Full Length Research Paper

NMR Shielding and thermodynamic density functional theory (DFT) studies of solvent effect on B₁₀N₁₁H₇(Ala)₂ Nano Cone

M. Monajjemi¹*, N. Hooshmand², H. Seyed Hosseini Ghaheh³ and F. Mollaamin⁴

¹Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran.
²Science and Research Branch, Islamic Azad University, Tehran, Iran.
³Young Researchers Club, Science and Research Branch, Islamic Azad University, Tehran, Iran.
⁴Department of Chemistry, Qom Branch, Islamic Azad University, Qom, Iran.

Accepted 23 August, 2011

B3LYP/3-21G density functional theory (DFT) are carried out on the structure and stability of $B_{10}N_{11}H_7(Ala)_2$ in bulk and different solvent medium, using Gaussian 98 package of program. NMR parameters and thermodynamic properties were calculated to obtain stability and solvent effect. It was found that computationally efficient solvent modeling is possible to find better results and also molecular structure of $B_{10}N_{11}H_7(Ala)_2$. The results show that, because of high stability of $B_{10}N_{11}$ nanocone, it can be the best candidate and much favorable in biological systems and drug delivery.

Key words: Solvent effect, density functional theory (DFT), NMR parameters, B₁₀N₁₁H₇(Ala)₂, nanocone, thermodynamic properties.

INTRODUCTION

Most studies have been conducted on carbon nanotubes (lijima, 1991; lijima and Ichihashi, 1993; Bethune et al., 1993) and C60 (Kroto et al., 1985), since they have been discovered. Many novel structures such as carbon nanocones, and boron nitride nanocones have been viewed as intermediate between nanotubes and grapheme sheet (Sattler, 1995; Zhi et al., 2005). Because of their unique properties than those of carbon structure, more recently nanocones are more focused by scientist lijima et al. (1992) and they believe these systems will revolutionized new future of nanoscience and technology and thus opening a very new and a vast filed of theoretical and experimental research. Studying the publications about nanocones beginning since 1994 (Rubio et al., 1994), with employing various theoretical and experimental techniques to investigate properties of nanocones (Qu et al., 2008; Zhang et al., 2007), but most of these studies have been performed experimentally (Bourgeois et al., 2000).

The fascinating novel structures of boron nitride (BN)

(Rubio et al., 1994) have been intensively studied, since they have unique and interesting properties such as electronic (Song et al., 1994; Yakobson and Smalley, 1997) and mechanical properties (Depres et al., 1995; lijima et al., 1996).

Boron nanocones (BNNCs) represent an important class of nanocnes; consist of B and N atoms. The number of electrons in combination of B and N atoms is the same as two carbon atoms, therefore they have similar properties and also in some cases, they are better candidates to predict properties compare to other composite materials. BNNCs have been investigated and synthesized (Bourgeois et al., 2000; Rubio et al., 1994), and they have very interesting properties when compared with similar carbon nanostructure (Terauchi et al., 2000). We have proposed a B₁₀N₁₃ nanocone as a particular case to attach to alanine, trough B terminated atoms to investigate thermodynamic properties. BN nanocones are widely applicable in many fields such as cold electron source (Baylor et al., 2002; Dean and Chamala, 1999), and probes for electronic microscopy devices. The purpose of this work is to understand stability, atomic structure and thermochemistry properties of one of the particular Boron Nitride nanocones as B₁₀N₁₁H₇(Ala)₂.The

^{*}Corresponding author. m_monajjemi@yahoo.com.

Figure 1. 3D view of $B_{10}N_{11}H_7(Ala)_2,$ where pink , blue, red, gray and light gray sphere indicate B , N, O, C and H atoms respectively .

BN nanocones are the structures with polarity and high reactivity and flexibility to reagent medium surrounded, because the negative charge at B atom positions and also positive charge at N atom positions. In this research, solvent effect has been performed, using onsager selfconsistent model reaction field (SCRF) to analysis of thermodynamic parameters, and calculating Gibbs free energy, enthalpy and dipole moment. We have also computed the Mulliken charge and found active sites to obtain Nuclear magnetic resonance (NMR) parameters.

COMPUTATIONAL DETAILS

In this study, all the calculations have been performed using of the *Gaussian 98* program in the electronic ground state (Frisch 1998). We used this package to predict many properties of our system such as molecular energies and structures, thermodynamic properties, atomic charges, multiple moment and NMR shielding in both gas phase and different solvent.

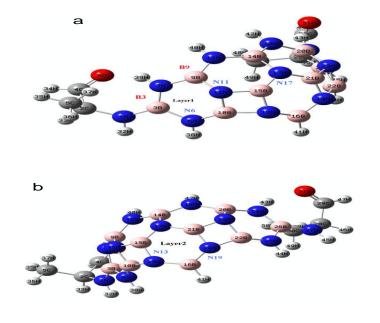
Density functional theory (DFT) (Becke, 1992a, b) is a computational method that is frequently used in computing properties of macromolecules so we applied this method to study $B_{10}N_{11}H_5$ (Ala)₂. The hybrid DFT used in this research is B3LYP [21-25] /3-21Glevel of theory for geometry optimizations. Frequency test at the optimized structures has been done at the same theoretical level to clarify the optimized structure and wave function is ground state, without imaginary frequencies. Solvent effect was calculated in different solvents and temperatures by using the same method and basis sets. We have also computed average charge to obtain active sites in B10N11H7 (Ala)₂.

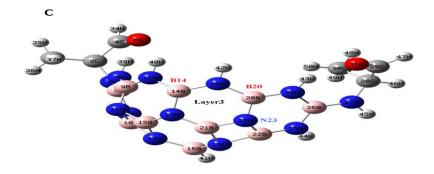
NMR spectroscopy is extremely sensitive to molecular structure and also environmental effects (Evans, 1995; Kaupp et al., 2004; Otting and Liepinsh, 1995; Monajjemi et al., 2007; 2008). To obtain deeper physical insight into the influence of the solvent effect we also calculated NMR parameters for two cases (1) solute in the gas phase and (2) solute in the different solvent mediums. In all calculations the default gaugae-including atomic orbital (GIAO) [33] orbitals were used to obtain molecular magnetic susceptibilities, NMR shielding with Gaussian program.

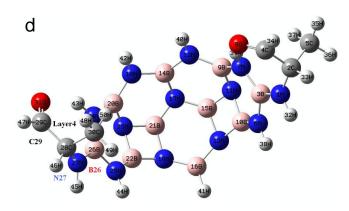
RESULTS AND DISCUSSION

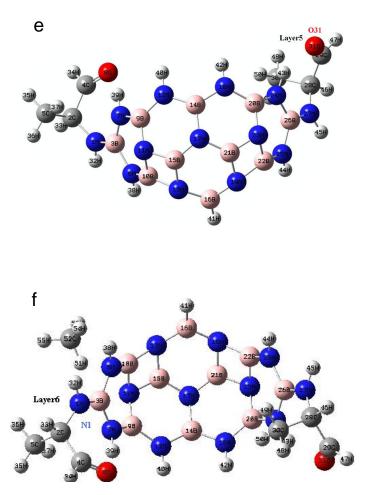
B₁₀N₁₃ nanocone as a particular case was considered to attach to Alanine, trough B terminated atoms. The resulting BN nonocones were simulated by (BN) Ala containing 10 B atoms plus 15 N atoms, to investigate stability as well as thermodynamic properties. The results have given in Tables 1-4 and five Figures 1-5 as follows. The optimization structure has been carried out to find ground state structure shown in Figure 1. The computed energetic data (the electronic energy, the electronic energy with zero-point energy correction E₀, zero point energy ZPE, enthalpy H, E and Gibbs free energy G) as well as dipole moment for various solvent are given in Table 1 and Table 2 respectively. To make our analysis clear and easier, $B_{10}N_{11}H_7$ (Ala) ₂ is divided in six layers of atoms (or active sites) as shown in Figure 3. These six layers constituted by: (1) five atoms; (2) two atoms; (3) three atoms; (4) three atoms; (5) one atom; (6) one atom. We choose these particular layers due to the location of more negative (N atoms) and positive electronic charge (B atoms). The calculated Mulliken charge values per atom per layer are shown in Figure 4 and Table 3. The NMR parameters were computed with concentration on active sites, shown in Figure 5 and data summarized in Table 4.

Conclusion


In summary, theoretical calculation at the level of B3LYP/3-21G level on $B_{10}N_{11}H_7(Ala)_2$ nanocone have been performed. All calculations indicated that $B_{10}N_{11}$


Solvent	E	Eo	н	G	ZPE
water	-1344.009897	-1344.036623	-1344.008953	-1344.094042	0.376856
DMSO	-1344.010962	-1344.036819	-1344.010017	-1344.092215	0.376782
ethanol	-1344.010065	-1344.036815	-1344.009121	-1344.094536	0.376834
methanol	-1344.010008	-1344.036751	-1344.009064	-1344.094355	0.376841
benzene	-1344.014448	-1344.041059	-1344.013504	-1344.097458	0.377064
gas phase	-344.014449	-44.041060	-344.013505	-1344.097458	0.377064


Table 1. Relative energy E and E₀ (with ZPE correction a.u.) Free energies G (a.u.) and Enthalpies H (a.u.), ZPE (a.u.) for $B_{10}N_{11}H_7$ (Ala) ₂ at B3LYP/3-21G level of theory.


Table 2. calculated dipole moment μ (Debye) versus dielectric constant for $B_{10}N_{11}H_7(Ala)_2$ at B3LYP/3-21G in five different solvents and gas phase.

Medium	Dielectric constant (ɛ)	μ (Debye)
water	78.39	12.1588
DMSO	46.8	12.0911
ethanol	24.55	12.0635
methanol	32.63	12.0966
benzene	2.247	9.0180
gas phase	1	9.0193

Figure 2. (a) 3D view of the layer1, (b) 3D view of the layer 2, (c) 3D view of the layer 3, (d) 3D view of the layer 4, (e) 3D view of the layer 5, (f) 3D view of the layer 6.

 $H_7(Ala)_2$ nancone structure possesses lower energy. The computed energy of the studied structure shown and proved the high stability of system without distortion and also more stable in different solvents. As a general result,

it was found that the medium is basically not affected by different dielectric constant on stability. Further, to determine the location of active sites, Mulliken charge and NMR parameters were also analyzed. This is

Charge on atoms											
Layer	Atoms	gas	DMSO	water	Methanol	Ethanol	Benzene				
	B3	0.924636	0.924482	0.924478	0.924537	0.924565	0.925129				
	B9	0.800731	0.790008	0.789848	0.790203	0.790394	0.798106				
	N11	-0.81334	-0.81046	-0.81038	-0.810499	-0.810559	-0.81260				
Layer 1	N6	-0.54113	-0.53187	-0.53164	-0.532038	-0.532256	-0.53771				
	N17	-0.82592	-0.82334	-0.8233	-0.823363	-0.823401	-0.82540				
	N13	-0.79727	-0.79546	-0.79541	-0.795475	-0.795512	-0.79683				
Layer 2	N19	-0.79702	-0.79458	-0.79452	-0.794576	-0.794608	-0.79664				
	B20	0.81421	0.794121	0.793719	0.794306	0.794622	0.809787				
Layer 3	N23	-0.81454	-0.80925	-0.80917	-0.809232	-0.809267	-0.81424				
	B14	0.849512	0.831462	0.831106	0.831674	0.831979	0.845374				
	B26	0.949052	0.91256	0.91182	0.912198	0.912389	0.94910				
Layer 4	N27	-0.45566	-0.45125	-0.4516	-0.451616	-0.451625	-0.45429				
	C29	0.457787	0.479295	0.479726	0.479181	0.478894	0.45360				
Layer 5	O31	-0.4261	-0.41356	-0.41424	-0.413693	-0.413412	-0.42632				
Layer 6	N1	-0.45383	-0.44667	-0.44641	-0.446745	-0.446937	-0.45121				

Table 3. Average Mulliken charge values per atom per layer for $B_{10}N_{11}H_7$ (Ala) ₂ in five different solvents and gas phase.

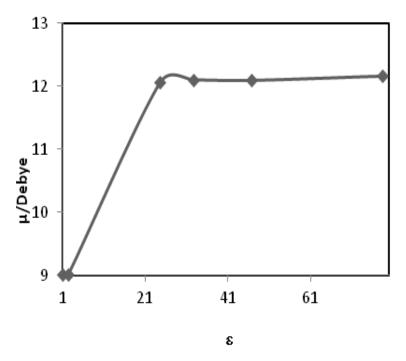


Figure 3. Calculated dipole moment μ (Debye) versus dielectric constant at bulk and five different solvents.

important to fully understand the geometrical specialty of $B_{10}N_{11}H_5$ (Ala)₂ nanocone and the few other recently reported faceted nanocones, more favorable

energetically and stability and could be the best candidate in biological system and drug delivery instead of the other nanocompounds.

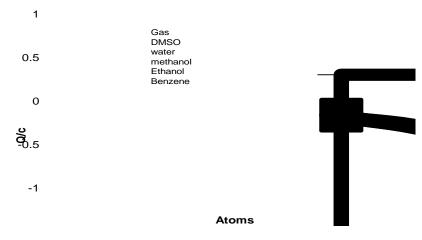
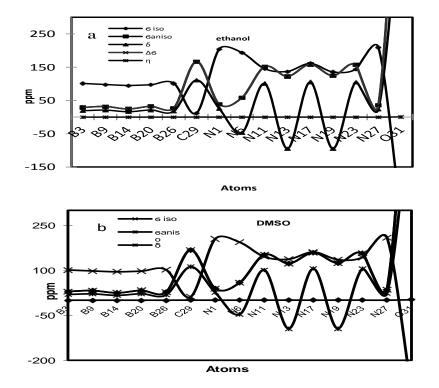
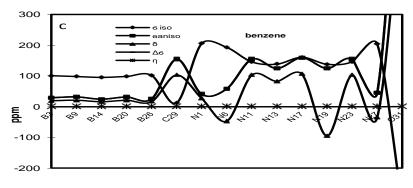
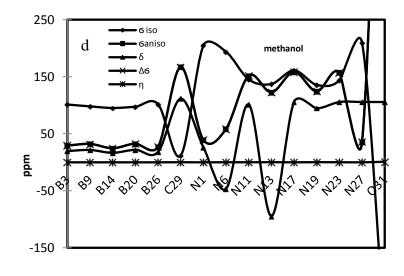
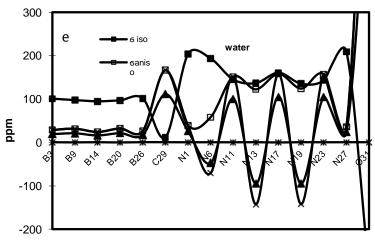





Figure 4. Average Mulliken charge values per atom for $~B_{10}N_{11}H_7(Ala)_2$ in five different solvents and gas phase.



Atoms

Atoms

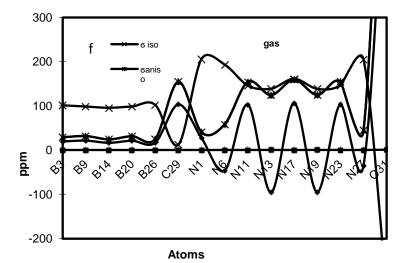


Figure 5. NMR parameters calculated (B3LYP/32-G) for $B_{10}N_{11}H_7$ (Ala) $_2$ in (a) ethanol, (b) DMSO, (c) benzene, (d) methanol, (e) water and (f) gas Phase.

4254 Afr. J. Microbiol. Res.

Table 4. computed NMR parameters for $B_{10}N_{11}H_7$ (Ala) ₂ in five different solvents and gas phase.

Gas phase															
Atoms	B3	B9	B14	B20	B26	C29	N1	N6	N11	N13	N17	N19	N23	N27	031
σiso	100.9465	98.2129	95.4131	98.4160	101.8399	12.28930	205.7754	192.9488	145.6830	138.4417	160.8857	138.1028	146.1919	204.5292	-313.47300
σaniso	29.07860	31.7621	24.3325	31.4200	25.01910	154.5290	40.52490	58.24060	154.1514	124.4176	159.0033	124.6511	154.7576	44.44420	1046.7968
δ	19.38580	21.1748	16.2217	20.9467	16.67940	103.0194	27.01660	-46.89490	102.7676	-95.8712	106.0023	-95.0613	103.1717	-35.3264	697.86450
Δσ	29.10000	31.8000	24.3000	31.4000	25.10000	155.0000	40.50000	5.820000	154.0000	124.000	159.0000	125.000	155.0000	44.4000	1050.0000
η	0.019900	0.01220	0.01770	0.00646	0.020900	0.109000	0.027800	0.078800	0.080300	0.15600	0.024800	0.15300	0.084900	0.05880	0.7340000
[Water														
σiso	101.0527	97.8058	95.0031	97.2640	101.5386	11.77650	204.395	193.5692	145.1282	137.0782	161.0010	135.4905	143.2476	209.2982	-297.2700
σaniso	29.17440	32.0125	24.5057	32.5700	27.06550	166.9395	39.0502	58.54650	151.7222	122.6105	158.3841	124.3154	157.0553	35.93250	998.2299
δ	19.44960	21.3417	16.3371	21.7134	18.04360	111.2930	26.0335	-46.83090	101.1481	-94.71570	105.5894	-94.50270	104.7035	23.95500	665.4866
Δσ	29.17440	32.0125	24.5057	32.5700	27.06540	166.9395	39.0502	-70.24630	151.7223	-142.0740	158.3841	-141.7540	157.0553	35.93250	998.2299
η	0.696700	0.37880	0.70820	0.21130	0.807600	0.731500	0.61940	0.666900	0.561300	0.726000	0.163300	0.754000	0.618700	0.726900	0.716200
[DMSO							
σiso	101.0485	97.8135	95.0084	97.2699	101.5543	11.41390	204.5011	193.5591	145.1567	137.1130	160.9926	135.5404	143.2728	208.9999	-299.22100
σaniso	29.17170	32.0102	24.5089	32.5788	27.07540	167.7433	39.10780	58.51930	151.7326	122.6498	158.4052	124.3351	157.0788	35.70260	1001.2873
δ	19.44780	21.3401	16.3393	21.7192	18.05030	111.8289	26.07190	-46.82530	101.1551	-94.74540	105.6035	-94.52550	104.7192	23.80170	667.52480
Δσ	0.029200	0.03200	0.02450	0.03260	0.027100	0.167700	0.039100	-70.23800	0.151700	-142.1180	0.158400	-141.7880	0.157100	0.035700	1.0013000
η	0.696800	0.37890	0.70910	0.21300	0.806500	0.720400	0.620400	0.000100	0.561100	0.726000	0.163300	0.753800	0.618300	0.714400	0.7172000
Г								Ethanol							
σiso	101.0471	97.82800	95.0156	97.2810	101.550	11.61500	204.5035	193.5597	145.1829	137.1646	160.9687	135.5665	143.2798	209.1777	-298.0310
σaniso	29.17320	32.00270	24.5115	32.5603	27.0577	167.2675	39.10630	58.50600	151.8033	122.7014	158.4600	124.3879	157.1806	35.88060	999.4545
δ	19.44920	21.33520	16.3409	21.7069	18.0385	111.5117	26.07090	-46.8085	101.2022	-94.76780	105.6399	-94.53960	104.7871	23.92040	666.3030
Δσ	29.20000	32.00000	24.5000	32.6000	27.1000	167.0000	39.10000	58.5000	152.0000	123.0000	158.0000	124.0000	157.0000	35.90000	999.0000
η	0.020300	0.012100	0.01740	0.00694	0.02190	0.122000	0.024300	0.08200	0.085200	0.162000	0.025900	0.159000	0.097200	0.026000	0.717000
г	Methanol														
ι σiso	101.0491	97.8200	95.0114	97.2746	101.5466	11.66610	204.4602	193.5638	145.1634	137.1336	160.9803	135.5403	143.2672	209.2151	-297.7980
σaniso	29.17380	32.0059	24.5093	32.5643	27.06000	167.1669	39.08400	58.52120	151.7740	122.6710	158.4335	124.3616	157.1343	35.89140	999.0795
δ	19.44920	21.3372	16.3395	21.7096	18.04000	111.4446	26.05600	-46.8169	101.1827	-94.75070	105.6223	94.52610	105.6223	105.6223	105.6223
Δσ	29.20000	32.0000	24.5000	32.6000	27.10000	167.0000	39.10000	58.5000	152.0000	123.0000	158.0000	124.0000	157.0000	35.90000	999.0000
ŋ	0.020300	0.01210	0.0174	0.00693	0.021900	0.122000	0.024300	0.08200	0.085200	0.162000	0.025900	0.159000	0.097300	0.026100	0.717000
<u>''</u>	0.020000	0.01210	J.U.I.T	0.00000	5.021000	5.122000	0.02 1000	5.00200	3.000200	5.102000	3.020000	0.100000	0.001000	3.020100	3.1 11 000

Table 4. Continues.

[Benzene							
σiso	100.9459	98.2135	95.4118	98.4161	101.8400	12.28280	205.7742	192.949	145.6834	138.4446	160.8832	138.1041	146.1893	204.5426	-313.5010
σaniso	29.07910	31.7617	24.3337	31.4174	25.01940	154.5376	40.52330	58.2409	154.1528	124.4169	159.0048	124.6568	154.7742	44.45060	1046.854
δ	19.38600	21.1745	16.2225	20.9449	16.67960	103.0250	27.01550	-46.8931	102.7686	82.94460	106.0032	-95.06290	103.1827	-35.3209	697.9027
Δσ	29.10000	31.8000	24.3000	31.4000	25.00000	155.0000	40.50000	58.2000	145.0000	124.0000	159.0000	125.0000	155.0000	44.5000	1050.000
Н	0.019900	0.01220	0.01770	0.00645	0.020900	0.109000	0.027800	0.07870	0.080300	0.156000	0.02480	0.153000	0.084900	0.05880	0.734000

REFERENCES

- Baylor LR, Merkulov VI, Ellis ED, Guillorn MA, Lowndes DH, Melechko AV, Simpson ML, Whealton JH (2002). Field emission from isolated individual vertically aligned carbon Nanocones. J. Appl. Phys., 91:4602-4606.
- Becke AD (1992b). Density-functional thermochemistry. I. The effect of the exchange-only gradient correctionJ. Chem. Phys., 96:2155-2160.
- Becke AD (1992a). Density-functional thermochemistry. II. The effect of the Perdew-Wang generalized-gradient correlation correction. J. Chem. Phys., 97: 9173-9177.
- Bethune D S, Klang C H, DE Vries MS, Gorman G, Savoy R, Vazquez J, Beyers R (1993). Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature London., 363: 605-607.
- Bourgeois L, Bando Y, Han WQ, Sato T (2000). Structure of boron nitride nanoscale cones: Ordered stacking of 240 degrees and 300 degrees disclinations. Phys. Rev. B., 61: 7686-7691.
- Dean KA, Chamala BR (1999). Field emission microscopy of carbon nanotube caps. J. Appl. Phys., 85:3832-3836.
- Depres J, Daguerre E, Lafdi K (1995). Flexibility of graphene layers in carbon nanotubes. Carbon., 33: 87-89.
- Evans JNS (1995). Biomolecular NMR Spectroscopy. Oxford University Press: Oxford, U. K.
- Frisch MJ (1998). GAUSSIAN 98, Revision A.7, Gaussian, Inc, Pittsburgh, PA.
- lijima S (1991). Helical microtubules of graphitic carbon. Nature (London)., 354: 56-58.
- lijima S Ichihashi T (1993). Single-shell carbon nanotubes of 1nm diameter. Nature London., 363: 603-605.
- Iijima S, Brabec CJ, Maiti A, Bernholc J (1996). Structural flexibility of carbon nanotubes. J. Chem. Phys., 104: 2089-2092.
- Iijima S, Ichihashi T, Ando Y (1992). Pentagons, heptagons and negative curvature in graphite microtubule growth. Nature (London)., 356 :776-778.

Kaupp M, Bu"hl M, Malkin VG (2004). Calculation of NMR And EPR Parameters: Theory and Applications. Wiley-VCH: Weinheim, Germany.

- Kroto HW, Heath JR, OBrien SC, Curl RF Smalley R E(1985). C₆₀: Buckminsterfullerene. Nature London. 318: 162-163.
- Monajjemi M, Heshmat M, Tahan A, Monajemi H, Mollaamin F (2007). Quantum mechanic study of basis set effect on NMR chemical shielding and Hydrogen bonding of some amino acids in gaseous phase and solvent. The egyption journal of biochemistry and molecular biology. BIANNUAL. 2:154-179.
- Monajjemi M, Rajaeian E, Mollaamin F, Naderi F, Saki S (2008). Investigation of NMR shielding tensors in 1,3 dipolar cycloadditions:solvents dielectric effect. Phys. Chem. Liquids., 46: 299-306.
- Otting G, Liepinsh E (1995). Protein Hydration Viewed by High-Resolution NMR Spectroscopy: Implications for Magnetic Resonance Image Contrast. Acc. Chem. Res., 4: 171-177.
- Qu CQ, Qiao L, Wang C, Yu SS, Zheng WT, Fu YZ, Jiang Q (2008). First-principles density-functional calculations on the field emission properties of BN nanocones. Solid State Commun., 146:399-402.
- Rubio A, Corkill J L, Cohen ML (1994). Theory of graphitic boron nitride nanotubes. Phys. Rev. B., 49:5081-5084.
- Rubio A, Corkill JL, Cohen ML (1994). Theory graphitic boronnitride nanotubes. Phys. Rev. B., 49: 5081-5084.
- Sattler K (1995). Scanning tunneling microscopy of carbon nanotubes and nanocones. Carbon., 33: 915-920.
- Song SN, Wang XK, Chang RPH, Ketterson JB (1994). Electronic properties of graphite nanotubules from galvanomagnetic effects Phys. Rev. Lett., 72: 697-700.
- Terauchi M, Tanaka M, Suzuki K, Ogino A, Kimura K (2000). Production of zigzag-type BN nanotubes and BN cones by thermal annealing. Chem. Phys. Lett., 324:359-364.
- Yakobson BI, Smalley RE (1997). Fullerene Nanotubes: C1 000 000 and Beyond. Am. Sci., 85:324-337.

- Zhang HZ, Zhao Q, Yu J, Yu DP, Chen Y (2007). Fieldemission characteristics of conical boron nitride nanorods. J. Phys. D. Appl. Phys., 40:144-147.
- Zhi C, Bando Y, Tang C, Golberg D (2005). Electronic structure of boron nitride cone-shaped nanostructures. Phys. Rev. B., 72: 245419.