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Polynomial models describing the individual and combined influences of solutes (sucrose and NaCl) and 
pH on the water activity (aw) of nutrient broth systems (NBS) were established using Response Surface 
Methodology. For the sucrose-pH model, the linear, quadratic and interactive influences of sucrose 
concentration and pH significantly affected aw; while only the linear and quadratic influences of NaCl and 
pH significantly affected aw in NaCl-pH model. The resulting models were characterized with satisfactory 
goodness-of-fit and efficient predictive performance. The established models may be used in the 
estimation of NBS components to formulate growth media with desired physicochemical property 
combinations and may be applied when studying microbial behaviors such as in quantitative microbial 
ecology. 
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INTRODUCTION 
 
The emergence of predictive microbiology led food micro-
biologists to quantitatively elucidate influences of 
physicochemical food factors on the ecology of microor-
ganisms during processing, distribution and storage 
(McMeekin et al., 1993). Jagannath and Tsuchido 
(2003a) explained that predictive microbiology is based 
on the premise that microbial responses to food factors 
are reproducible and thus by typifying microbial environ-
ments in terms of such factors, it is possible to predict the 
responses of microorganisms in new, similar environ-
ments. In predictive microbiology, McKellar and Lu (2003) 
emphasized the necessity to quantitate in terms of 
mathematical models. The first step in developing a 
model is usually the establishment of growth or death in a 
constant environment with a set of defined food factor 
combinations (Jagannath et al., 2003a; Baranyi and 
Roberts, 2004). Careful selection, definition and control of 
model-generating factors are necessary to come up with 
a reliable and significant model (Khuri and Cornell,  1987; 
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Hu, 1999). 
Control of pertinent food factors such as water activity 

(aw) can however be difficult if adjustments are to be 
based only from gravimetric calculations. Jay et al. (2005) 
cited that as solutes interact with water and with each 
other in ways that are difficult to predict, estimations of aw 
of multicomponent systems based on the Raoult’s law 
may be oversimplified and meaningless. For example, 
Bone (1969) mentioned that sucrose lowers the aw of 
food systems differently as compared to other solutes 
and hence does not follow the Raoult’s law. Gabriel 
(2008) recently reported the quadratic and interactive 
influences of pH and sucrose content (°Brix) on the aw of 
aqueous system through Response Surface Methodology 
(RSM). Gabriel (2008) developed and validated a highly 
significant polynomial model that assists formulation of 
sucrose solutions with specific pH and aw combinations. 
Hence this study was conducted to develop and validate 
polynomial models that can be similarly used to facilitate 
the preparation of nutrient broth systems (NBS) with 
specific physicochemical property combinations. 

Preparations of NBS with specific combinations of pH, 
and aw may be applicable in modeling the effects of these 
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physicochemical properties on certain microbial beha-
viors such as growth, inactivation and manufacture 
bioactive natural products. 
 
 
MATERIALS AND METHODS 
 
Experimental designs and NBS preparations 
 
In this study, separate polynomial models that characterized the 
influences of various combinations of solutes and pH on NBS aw 
were developed. In the development of each model, the rotatable 
central composite design (CCRD) of experiment was employed to 
determine the pH and the amounts of the solutes to be added to 
each of the NBS. Each CCRD was composed of 4 factorial point-, 4 
axial point- and 6 center point combinations. 

The pH of freshly prepared nutrient broth (NB, Eiken, Tokyo, 
Japan) was first adjusted with 5.0 N of HCl (Nacalai Tesque, Inc., 
Kyoto, Japan) or NaOH (Nakarai Chemicals, Ltd., Kyoto, Japan) 
before the dissolution of the respective amounts of sucrose 
(Nacalai Tesque, Inc., Kyoto, Japan) or NaCl (Nacalai Tesque, Inc., 
Kyoto, Japan) and sterilization at 121°C for 15 min. The NBS pH 
measurements and adjustments were conducted using a Horiba 
Navi pH meter (F-52, Horiba Ltd., Kyoto, Japan) calibrated with pH 
7.0 and 4.0 standard solutions (Horiba Ltd., Kyoto, Japan). Minor 
pH adjustments were conducted prior to aw measurements to 
correct for deviations in pH values that might have occurred during 
sterilization. 
 
 
aw measurements 
 
The Rotronic Hygroscop DT aw meter (Switzerland) was used in the 
measurement of aw of the test NBS. Approximately 5.0 ml of the 
test NBS was placed inside the measuring chamber after which the 
head sensor was fitted to seal the chamber. The aw values of the 
test NBS were recorded after equilibration which occurred within 30 
- 40 min. In each of the developed model, aw measurements were 
conducted in duplicates and responses were obtained from two 
independent experiments. 
 
 
Model development and analyses 
 
The responses obtained from each set of designed experiments 
were fitted in to the general form of quadratic polynomial model 
(Equation 1). This model incorporated the individual linear (x1, x2) 
and quadratic (x1

2, x2
2), and interactive (x1·x2) influences of the ex-

perimental variables on the measured response (y). The �’s 
corresponded to regression coefficients. Response fit analyses, 
regression coefficient estimations and model significance 
evaluations were conducted using the Design Expert (version 7.0.3) 
statistical software package (Statease, Minneapolis, MN). Surfaces 
showing the interactive influences of the model-generating factors 
on a particular response were constructed using the Statistica 
(version 1999) software package (Statsoft, Inc., Tulsa, OK). 
 

y = �0 + �1 x1 + �2 x2 + �1·2 (x1·x2) + �1
2 x1

2 + �2
2 x2

2    (1) 
 
 
Predictive efficacy validations 
 
The predictive performances of the developed models were vali-
dated using separate sets of NBS with factor values different from 
those enumerated in the model establishment phase. Freshly pre-
pared validating NBS were subjected to pH and aw analyses 
following the previously elaborated methods.  For  the  validation  of  

 
 
 
 
predictive performances of the models, the percentage solute and 
pH values of the validating NBS were factored in to the models to 
calculate the predicted aw (paw). The predictive performances of the 
models were assessed using the performance indices namely, bias 
(Bf) and accuracy (Af) factors (Ross, 1996; Baranyi et al., 1999). 
The Bf measured the mean difference between the predicted/ 
calculated and measured/actual aw and was estimated using 
Equation 2: 
 
Bf = 10^ {� (log predicted/measured)/n}                      (2) 
 
Where; n corresponded to the number of replications employed 
during the validation processes. When the Bf < 1.00, a model 
underestimated the measured property (predicted < measured) 
while Bf >1.00 indicates a model overestimation (measured > 
predicted). A Bf value of 1.00 implies that the predicted and the 
measured values were equal. Since the Bf does not provide a 
measure of the accuracy of model predictions, the Af was also 
calculated (Equation 3). 
 

Af = 10^ {� |log predicted/measured|/n}                     (3) 
 
Take note that the only difference between Equations 2 and 3 is 
that the Af value measures the mean absolute difference between 
the predicted and measured values. The Af takes the values of > 
1.00 where greater values indicate less predictive accuracy of a 
model while an Af =1.00 is an indication of a perfect model predic-
tion. Hence for model estimations where predicted > measured, the 
calculated Af and Bf values are equal and have the same sign. On 
the other hand, for estimations where measured < predicted, the 
calculated indices shall have the same value but of opposite signs. 

Graphical comparisons of the predicted and measured values 
were also done by plotting the predicted values against the 
measured results. The line of equivalence (LOE) with an equation 
of y = x and bisects the plot diagonally through the origin (0, 0)was 
traced to indicate a region where the predicted and measured 
values are equal. A point falling on the LOE has Af = Bf = 1.00, 
hence a perfect model prediction. Points falling above (Af = Bf 
>1.00) and below (Af > 1.00, Bf < 1.00) indicate model over- and 
underestimations, respectively. Points that are farther from the LOE 
had greater Af and Bf values. Hence, the positions of the points 
relative to the LOE were also used to illustrate the predictive 
performance of the developed models. 
 
 
RESULTS AND DISCUSSION 
 
Model fittings and analyses 
 
Table 1 summarizes the responses obtained from each of 
the combinations of pH and solute concentrations per 
model development experiment. Each of the response 
values were presented as averages of 4 values obtained 
from 2 independent experiments. The influences of the 
amount of solutes and pH on the aw of NBS were deter-
mined by fitting the responses into the second-order 
polynomial model (Equation 1). This general form of the 
equation accounted for the possible nonlinear relation-
ships between the predictive variables and the measured 
responses (Mendenhall and Sincich, 1996). Results of 
the analyses of variance (ANOVA) that ensures fit of the 
developed models are presented in Table 2. The F-test 
results demonstrated that the models can be used to 
reliably predict the response variables  (Adinarayana  and 
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Table 1. Effect of different solutes and pH on the aw of nutrient broth systems: Models 1 and 2. 
 

CCRD Coded 
Combinations 

Sucrose-pH Model NaCl-pH Model 
x1 x2 y x1 x2 y 

x1 x2 %Sucrose pH aw 1 %NaCl pH aw 

-1 -1 12.0 4.5 0.983 ± 0.001 04.0 4.5 0.980 ± 0.002 
±1 -1 70.0 4.5 0.899 ± 0.001 19.0 4.5 0.876 ± 0.006 
-1 ±1 12.0 8.5 0.989 ± 0.004 04.0 8.5 0.980 ± 0.002 
±1 ±1 70.0 8.5 0.918 ± 0.003 19.0 8.5 0.876 ± 0.004 
0 -� 41.0 3.7 0.947 ± 0.005 11.5 3.7 0.934 ± 0.001 
0 ±� 41.0 9.3 0.973 ± 0.003 11.5 9.3 0.966 ± 0.030 
-� 0 00.0 6.5 0.989 ± 0.003 00.9 6.5 0.987 ± 0.002 
±� 0 82.0 6.5 0.884 ± 0.001 22.1 6.5 0.843 ± 0.003 
0 02 41.0 6.5 0.967 ± 0.003 11.5 6.5 0.936 ± 0.004 

 
1Response values (aw) are presented as averages of 4 trials obtained from 2 independent experiments ± standard 
deviation. 
2Center points. Replicated 6 times as per the CCRD. 

 
 
 
Ellaiah, 2002). It was also evident in both models that the 
predictors had nonlinear influence on the response and 
hence, the utilization of second-order models was 
deemed appropriate.  

Furthermore, the statistics (Table 4) used to evaluate 
the goodness of fit of the responses into the model sup-
port the results obtained from the F-tests. The calculated 
coefficients of variation were low at 0.27 and 0.71 for the 
Sucrose-pH and NaCl-pH models, respectively. Such 
values are indicative of precision and reliability of the 
experiments conducted in the development of the models 
(Adinarayana et al., 2002). The values of the coefficients 
of determination (r2) and adjusted r2 signify that the 
models can predict and explain the total variations in the 
measured responses with high degree of accuracy. In all 
of the models, the values calculated for the predicted r2 
were in reasonable agreement with the adjusted r2 and 
the values for adequate precision indicated desirable 
signal-to-noise ratios (Statease, 2008). 
 
 
Influences of solute concentration and pH on NBS aw 
 
The predictive equations for the aw of NBS in terms of 
solute concentrations and NBS pH are given in Equations 
4 and 5. These equations are the Sucrose-pH and NaCl-
pH models that respectively resulted from the estimated 
coefficients (�) presented in Table 3. In Table 2, it is also 
shown that while the interaction of sucrose concentration 
and pH significantly influenced the measured aw, NaCl 
and pH had no significant joint influence on aw. The 
differences in the contours of the surfaces are also 
indications of the varying effects of the predictive 
variables on the response. 
 
aw = 0.94 – (1.45����10-4 sucrose) + (0.014 pH) 
       + (5.60 ����10-5 sucrose����pH) 
       – (1.86����10-5 sucrose2) – (9.79����10-4 pH2)        (4) 

aw = 1.03 – (2.07����10-3 NaCl) – (0.016 pH) 
        – (3.79 ����10-17 NaCl����pH) 
        – (2.08����10-4 NaCl2) + (1.45����10-3 pH2)            (5) 
 
When charted on 3-dimensional plots, these equations 
resulted into response surfaces (Figure 1) that demon-
strated the simultaneous influences of the solute concen-
tration and pH on aw. In Figure 1a, the curvatures along 
the percentage of sucrose and pH axes are indicators of 
the significant quadratic influences of these variables on 
aw. The quick descent of the surface along the percent 
sucrose axis compared to its gradual ascent along the pH 
axis indicated that the solute concentration had greater 
influence on aw. At any fixed solute level, it is also evident 
that the aw decreased with decreasing pH value. Such 
results have been similarly observed by Gabriel (2008) 
who established the influences of sucrose levels and pH 
on the aw of aqueous systems. Gabriel (2008) attributed 
this observation to the acid-mediated sucrose inversion 
that produces approximately two moles of monosac-
charides, hence more water-binding solutes, from one 
mole of sucrose. Whistler and Daniel (1985) noted that 
the glycosidic linkages, such as those that link the 
fructose and glucose units of a sucrose molecule, are 
more readily cleaved in acidic than in basic environments. 
Bennion (1985) and McWilliams (1993) explained that 
organic acidulants are commonly used in sugar cookery 
to promote sugar inversion. In a sucrose solution, hydro-
lysis of sucrose into fructose and glucose hampers sugar 
recrystallization since the disaccharide crystallizes easier 
than its monosaccharide components. 

The simultaneous influence on the percentage of NaCl 
and pH on NBS aw is demonstrated in Figure 1b. In this 
response surface, both the curvatures along the solute 
concentration and pH axes were found to be significantly 
associated with the response. Nonetheless, analysis of 
variance (ANOVA) in Table 2 showed  that  the  quadratic  
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Table 2. F-values obtained from response surface model ANOVAs  
 

Source1 Sucrose-pH model NaCl-pH model 

Model 410.80 ** 102.54 ** 
x1 1701.35 ** 476.67 ** 
x2 70.48 ** 5.76 * 

x1 · x2 6.24 * 0.00  

x1
2 267.84 ** 22.78 * 

x2
2 16.74 ** 5.57 * 

 
1 (x1, x2): Sucrose-pH model, (% sucrose, pH); NaCl-pH model, (% NaCl, pH) 
** Significant at p=0.01 and p=0.05; * Significant only at p=0.05 

 
 
 

Table 3. Statistics used in the evaluation of goodness-of-fit of the responses to the models 
 
Statistics Sucrose-pH Model NaCl-pH Model 
Coefficient of variation (% CV) 0.2700 0.7100 
Determination coefficient (r 2) 0.9966 0.9865 
Adjusted r 2 0.9942 0.9769 
Predicted r 2 0.9793 0.8713 
Adequate precision 58.33 30.88 

 
 
 

Table 4. Predictive efficacy of the developed polynomial models: model performance indices 
 

Model n 
NBS properties 1 Model performance indices 2 

Bias (Bf)  Accuracy (Af) 
x1 x2 range average  range average 

Sucrose-pH 20 10.00 - 70.00 03.78 - 08.94 0.980 - 1.049 1.005  1.000 - 1.049 1.012 
NaCl-pH 20 00.50 - 20.00 03.91 - 09.18 0.984 – 1.036 0.997  1.000 - 1.036 1.009 

 
1 (x1, x2): Sucrose-pH model, (% sucrose, pH); NaCl-pH model, (% NaCl, pH). Values are presented as ranges. 
2 A predictive model that exactly predicts a particular response has Af = Bf = 1.00. 
n: number of NBS used to validate each of the models 

 
 
  

      
�

  
 
Figure 1. Response surfaces showing the influences of solutes and pH on the aw of NBS. 
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Table 5. Predictive efficacy of the developed polynomial models: model performance indices. 
 

Model n 
NBS Properties1 Model Performance Indices2 

Bias (Bf) Accuracy (Af) 
x1 x2 Range Average Range Average 

Sucrose-pH 20 10.00 - 70.00 03.78 - 08.94 0.980 - 1.049 1.005 1.000 - 1.049 1.012 
NaCl-pH 20 00.50 - 20.00 03.91 - 09.18 0.984 - 1.036 0.997 1.000 - 1.036 1.009 

 
1 (x1, x2): Sucrose-pH model, (% sucrose, pH); NaCl-pH model, (% NaCl, pH). Values are presented as ranges. 
2 A predictive model that exactly predicts a particular response has Af = Bf = 1.00. 
n: number of NBS used to validate each of the models. 

 
 
 
influence of NaCl concentration had more significant 
effect on the aw. NaCl dissociation and the subsequent 
ionic interactions with water and other chemical species 
present in the NBS must have been the primary 
mechanism of the aw-lowering of the solute. Cheftel et al. 
(1985) discussed that protein and water interaction may 
be affected by pH and the presence of ions from neutral 
salts. Variations in aw with changing pH values may also 
be related to the shifting solubility of proteins in aqueous 
systems. Fennema (1985) defined aw to be related to the 
fugacity, or the escaping tendency, of water in a 
particular aqueous system. Hence aw determinations are 
commonly conducted by measuring the equilibrium 
relative humidity (ERH) of the sample. Dissolution of 
sugars, salts and other hydrophilic compounds induce 
dipole-dipole, ionic and hydrogen bond interactions with 
water that alter the system ERH (Le Maguer, 1987; 
Decagon Devices, Inc. 2001).  

In this study, the presence of other dissolved and sus-
pended compounds in the NBS such as meat extract and 
peptone must have also influenced aw since hydrophobic 
water interactions with proteins have also been shown to 
affect aw (Decagon Devices, Inc., 2001). Ions introduced 
by the pH adjusting acid or base must have also 
contributed to the measured aw. The production of other 
chemical species that resulted from chemical changes in 
and reactions between the NBS components must have 
also contributed to the measured aw values. Dehydration 
and thermal degradation of sugars are catalyzed in either 
acidic or basic environments and may produce a number 
of organic acids and other charged compounds (Whistler 
et al., 1985; Wong, 1989). Reducing sugars can also 
react with amino-bearing compound, usually proteins, in 
a process called Mallard reaction (Whistler et al., 1985; 
Wong, 1989). Such reaction can result to the formation of 
several compounds that may influence the system aw. 
 
 
Validation of the models 
 
Predictive models may be reliably used in decision-
making only after subjection to validation (Jagannath and 
Tsuchido, 2003b). Validation is an essential step in model 
development because it allows for the determination of 
the applicable range  and  performance  limits  of  models.  

Hence, each of the developed polynomial models was 
subjected to validation using NBS with sets of properties 
different from those used during model development 
(Ross, 1996; Carrasco et al., 2006). Model validations 
were conducted using only significant model terms listed 
in Table 2. Table 5 presents the bias and accuracy 
indices calculated in the evaluation of the predictive effi-
cacy of the developed models. The calculated Bf values 
suggest that both models over- and underestimated the 
actual aw of the validating NBS.  

Moreover, the calculated Af values in both models 
were close to 1.00, suggesting the high level of accuracy 
of model predictions. The calculated predictive indices 
were in agreement to the results of the graphical predic-
tive validations. In Figure 2, when the predicted and 
measured aw of the validating NBS were plotted, the 
coordinates were shown to be in close proximity to the 
line of equivalence indicative of highly accurate model 
predictions. Ross, Dalgaard and Tienungoon (2000) 
explained that models should ideally have Af values of 
1.00 that are indicative of perfect agreement between the 
predicted and measured values. However, they have also 
explained that typically, the Af values of a model increase 
by 0.10 to 0.15 units for every predictive variable in the 
model. Hence in this study where both models estimated 
the aw of NBS from two factors, model predictions may be 
expected to have Af values that range from 1.20 to 1.30. 
Thus all of the developed models were evaluated to have 
highly acceptable predictive accuracy.  

In summary, this study elucidated the influences of 
dissolved sucrose and NaCl on the water activity of NBS 
through polynomial models. The developed models were 
characterized and validated to have highly acceptable 
predictive accuracy and may be proven valuable in 
facilitating formulations of NBS of predetermined physico-
chemical properties. Such growth media with precise pH 
and aw values may be used in developing models for the 
influences of these factors on microbial behaviors 
including growth, inactivation and manufacture of 
bioactive natural products. The developed models are 
however limited to be applied in the formulation of 
Nutrient Broth medium. The utility of the models in other 
microbial growth media such Trypto-Soy Broth and Brain 
Heart Infusion Broth should be subjected to further 
validation. 



838                 Afr.   J.    Microbiol.   Res. 
 
 
 

 
 

�
 

 
Figure 2. Graphical presentations of predictive efficacies of the sucrose-pH (a) and NaCl-pH models. 
The bold diagonal lines bisecting the plots are the lines of equivalence that depict the region where the 
predicted and measured aw are in perfect agreement (paw = maw). The shaded areas represent the 
acceptable model prediction regions where Af < 1.10. 
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