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Correctly identifying bacterial toxin is of great benefit to cell biology and medical research. In order to 
improve predictive accuracy, based on the concept of pseudo amino acid composition, combined with 
the methods of approximate entropy and IB1 algorithm, a new method is proposed to predict bacterial 
toxins in this paper. The improved method gives comprehensive consideration of amino acid 
composition, side-chain mass of the amino acid, hydrophilic, and hydrophobic characteristics of a 
protein sequence. The total prediction accuracy of our method was 97.52% for bacterial toxin and non-
toxin, and 97.33% for discriminating endotoxins from exotoxins, which were much higher than that of 
the previous methods.  
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INTRODUCTION 
 
The whole world can be considered to be consisted of 
various systems such as economic system, biological 
system, etc., (Backlund, 2000) and all the systems in the 
existent physical reality, from the cosmologic phenomena 
to immunology and comportments of the subatomic 
particles, seem to be characterized with the presence of 
various patterns (Steen, 1988) in their structure (Pullan 
and Bhadeshia, 2000) and behavior (Dusenbery, 2009). 
The existent physical reality is not so complicated, in that, 
mathematically it is possible, but contrarily, the diversity 
of the systems can be restricted to a very little number of 
mathematically possible variations, in biology too. Various 
research methods and mathematical instruments, such 
as, “thinking machines” (Turing, 1950) are developed for 
understanding this “reduced complexity”. 

The recognition of patterns (Gibson, 2003) is a major 
problem today, when the text recognition and trans-
formation from the scanner’s image that is directly in an 
editable text is commonly used. The other problems (that 
is, from the screening of the human biometrical 
characteristics in mass-accessed places for security 
considerations, to the recognition of biological molecules, 
such as proteins, DNA and RNA) from the untreatable 
great quantity of data to the instruments of  measurement 

(like the chips for DNA recognition) are in dynamic 
development. For physicians today, they use new and 
efficient methods for patients, like the selection and 
determination of tumor markers directly on the mRNA. An 
otherwise untreatable great quantity of data from the 
instruments of measurement, equipped with molecule-
recognition chips, are used for the direct examination of 
biopsy material from tumors and metastases (or tumor 
cell lines developed from this), via software based on 
mathematical algorithms (Ochs et al., 2009). 

Thus, it is possible, for example, to have a quick, 
INDIVIDUALISED (tendency of the medicine in future) 
and repeated change in the cancer therapy drug 
combination schema, weekly if necessary, and anytime 
using the most efficient combination and preventing, in 
this way, the development of the drug resisting the tumor. 
Finally, the success of the therapy, or long-time survival 
of the patient, in comparison with the others used, empiri-
cally proposed combinations. The methods of recognition 
of patterns have important mathematical implications, like 
the Bayesian algorithms (Howson and Urbach, 1989), 
Support Vector Machines (Cortes and Vapnik, 1995), IB1 
algorithm (Aha et al., 1991), and others, like Artificial 
Learning Systems  (Akerkar  and  Sajja,  2009),   Artificial  
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Intelligence and Neural Networks (Russell and Norvig, 
2003). However, the development of this area influences 
positively the last mentioned areas, which are important 
for other applications too, outside the pattern recognition 
(for example: neurobiology and physics). 

The bacterial toxins are a major cause of diseases 
during infection (B¨ohnel and Gessler, 2005), and can be 
classified into exotoxins and endotoxins. These two types 
of toxins have different role and mechanism in the body 
and correctly identifying bacterial toxin, is of great benefit 
to mankind. In fact, some of these powerful disease-
causing toxins have been exploited to further basic 
knowledge of cell biology or for medical purposes. For 
example, cholera toxin and the related labile-toxin of E. 
coli, as well as B. pertussis toxin, have been used as 
biologic tools to understand the mechanism of adenylate 
cyclase activation (Harnett, 1994; Bokoch et al., 1983; 
Neer, 1995), and the strong mucosal adjuvants have 
been used in experimental models (Bagley et al., 2002). 
Though bacterial toxins can be identified by experimental 
methods, it is costly and time-consuming. So, how to 
economically, rapidly and accurately identify bacterial 
toxins becomes a very important problem. 

Recently, some researches have been made in this 
field and achieved inspiring results, using support vector 
machines (SVM) and dipeptides composition. Saha and 
Raghava (2007) achieved an accuracy of 96.07 and 
92.50% for bacterial toxins and non toxins, respectively, 
and an accuracy of 95.71 and 92.86% for discriminating 
endotoxins and exotoxins, respectively. Yang and Li 
(2009) achieved higher MCC in the same dataset by 
using increment of diversity and support vector machines. 
Encouraged by their research, in this study, we attempted 
to develop a new method to predict bacterial toxins and 
their class (exotoxin or endotoxin). 
 
 
MATERIALS AND METHODS 
 
The software used for working the data  
 
MATLAB (Gilat, 2004) is a high-level language and interactive 
environment that enables computational tasks to be performed 
faster than that of traditional programming languages such as C, 
C++ and FORTRAN. It has been widely used in various application 
areas, such as computational biology and pattern recognition. All 
calculations done in this paper were realized by programming, 
under MATLAB 2007. 
 
 
Dataset 
 
The data that we used in this paper were collected from Swiss-Prot 
database (Boeckmann et al., 2003) and from the dataset used by 
Saha and Raghava (2007). We freely downloaded them from 
http://www.imtech.res.in/raghava/btxpred/supplementary.html. 
Using the cd-hit soft (Li, 2006) to remove sequences with more than 
90% sequence identity, and using it to delete the sequences whose 
length is �100, we obtained two datasets. One contained 141 
bacterial toxins and 303 non-toxins, while the other contained 73 
exotoxins and 77 endotoxins. 

 
 
 
 
Schemes of sequence feature 
 
The pseudo amino acid composition of a sequence includes a lot of 
information about the sequence, such as the main feature of amino 
acid composition, and the sequence order correlation (Chou, 2001). 
So, in this paper, we constructed the feature vectors of a protein 
sequence with the concept of Chou’s pseudo amino acid 
composition. 

Suppose a protein chain X  with length l  amino acid residues is: 

1 2 lR R R� , we denoted the protein sequence as a vector in 

20 s λ+ +  dimension space. That is: 
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Where, tf  is the frequency of the 20 amino acids in protein X , 

1 2,ϖ ϖ  is the weight factor for sequence order effect, 
iApEn  is the 

approximate entropy of protein sequences (Pincus, 1991), which 
describes the complexity of protein sequences, and jθ  is the j -

tier sequence correlation factor, which reflects the sequence order 
correlation among the most contiguous residues of the jth. 
 

iApEn  could be computed by the following equations: 
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are the protein subsequences that begin at component i  within X . 
N  is the component number of the given X , while r  and m  are 
the filter parameter and mode dimension, respectively. In 
computing, we select 2,3,4m =  and 0.1,0.15,0.2,0.25r = , and 

then we obtain 12 approximate entropies, that is, 12s = jθ  was 

computed by the following formulae: 
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Here ( , )i i jR Rϕ +  is correlation function, 
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Where ( ), 1,2,3k iH R k =  are the value of hydrophobicity, 

hydrophilicity and side-chain mass of the amino acid iR , 

respectively, 0
1 ( )H i  and 0

2 ( )H i  are the corresponding original 
hydrophobicity and hydrophilicity values of the ith amino acid 
(Argos et al., 1982; Hopp-Woods, 1981), respectively, and 0

3 ( )H i  
is the side chain mass of the ith amino acid that can be obtained 
easily from any biochemistry text book. Generally, we used number 
to represent the 20 native amino acids from 1 to 20, according to 
their alphabetical order. 
 
 
IB1 algorithm 
 
IB1 algorithm is a classification algorithm characterized by 
incremental, supervised learning (Aha, 1990). It achieves effective 
results usually by the steps such as normalization, similarity and 
prediction. For some given numeric protein sequences, we first 
normalize them by the following formulae: 
 

( ) ( min ) / (max min )a anomr x a x a a a= − −  
 
Where min a  and max a  are the lowest and highest values of 
attribute a , respectively, while ax is the attribute’s a  value of 
sequence x . 
 
Then, the similarity between a new sequence and the entire test 
sequences is calculated according to the similarity function. Using 
the similarity, we can describe the degree that a new sequence is 
similar to all sequences. Usually, we select the following function as 
the study’s similarity function: 
 

1
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n
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i
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Where ,x y are two protein sequences, and 2( , ) ( )i i i if x y x y= − . If 

i ix y≠ , else ( , ) 1i if x y = . 
 
If ( , ) m x ( , )

y
sim x z i sim x y= , we believe that the sequence, x , 

belongs to the same class of y . 
 
 
Evaluation of the performance 
 
In order to easily compare the performance with other methods, we 
also use sensitivity (Sn), specificity (Sp), Matthew’s correlation 
coefficient (MCC) and the overall prediction accuracy (Ac) as 
indicators (Baldi et al., 2000; Carugo, 2007) for evaluating the 
correct prediction rate and reliability of the study’s method. Here: 
 

/( )Sn TP TP FN= +  
 

/( )Sp TP TP FP= +  
 

( ) / ( )( )( )( )MCC TP TN FP FN TP FP TP FN FN TN TN FP= × − × + + + +
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( ) /Ac TP TN M= +  
 
Where M is the total number of protein sequences. TP denotes the 
number of the correctly recognized positives, FN denotes the 
number of the positives recognized as negatives, FP denotes the 
number of the negatives recognized as positives, and TN denotes 
the number of correctly recognized negatives.  
In order to explain the study’s method, here is an example: 
 
2ABA_DROME: MGRWGRQSPVLEPPDPQ……AATNNLFIFQDKF 
is a protein sequence. 
 
However, an introduction will be done first on how to extract the 
feature of the protein. 
 
 
Step 1 
 
Calculate tf , the frequency of the 20 amino acids, in the 
aforementioned protein sequence. 
 
(0.0501, 0.0581, 0.0681, 0.0160, 0.0701, 0.0481, 0.0561, 0.0180, 
0.0842, 0.0601, 0.0220, 0.0301, 0.0401, 0.0240, 0.0681, 0.0541, 
0.0741, 0.0641, 0.0681, 0.0261) 
 
 
Step 2 
 
Calculate iApEn  approximate entropy of protein sequences. First, 

represent the protein sequence as a time series X  by replacing 
every amino acid of protein sequences by the relevant value of its 
hydrophobic amino acids; then, calculate the number of similar 
subsequences which begin at component i  within X .  As such, 

with length m, ( )m
iC r  can be obtained. At last, we can calculate 

iApEn , following the formula in “schemes of sequence feature”. 

Consequently, the entire ApEn  sequences can be used to 
construct the following vector: 
 
(1.3942, 1.4781, 1.4530, 1.4349, 0.6445, 0.8158, 0.9543, 0.9704, 
0.1157, 0.1966, 0.3658, 0.4216) 
 
 
Step 3 
 
Calculate jθ  and the j -tier sequence correlation factor, but first 

calculate ( ), 1,2,3k iH R k =  (the value of hydrophobicity, 
hydrophilicity and side-chain mass of each amino acid), then 
through the correlation function, we could obtain jθ . All sequence 

correlation factors can be used to construct the following vector: 
 
(0.0040, 0.0043, 0.0040, 0.0043, 0.0040, 0.0041, 0.0040, 0.0042, 
0.0037, 0.0040, 0.0040 0.0038, 0.0040, 0.0041, 0.0039, 0.0040, 
0.0040, 0.0040, 0.0039, 0.0037) 
 
 
Step 4 
 
Merge the aforementioned three vectors into a vector as the 
formula in “schemes of sequence feature”, and standardize it. In 
this research, where 1 2,ϖ ϖ  change in a certain range, they are 
0.022 and 0.34, corresponding to the best prediction result, and 
then we can obtain the feature vector of this protein sequence. 
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Table 1. Performances of various methods in the prediction of bacterial toxins. 
 

Method Sensitivity (%) Specificity (%) MCC Accuracy (%) 
Our method 94.52 97.87 0.9437 97.52 
Amino Acidsa 92.14 100 0.9293 96.07 
Dipeptidesa 86.43 98.57 0.8612 92.50 

 
a comes from Saha and Raghava (2007). 

 
 
 

Table 2. Performances of various methods in discriminating exotoxins and endotoxins. 
 

Method Sensitivity (%) Specificity (%) MCC Accuracy (%) 
Our method 98.59 95.89 0.9469 97.33 
Increment of diversityb 92.91 99.24 0.9428  
Amino Acidsa 100 91.43 0.9293 95.71 
Dipeptidesa 94.29 91.43 0.8612 92.86 

 
a comes from Saha and Raghava (2007), b comes from Yang and Li (2009). 

 
 
 

Table 3. Comparison of two kinds of feature extraction methods for IB1 algorithm. 
 

Method  Sensitivity (%) Specificity (%) MCC Accuracy (%) 

Bacterial toxins 
Improved feature extraction 94.52 97.87 0.9437 97.52 
Amino acids alone 97.17 96.70 0.9339 97.07 

      

Exotoxins and endotoxins 
Improved feature extraction 98.59 95.89 0.9469 97.33 
Amino acids alone 93.65 80.82 0.7659 88 

 
 
 

The second problem is how to predict the sequence. For the 
dataset, we first extract the feature of all protein sequences by 
using the aforementioned steps, before using the IB1 method 
classification to calculate them. A specific calculation process is that 
first, we select one sequence as the tested object and the others as 
the test set, and then use the IB1 algorithm to find the minimum 
similarity between the tested object and the others. We believe that 
the tested object is in the same type as that of the sequence which 
has the minimum similarity with the tested object. According to 
these steps, each sequence in the dataset is forecasted, in turn, 
after which we obtain the value of TP, FN, FP and TN, before we 
could calculate Sn, Sp and MCC. 
 
 
RESULTS AND DISCUSSION 
 
For the uniformity of comparison, in this paper, Jackknife 
test was used on the dataset. By programming and 
calculating, the performance of our method proposed for 
discriminating the bacterial toxins from non-toxins was 
shown in Table 1. The performances of other previous 
methods were also shown in Table 1. It was clear that our 
method with improved feature extraction and IB1 
algorithm fusion was able to predict toxins with the total 
accuracy of 97.52% and 0.9437 MCC, which were higher 
than that of the previous results (Table 1). 

The study’s method was also used to predict whether a 
bacterial toxin was an exotoxin or an endotoxin. The total 
accuracy and MCC of this method achieved 97.33% and 
0.9469, respectively, which were also higher than that of 
any other existed results (Table 2). 

In order to further analyze the effectiveness of the 
algorithm and the effectiveness of feature extraction of 
the method proposed in this paper, we used IB1 
algorithm to predict bacterial toxins based on the amino 
acid composition alone, and the results are listed in Table 
3. From Table 3, we could see the difference between 
two performances of two feature extraction methods. It is 
obvious that the improved feature extraction, proposed in 
this paper, was indeed better than amino acids alone, 
which showed that our feature extraction method much 
effectively reflect  the  characteristics  of  bacterial  toxins, 
and was more suitable for predicting bacterial toxins. 
Comparing Tables 1 and 2, we could see that the 
performance of IB1 algorithm is much better than that of 
SVM for bacterial toxins and non toxins with amino acids 
composition alone. Although IB1 algorithm was poor for 
discriminating exotoxins and endotoxins with amino acids 
composition alone, it was perfect when it was connected 
with the improved feature extraction.  It  showed  that  the  



 
 
 
 
combination of IB1 algorithm and the improved feature 
extraction method proposed in this paper could signifi-
cantly improve the prediction accuracy of bacterial toxins. 
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