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products. FB1 causes liver and kidney cancer, and neural 
tube defects in rodents, leukoencephalomalacia in horses 
and pulmonary oedema in pigs (Dutton, 1996). Of major 
concern is the association of FB1 with elevated incidence 
of human oesphageal cancer in parts of South Africa, 
North Eastern Iran and China, upper gastrointestinal tract 
cancer in Northern Italy (Chu and Li, 1994; Rheeder et 
al., 1992; Sydenham et al.1990) and neural tube defects 
in human babies (Hendricks, 1999; Marasas et al., 2004). 
The structures of FB1 and sphingolipids show marked 
similarities (Bezuidenhout et al., 1988), which may be the 
reason why FB1 drastically disrupts the normal 
sphingolipid metabolism leading to an intracellular 
accumulation of sphingoid bases (mainly sphinganine 
relative to sphingosine), which mediate several key 
biological processes including inhibition of protein, DNA 
synthesis and apoptosis caspace-3 dependant (Abado-
Bécognée et al., 1998; Soriano et al., 2005; Seefelder et 
al., 2003; Gopee and Sharma, 2004). In addition, FB1 
also induces lipid peroxidation in Vero cells, in primary rat 
hepatocytes (Abado-Bécognée et al., 1998) in C6 glioma 

cells (Mobio et al., 2003) and human intestinal Caco-2 
cells (Kouadio et al., 2007).      

On the other hand, ZEA have estrogenic and anabolic 
activities in several species (rodents, pigs and monkeys) 
(Kuiper-Goodman et al., 1987; Etienne and Dourmad, 
1994), being able to cause alterations in the reproductive 
tract of laboratory animals (Kuiper-Goodman et al., 1987; 
Abid-Essefi et al., 2004). ZEA is associated with 
outbreaks of precocious pubertal changes in children in 
Puerto Rico, and has been suggested to have a possible 
involvement in human cervical cancer (Zinedine et al., 
2007). Cellular mechanism of ZEA has been described 
by its high binding affinity to oestrogen receptors (Shier et 
al., 2001) and DNA adduct formation in female mousse 
tissues (Pfohl-Leszkowicz et al., 1995) and carcinogenic 
disorders (NTP, 1982). It has also been reported that 
ZEA inhibits DNA and protein synthesis and induces 
oxidative stress mediated cell death (Abid-Essefi et al., 
2003; Ouanes et al., 2005; Kouadio et al., 2005, 2007). 
Consequently, the intracellular generation of reactive 
oxygen species (ROS) by ZEA is likely responsible for its 
cytotoxic and genotoxic effects (Hassen et al., 2007). 
ZEA causes cells death by apoptosis via caspase-
independent and mitochondria/AIF-mediated pathways 
with a key role of activations of p53 and JNK/p38 (Yu et 
al., 2011).  

ZEA and FB1 could be found in the same commodities 
as secondary metabolites of different Fusarium species 
(Scudamore et al., 1998; Desjardins et al., 2000; 
Dawlatana et al., 2002). Our previous study reported co- 
occurrence of Fusarium mycotoxins FB1 and ZEA in all 
food analyzed from Côte d’Ivoire such as rice, maize pea- 
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nut (Sangare et al., 2006). Thus, in preliminary study on 
possible interactive effect of combination of FB1 and ZEA, 

we reported cytotoxic effect as evaluated by cell membrane 
transport integrity of co-occurrence of binary FB1 + ZEA 

seemed to be antagonist effect but we observed additive 
effect on lipid peroxydation (Kouadio at al., 2007). In order 

to understand the best possible interactive effect of these 

Fusarium toxins, we investigated in their combined effect 

regarding several cellular endpoints. 
 
 
MATERIALS AND METHODS 
 
Chemicals 
 
ZEA and FB1 were obtained from Sigma Chemical Company (St 
Louis, MO, USA) and were dissolved in ethanol/water (90:10). 
Dulbecco’s Modified Eagle Medium (DMEM), foetal calf serum 
(FCS) and neutral red (NR) solution were provided from Sigma-
Aldrich (Saint Quentin Falavier, France). All other chemicals used 
were of analytical grade and provided by Sigma-Aldrich (Saint 
Quentin Falavier, France). 
 
 
Cell culture and treatment 
 
Caco-2 cells, a human colon cancer cell line, were obtained from 
Dr. Jing Yu, Tufts School of Medicine (Medford, MA, USA) (Rousset 
et al., 1985). The cells were grown as monolayer culture in a high 
glucose concentration (4.5 g/l) DMEM medium supplemented with 
10% foetal calf serum (FCS), 8 mM L-glutamine, 1% of mixture 
penicillin (100 IU/ml) and streptomycin (100 µg/ml) incubated at 
37°C in an atmosphere of 5% CO2—95% air mixture. For cell 
counting and subculture, the cells were dispersed with a solution of 
0.05% trypsin and 0.02% EDTA. 
 
 
Cytotoxicity assay by NR test 
 
The NR test was performed to assess cytotoxicity, as described by 
Kouadio et al. (2005). Viable cells actively transport this dye across 
their cell membrane; therefore, after subsequent lyses absorbance 
can be used as a measure of cell viability. The solution stock of NR 
(3.3 g/l) was diluted to 1/100 in the cell culture medium and the 
extract solution consisted of 50% (v/v) ethanol in Milli-Q water with 
1% (v/v) acetic acid. After 72 h of incubation in presence of each 
mycotoxin alone and their mixture (ZEA+FB1) or the vehicle, 150 ml 
of freshly prepared NR solution pre-warmed to 37°C was added to 
each well and all plates returned to the incubator at 37°C for 4 h. 
The cells were washed two times and 150 µl of the extract solution 
were added in each well and plates were shaken for 15 min. The 
absorbance at 540 nm was determined using a Microplate Reader 
DYNATECH MR 4000 manufactured by DYNATECH and provided 
by MICROPLATE in Business & Industrial, Healthcare, Lab & Life 
Science.  
 
 
Cytotoxicity assay by tetrazolium-based colorimetric assay 
(MTT test) 
 
MTT test was used to assess cell viability based on the capacity for

 
*Corresponding author. E-mail: jameshalbink@yahoo.fr Tel: +22509544160. 
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latory mechanism or activation of executive caspases 
(Wyllie et al., 1980). Thus, the amount of LDH release 
resulted from cell disorders induced by individual effect of 
each mycotoxin leading necrosis cell death. In contrast, 
membrane transport integrity and mitochondrial succinate 
dehydrogenase activity represent cell specific vital func-
tions implying regulatory or organized mechanisms which 
also could be targets of toxicants (Babich and 
Borenfreund, 1987; Kouadio et al., 2005; Smith et al., 
2011). Previously, it has been reported that ZEA and FB1 
targeted the same cellular organelles namely mitochon-
dria and/or lysosomes consequently authors have 
hypothesized that combinations of these toxins would 
lead to additive or synergistic effects (Kouadio et al., 
2005). Surprisingly, in the present study, antagonist effect 
was observed. In fact, the concentrations of mycotoxins 
could modulate their interactive effect leading to 
unexpected findings as reported by Boeira et al. (2000) 
on growth of yeast. These authors reported antagonism 
for low concentrations and synergism for high concen-
trations for mixture of ZEA and DON. Concerning lipid 
peroxydation, association of ZEA and FB1 leaded to 
additive effect as reported previously (Kouadio et al., 
2007). These findings traduce the capably of ZEA and 
FB1 to produce reactive oxygen species (ROS) but the 
nature of ROS and their mechanism of production 
remains unclear. However, it appears probable that FB1 

or ZEA induces ROS production in mitochondria and/or 
by inflammatory disorders involving TNF-α (Soriano et al., 
2005; Seefelder et al., 2003; Ayed-Boussema et al., 
2008; Bouaziz et al., 2008) and the intracellular genera-
tion of ROS is likely or partly responsible for their 
cytotoxic and genotoxic effects (Hassen et al., 2007; 
Mobio et al., 2003; Kouadio et al., 2007). Although, both 
ZEA and FB1 target the same cellular organelle that is 
mitochondria, in the production of ROS (Kouadio et al., 
2005), but any chemical interaction is not at stake. On the 
other hand, since ZEA and FB1 have been shown to 
induce apoptosis caspace-3 dependent (Ayed-Boussema 
et al., 2008; Bouaziz et al., 2008; Soriano et al., 2005 ; 
Seefelder et al., 2003 ; Gopee and Sharma, 2004), we 
have tested their possible interactive effect on caspase-3 
activity modulation. Our results have confirmed clearly 
modulation of caspase-3 activity induced by ZEA or FB1 
(Ayed-Boussema et al., 2008; Soriano et al., 2005). It has 
been reported that FB1 modules caspase-3 activity by 
several pathways involving mitochondria and disturbs 
cytochrome-c release and cell membrane TNF-R1 
receptor activation by TNF-α (Di Pietro et al., 2005). 
Concerning ZEA, studies reported ZEA induced 
apoptosis caspase-3 dependence or not (Bouaziz et al., 
2008; Yu et al., 2011) and apoptosis caspase indepen-
dence induced by ZEA could be related to apoptosis-
inducing factor-mediated and ROS-dependent pathways, 
in which p53 and JNK/p38 MAPK play crucial roles as 
upstream effectors (Yu et al., 2011). In the present study, 
FB1 has been showed to induce early apoptosis caspase- 
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3 dependent in contrast to ZEA which was found very 
potent later until after 24 h of cells incubation. In contrast 
to FB1, ZEA could module caspase-3 activity by long 
processes. The mixture of toxins led to additive effect on 
caspase-3 activation at 6 and 24 h of cells exposure in 
contrast to 3 of incubation where FB1 alone is stronger 
than the mixture. In fact, ZEA tended to counterbalance 
FB1-caspase-3 activity modulation by a mechanism of 
functional antagonism which contrasted with additive 
effect observed subsequently. The effect of mixture of 
ZEA and FB1 on caspase-3 activity was unpredicted or in 
the present study, this effect is linked to the duration of 
cells incubations with mycotoxins.      

In conclusion, our findings reveal that the combined 
effect of ZEA and FB1 on cells Caco-2 seems to be 
unpredictable. Although, these mycotoxins could provoke 
the same disorders in cells, it is very difficult to predict 
whether their mixture can lead to antagonism, additive or 
synergistic effect.  
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