicillin G, S-streptomycin, CAF-chloramphenicol, tmp-sulfa-trimethoprim-sulfaoxizine, CL-clindamycine, Sul-sulfioxazole.

Table 5. Systematic summary on foodborne Campylobacteriosis in Ethiopia.

Location	Sample/source	Prevalence (%)	Campylobacter spp.	Antimicrobial susceptibility profile	References (*=unpublished)
A/A D/Zeit	Beef Sheep meat Goat meat Pork Chicken	14/227(6.2) 12/114(10.5) 7/92(7.6) 4/47(8.5) 13/60(21.7)	C. jejuni (78%) C. coli (18%) C. lari (4%)	-	Dadiand Asrat (2008)
D/Zeit	Sheep carcass	23/218(10.6)	C. jejuni (7.3%) C. coli (2.7%)	-	Woldemariam et al. (2009)
B/dar	Chicken	160/220(7.27)	C. jejuni (92.5%) C. coli (7.5%)	AMP, ERY, STR, TTC AMP, STR, TTC	Ewnetu and Mihret (2010)
Jigjiga	Camel carcass PES Meat	4/70(5.71) 3/90(3.33) 3/70(4.28)	C. jejuni (2.85%) C. coli (2.14%)		Henok (2014)

be important (Solomon and Hoover, 1999).

The pathogenesis of *C. gastroenteritis* is not fully characterized (Rollins and Joseph, 2001). A serious consequence of diarrheal diseases is the Guillain-Barrè syndrome (GBS) characterized by polyneuritis of the peripheral nerves, which may lead to either short-term or lengthy paralysis (Blaser et al., 1983).

In Ethiopia, few studies reported that *Campylobacter* species are common cause of childhood diarrhea and antimicrobial resistant strains were also reported (Beyene and Haile-Amlak, 2004). The absence of national surveillance program, limited routine culture availability for the isolation of *Campylobacter* species at clinical and research settings, the need for selective media and unique growth atmosphere; makes it difficult to give an accurate picture of the burden. This fact indicates that *Campylobacter* as a causative agent of diarrhea is not given appropriate weight and consideration in Ethiopia. Those studies

which are done on foodborne Campylobacteriosis in different parts of Ethiopia are summarized in Table 5.

Very few published studies are found on foodborne campylobacteriosis in Ethiopia regardless of sever pathogenic cause of gastroenteritis in human. Studies from 2000-2014 show that only three published research were done in Addis Ababa and D/Zeit (Dadi and Asrat, 2008), D/Zeit (Woldemariam et al., 2009) and B/dar (Ewnetu and Mihretu, 2010) and one unpublished research done in Jigjiga (Henok, 2014). Since foodborne campylobactersis are the cause of diarrhea in human especially in children little emphases is given by human and veterinary medicine.

As a remark, researchers should give special attention to this area to assess and determine the prevalence; public health significance and antimicrobial susceptibility profile of foodborne campylobacters with special emphases on *Campylobacter jejuni* and *Campylobacter coli* in Ethiopia since this species become an emerging antimicrobial resistant strain due to consumption of not thoroughly cooked food of animal product like poultry since sometimes while cooking doro-wote when the chickens are young, the meat is easily cooked with minimum heat in this case some of the bacteria may survive heating temperature and transfer the antimicrobial resistant gene to the normal intestinal flora of human by either plasmid, transposons or transfor-mation.

All the published studies on common food borne pathogens such as *Salmonella* spp., *Escherichia coli* spp., *Listeria* spp., *Staphylococcus* spp. and *Campylobacter* spp. conducted by different investigators in Ethiopia have shown the widespread distributions of foodborne pathogen isolates in the community. Several common foodborne pathogens with their antimicrobial resistance profiles have been investigated from the year 2000-2014.

Recommendations

1. The epidemiology of foodborne pathogen in Ethiopia has not been well investigated and it requires continuous integrated surveillance both nationally and regionally in order to establish holistic figure for foodborne pathogen in the country.

2. The national research institutes and government universities should be able to identify foodborne pathogen to the level of serovar and measure quantitatively antibiotic susceptibility pattern, so that comparison with serovars isolated from humans, animals and food products could be possible. Additionally if all these institutions are working in well-organized way, it will avoid repeated work on same area and same pathogen finally saving extra costs for surveillance.

3. To decrease the incidence of foodborne pathogen in Ethiopia, besides giving attention in identification, susceptibility testing and reporting during routine bacteriological analysis, public health measures such as improving personnel, food hygiene and intensive health education should be implemented.

4. Finally, according to "publish or perish" motto of the scientific community, it is recommended that everyone should publish the research outputs and make them available to the public.

Conflict of interest

The author(s) have not declared any conflict of interests.

REFERENCES

- Acha PN, Szyfres B (2001). Zoonoses and communicable diseases common to man and animals, 3rd ed. Pan American Health Organization Washington D.C. U.S.A.
- Arroyo G, Arroyo JA (1995). Detection of *Salmonella* serotypes in edible organ meats from markets in Madrid, Spain. Food Microbiol. 12: 13-20.

- Arun KB (2008). Foodborne Microbial Pathogens: Mechanisms and Pathogenesis. Food science text series. Purdue University West Lafayette, IN USA.184.
- Ayano AA, Hiriko F, Simyalew AM, Yohannes A (2003). Prevalence of subclinical mastitis in lactating cows in selected commercial dairy farms of Holeta district. J Vet. Med. Anim. Health 5(3):67-72.
- Baird-parker AC (1990). Foodborne salmonellosis. Lancet 336:1231-1235.
- Bayleyegn M, Daniel A, Woubit S(2003). Sources and distribution of Salmonella serotypes isolated from food animals, slaughterhouse personnel and retail meat products in Ethiopia. Ethiop. J. Health Dev. 17: 63-70.
- Beyene G, Haile-Amlak A (2004). Antimicrobial sensitivity pattern of Campylobacter species among children in Jimma University Specialized Hospital, Southwest Ethiopia. Ethiop. J. Health Dev. 18:185-189.
- Bhatia A, Zahoor S (2007). *Staphylococcus Aureus* Enterotoxins: A Review. J. Clin. Diagn. Res. 1(2):188-197.
- Blaser MJ, Duncan DJ, Warren GH, Wang WL (1983).Experimental *Campylobacter jejuni* infection of adult mice. Infect. Immun. 39:908-916.
- D'Aoust JY (1989). Salmonella. In: DOYLE M.P. (Ed.). Foodborne Bacterial Pathogens. Marcel Dekker Inc., New York.
- D'Aoust JY (1994). Salmonella and international trade. Int. J. Food Microbiol. 24:11-31.
- Dadi L, Asrat D (2008). Prevalence and antimicrobial susceptibility profiles of thermo tolerant Campylobacter strains in retail raw meat products in Ethiopia. Ethiop. J. Health Dev. 22:195-200.
- Dawson PS (1992). Control of *Salmonella* in poultry in Great Britain. Int. J. Food Microbiol. 15:215-217.
- Desalegn M, Bayleyegn M, Marie-Thérèse T. Josef Kleer; Goetz Hildebrandt; Wondwossen AG (2009). Occurrence and distribution of Listeria monocytogenes and other Listeria species in ready-to-eat and raw meat productsBerliner und Munchener Tierarztliche Wochenschrift. 122(1-2):20-24.
- Edwards DS, Johnston AM, Mead GC (1997). Meat inspection: an overview of present practices and future trends. Vet. J. 154:135-147.
- Ejeta G, Molla D, Aemayehu D, Muckle A (2004). *Salmonella* serotypes isolated from minced meat beef, mutton and pork in Addis Ababa, Ethiopia. Rev. Med. Vet. 155(11): 547-551.
- Ewnetu D, Mihret A (2010). Prevalence and antimicrobial resistance of Campylobacter isolates from humans and chickens in Bahir Dar, Ethiopia. Faculty of science Bahir Dar university, Bahir Dar, Ethiopia. Foodborne Pathog. Dis. 7(6):667-670.
- Firehiwot A (2007). Prevalence and antimicrobial profile of *listeria* monocytogenes in retail meat and dairy products in Addis Ababa and its surrounding towns, Ethiopia MSc thesis. Available at http://etd.aau.edu.et/dspace/.
- Fratamico PM, Bhunia AK, Smith JL (2005). Foodborne Pathogens in Microbiology and Molecular Biology, Caister Academic Press, Wymondham, Norfo Lk, UK: 273.
- Gebrewahid TT, Abera BH, Menghistu HT (2012). Prevalence and etiology of subclinical mastitis in small ruminants of tigray regional state, North Ethiopia. J. Vet. World 5:103-109.
- Haimanot T, Alemseged A, Getenet B, Solomon G.(2010). Microbial Flora and Food Borne Pathogens on Minced Meat and Their Susceptibility to Antimicrobial Agents. Ethiop. J. Health Sci. 20(3): 137-143.
- Henok A (2014). Microbiological Safety and Hygiene Quality of Camel Carcasses and Meat in Jigjiga Town, Somali National Regional State, Ethiopia. MSc thesis, Haramaya University.
- Hiko A, Daniel A, Girma Z (2008). Occurrence of *Escherichia coli* O157:H7 in retail raw meat products in Ethiopia. Infect. Dev. Ctries. 2(5):389-393.
- Isaacson RE, Firkins LD, Weigel RM, Zuckermann FA, Dipietro JA (1999). Effect of transportation and feed withdrawal on shedding of *Salmonella Typhimurium* among experimentally infected pigs. Am. J. Vet. Res. 60:1155-1158.
- Jones R, Jonesa H, Hussein M, Monique Z, Gale B, John RT (2008). Isolation of lactic acid bacteria with inhibitory activity against pathogens and spoilage organisms associated with fresh meat. Food Microbiol. 25:228-234.

- Kumar A, Etsay K, Enquabaher K (2009). Evaluation of quality of beef produced and sold in parts of Tigrai region of Ethiopia. Trop. Anim. Health Prod. 42(3):445-449.
- Le Loir I, Baron F, Gautier M (2003). *Staphylococcus aureus* and Food Poisoning. Genet. Mol. Res. 2:63-76.
- Malik SVS, Barbuddhe SB, Chaudhari SP (2002). *Listeria* infections in humans and animals in Indian subcontinent: A review. Trop. Anim. Health Prod. 34: 359-381.
- Mekonnen A (2009). Isolation and identification of staphylococcus species from cottage cheese (ayib) and raw bovine milk in Debre Zeit, Ethiopia. Addis Ababa University, faculty of veterinary medicine. MSc Paper.
- Mekonnen H, Habtamu T, Kelali A (2012a). Source(s) of contamination of 'raw' and 'ready-to-eat' foods and their public health risks in Mekelle City, Ethiopia. ISABB J. Food Agri. Sci. 2(2):20-29.
- Mekonnen H, Habtamu T, Kelali A, Shewit K (2012b). Food safety knowledge and practices of abattoir and butchery shops and the microbial profile of meat in Mekelle City, Ethiopia. Asian Pac. J. Trop. Biomed. 952-957.
- Mersha G, Asrat D, Zewde BM, Kyule M (2009). Occurrence of Escherichia coli O157:H7 in faeces, skin and carcasses from sheep and goats in Ethiopia. Lett. Appl. Microbiol. 50:71-76.
- Molla B, Mesfin A (2003) A survey of Salmonella contamination in chicken carcass and giblets in Central Ethiopia. Rev. Med. Vet. 154(4):267-270.
- Molla B, Yilma R, Alemayehu D(2004). *Listeria monocytogenes* and other *Listeria* species in retail meat and milk products in A.A., Ethiopia. Ethiop. J. Health Dev.18 (3):131-212.
- OIE (2008). Verotoxigenic Escherichia coli. OIE Terrestrial manual.
- Oosterom J (1991). Epidemiological studies and proposed preventive measures in the fight against human salmonellosis. Int. J. Food Microbiol.12:41-52.
- Ponce E, Khan AA, Cheng CM, Summage WC, Cerniglia CE (2008). Prevalence and characterization of *Salmonella* enteric serovar Weltevreden from imported seafood. Food Microbiol. 25:29-35.
- Rollins DM, Joseph SW (2001). Campylobacter. the new leader in food– borne disease aetiology. Rev. Med. Microbiol. 12:187-198.
- Rotimi VO, Jamal W, Pal T, Sonnevend A, Dimitrov TS, Albert MJ (2008). Emergence of multidrug-resistant *Salmonella* spp. and isolates with reduced susceptibility to ciprofloxacin in Kuwait and the United Arab Emirates. Diagn. Microbiol. Infect. Dis. 60:71-77.
- Siddiqui FJ, Rabbani F, Hasan R, Nizami SQ, Bhutta ZA (2006). Typhoid fever in children: some epidemiological considerations from Karachi, Pakistan. Int. J. Infect. Dis.10:215-222.
- Silva GDI, Kantzanou M, Justice A, Massey RC, Wilkinson AR, Day NPJ, Peacock SJ (2001). The *Ica* operon and biofilm production in coagulase-negative staphylococci associated with carriage and disease in a neonatal intensive care unit. J. Clin. Microbiol. 40(2):82-388.
- Sina H, Baba-Moussa F, Kayodé AP, Noumavo PA, Sezan A, Hounhouigan JD, Kotchoni SO, Prévost G, Baba-Moussa L (2011). Characterization of *Staphylococcus aureus* isolated from street foods: Toxin profile and prevalence of antibiotic resistance. J. Appl. Biosci. 46:3133-3143.

- Solomon EB, Hoover DG (1999). *Campylobacter jejuni*: a bacterial paradox. J. Food Saf.19: 121–136.
- Songer JG, Post KW (2005). Veterinary Microbiology: Bacterial and Fungal Agents of Animal Diseases. Elsevier Health, New York, USA.
- Stevens A, Kabore Y, Perrier-Gros-Claude JD, Millemann Y, Brisabois A, Catteau M, Cavin J, Dufour B (2006). Prevalence and antibioticresistance of *Salmonella* isolated from beef sampled from the slaughter house and from retailers in Dakar (Senegal). Int. J. Food Microbiol. 110:178-86.
- Tarr PI (1995). *Escherichia coli* O157:H7: clinical, diagnostic and epidemiological aspects of human infection. Clin. Infect. Dis. 20:1-10.
- Taye M, BerhanuT, Berhanu Y, Tamiru F, Terefe D (2013). Study on Carcass Contaminating *Escherichia coli* in Apparently Healthy Slaughtered Cattle in Haramaya University Slaughter House with Special Emphasis on *Escherichia coli* O157:H7, Ethiopia. J. Vet. Sci. Technol. 4:132.
- Tefera W, Daniel A, Girma Z (2009). Prevalence of thermophilic Campylobacter species in carcasses from sheep and goats in abattoir, Debre Zeit area, Ethiopia. Ethiop. J. Health Dev. 23:3.
- Todar K (2003). *Listeria monocytogenes* and Listeriosisin Online textbook of Bacteriology. Kenneth Todar University of Wisconsin-Madison Department of Bacteriology.
- Uhitil S, Jaksic S, Petrak T, Botka-Petrak K (2005). Presence of Escherichia coli O157:H7 in ground beef and ground baby beef meat. J. Food Prot. 64:862-864.
- Wakwoya A, Molla B, Belihu K, Kleer J, Hildebrandt G (2006). A Cross-Sectional Study on the Prevalence, Antimicrobial Susceptibility Patterns, and Associated Bacterial Pathogens of Goat Mastitis. Int. J. Appl. Res. Vet. Med. 4(2):169-176.
- WHO (2004). Regional Office for Africa "Developing and Maintaining Food Safety Control Systems for Africa Current Status and Prospects for Change", Second FAO/WHO Global Forum of Food Safety Regulators. Bangkok, Thailand; 12-14.
- Woldemariam T, Asrat D, Zewde G (2009). Prevalence of Thermophilic Campylobacter species in carcasses from sheep and goats in an abattoir in Debre Zeit area, Ethiopia. Ethiop. J. Health Dev. 23(3):231.
- Woldemariam E, Molla B,Alemayehu D, Muckel A (2005) Prevalence and distribution of salmonella in apparently healthy slaughtered sheep and goats in Debre Zeit. Ethiopia Small Rumin. Res. 58: 19-24.
- Zeryehun T, Aya T, Bayecha R (2013). Study on prevalence, bacterial pathogens and associated risk factors of bovine mastitis in small holder dairy farms in and around Addis Ababa, Ethiopia. J. Anim. Plant Sci. 23(1):50-55.
- Zinabu B, Biruhtesfa A, Nigatu K, Zufan S, Yehualashet B (2013). Identification and characterization of *Salmonella* species in whole egg purchased from local markets in Addis Ababa, Ethiopia. J. Vet. Med. Anim. Health 5:133-137.