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Otero, 2011), bacteria (Sutthiwong et al., 2014) and 
microalgae (Machado et al., 2014; Rodrigues et al., 2014; 
Ahmed et al., 2014). Other advantages to be gained, 
such as the microbial production of pigments, are 
obtainable quickly and at any time of year, in a small 
space, using low cost substrates, with control of the 
culture conditions and receiving the designation of natural 
colorants, as cited in literature (Valduga et al., 2009).  

Among the microorganisms capable of producing 
carotenoids, the wild yeast Sporidiobolus pararoseus, 
isolated from the ecosystem of Rio Grande do Sul, in the 
Escudo Sul-riograndense (Shield of Rio Grande do Sul) 
region stands out (Otero, 2011). It is a producer of β-
cryptoxanthin, lutein and β-carotene mostly obtained from 
the use of different co-products and agro-industrial 
residues, with antioxidant potential (Otero, 2011; 
Cipolatti, 2012).  

However, microbial obtaining of carotenoids is mainly 
limited by the high cost of production. This cost can be 
minimized by improving/optimizing the use of industrial 
byproducts as sources of nutrients because they are 
widely available, and combined with experimental design 
technique can obtain high production of carotenoids 
(Taskin et al., 2011). To this strain of S. pararoseus has 
been found an adaptation to different medium complex 
using alternative sources of carbon and nitrogen, such as 
parboiled rice wastewater, corn steep liquor, raw glycerol 
(from the synthesis of biodiesel) and cane molasses 
sugar for the production of biopigments (Otero, 2011; 
Cipolatti, 2012). 

On the other hand, the effect of the influence of 
process conditions involving the production and recovery 
of carotenoids using experimental design methodology 
has been applied. The recovery of carotenoids produced 
by Sporidiobolus salmonicolor involved studying the 
temperature and concentration of the enzyme complex to 
cell disruption (Monks et al., 2013), while Michelon et al. 
(2012) also assessed the enzymatic method for the 
recovery of carotenoids produced by Phaffia rhodozyma 
checking the influence of the pH of the reaction medium, 
temperature, initial activity of β-1,3-glucanase and 
reaction time. The composition of the production medium 
using S. salmonicolor (Valduga et al., 2009, 2014) and for 
S. pararoseus (Cabral et al., 2011). This methodology is 
also applied to obtain other bioproducts, such as biomass 
(Santos et al., 2012), galacto-oligosaccharides (Lisboa et 
al., 2012a; Lisboa et al., 2012b), dairy drinks (Martins et 
al., 2011; Martins et al., 2012; Burkert et al., 2012), 
enzymes (Maldonado et al., 2012; Campello et al., 2012; 
Alves et al., 2010), synthesis of natural flavors (Anschau 
et al., 2011; Aragão et al., 2011), phycocyanin (Moraes et 
al., 2010) and rhamnolipids (Rosa et al., 2010).  

Thus, the aim of this study was to optimize concen-
trations of the substrates of two types of agroindustrial 
production medium using corn steep liquor combined with 
raw glycerol (derived from the synthesis of biodiesel) or 
sugar  cane  molasses,  via  response   surface  analysis, 

 
 
 
 
using wild yeast S. pararoseus for carotenoid production.  
 
 
MATERIALS AND METHODS 
 
Microorganism  
 
The S. pararoseus yeast used in this work was previously isolated 
(Otero, 2011) from environmental samples from the ecosystem of 
the Escudo Sul-Rio-Grandense region (Rio Grande do Sul - Brazil), 
identified and deposited in the André Toselo Tropical Culture 
Collection (CCT 7689).  
 
 
Maintenance and reactivation of the microorganism  
 
The microorganism was maintained in test tubes containing GYMP 
agar inclined (2.0 g/L glucose, 1.0 g/L of malt extract, 0.5 g/L yeast 
extract, 0.2 g/L NaH2PO4 and 1.8 g/L agar) with mineral oil under 
refrigeration at 4°C (Fonseca et al., 2011) by 3 months. For 
reactivation, samplings were carried out from stock cultures to other 
test tubes with the same medium and incubated for 25°C at 48 h. A 
cell resuspension (pre-inoculum) was performed on 1.0 mL of 
peptone water (0.1%) and added to 9 mL of modified YM medium 
(3.0 g/L of yeast extract, 3.0 g/L of malt extract, 5.0 g/L peptone, 
10.0 g/L of glucose, added to 0.2 g/L KNO3) (Parajó and Vázquez, 
1998) and incubated under the same conditions described above.  
 
 
Agroindustrial substrates  
 
The agroindustrial substrates that were used were kindly provided 
by industry in the region. The carbon sources were raw glycerol 
derived from the synthesis of biodiesel (BSBIOS Indústria e 
Comércio de Biodiesel Sul Brasil S/A - Passo Fundo – RS) and 
sugar cane molasses (Guimarães Indústria e Comércio Ltda. - RS), 
and corn steep liquor (Corn Products Balsa Nova - PR) from the 
wet corn milling, used as a nitrogen source, previously 
characterized (Cipolatti, 2012; Silva et al., 2012; Otero, 2011). For 
the formulation of the culture medium, the agroindustrial substrates 
were weighed according to the assay of the experimental design 
(Tables 1 and 5), centrifuged (3439 x g for 10 min) separately, 
transferred to the same Erlenmeyer flask to adjust the initial pH of 
the culture medium at 6.0 and kept standing until the sterilization at 
121°C for 15 min. 
 
 
Inoculum preparation  
 
One milliliter cell suspension was made in sterile peptone water 
(0.1%) from the tubes containing the S. pararoseus in inclined YM 
agar and added to 9.0 mL of modified YM broth and incubated at 
25°C for 48 h. The inoculum was grown in 250 mL Erlenmeyer 
flasks containing 90 mL of YM medium, previously sterilized at 
121°C for 15 min, the cell suspension was added and incubated at 
25°C, 150 rpm for 48 h or the time necessary to achieve 1x108 
cells/mL, enumerated in a Neubauer chamber (Michelon et al., 2012).  
 
 
Cultures in shake flasks  
 
The cultures for the bioproduction of carotenoids were prepared in 
500 mL Erlenmeyer flasks with 250 mL culture medium, an initial 
pH of 6.0 and the addition of 10% inoculum (starting cultivation with 
1x107 cells/mL), under operating conditions of 25°C, 180 rpm 
(orbital shaker, Tecnal model TE 424), without lighting for 168 h 
(Fonseca et al., 2011; Michelon et al., 2012). Samples were taken 
every 24 h to monitor biomass concentration, pH, sugars and total
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Table 1. Real values and coded levels (in parentheses) for the central composite design (CCD) 
and central composite rotational design (CCRD) using raw glycerol and corn steep liquor, and 
maximum concentration response of total carotenoids and biomass. 
 

Assay 
CCD  CCRD 

X1 X2 Y1 Y2  X1 X2 Y1 Y2 

1 5 (-1) 20 (-1) 154.86 4.42  15.8 (-1) 44.5 (-1) 450 8.32 
2 10 (+1) 20 (-1) 283.19 6.05  44.2 (+1) 44.5 (-1) 599.5 9.02 
3 5 (-1) 30 (+1) 163.03 4.55  15.8 (-1) 65.5 (+1) 591.72 7.79 
4 10 (+1) 30 (+1) 640.54 6.47  44.2 (+1) 65.5 (+1) 338.03 6.78 
5 7.5 (0) 25 (0) 348.95 5.83  10 (-1.41) 55 (0) 637.64 9.49 
6 7.5 (0) 25 (0) 349.63 5.97  50 (+1.41) 55 (0) 707.78 9.23 
7 7.5 (0) 25 (0) 345.83 5.99  30 (0) 30 (-1.41) 656.2 10.26 
8 - - - -  30 (0) 80 (+1.41) 575.32 5.91 
9 - - - -  30 (0) 55 (0) 822.57 9.90 
10 - - - -  30 (0) 55 (0) 820.79 9.98 
11 - - - -  30 (0) 55 (0) 822.03 9.95 

 

X1 = Raw glycerol concentration (g/L), X2 = corn steep liquor concentration (g/L), Y1 = total carotenoids 
concentration (µg/L) and Y2 = biomass concentration (g/L). - Assays that do not exist in the CCD. 

 
 
 
carotenoids.  
 
 
Experimental designs for bioproduction of carotenoids  
 
The composition of the agroindustrial production medium using the 
corn steep liquor and raw glycerol byproducts was studied using a 
central composite design (CCD) followed by a 2² central composite 
rotational design (CCRD) (Table 1). The other carotenoid producing 
medium used the sugar cane molasses and corn steep liquor 
through a 2² CCRD (Table 5). The responses or dependent 
variables studied were maximum concentration of total carotenoids 
(µg/L), with the respective amount of biomass concentration (g/L) 
obtained for each experimental assay.  

In the validation of each optimal carotenoid production condition 
using defined agroindustrial substrates, cultures were performed in 
triplicate under the same process conditions as described above.  
 
 
Recovery of total carotenoids  
 
The recovery of total carotenoids began with the centrifugation of 
the biomass at 3439 x g for 10 min, which was then transferred to a 
Petri dish and placed in a circulating air oven (35°C for 48 h) 
(Fonseca et al., 2011), and subsequently macerated in a degree, 
standardized in a mesh 115 sieve and frozen at -18°C for 48 h 
(Cipolatti, 2012). Once frozen, the biomass was lysed by a rupture 
agent dimethylsulfoxide - DMSO ((CH3)2SO), followed by vortexing 
for 1 min in 15 min intervals, a total of 1 h (Fonseca et al., 2011). 
After rupture, acetone was added, followed by centrifugation (3439 
xg for 10 min). The supernatant was separated and successive 
extractions performed until total bleaching of the cell was achieved. 

In the solvent phases, obtained from the centrifugation, 20% 
NaCl solution (w/v) and petroleum ether were added. After the 
formation of the two phases, the polar phase was collected and 
excess water was removed with sodium sulfate (Na2SO4), forming 
carotenogenic extracts (Michelon et al., 2012).  
 
 
Determination of total carotenoids  
 
The  concentration of  total carotenoids in  the  extracts  was  deter- 

mined using a spectrophotometer (Biospectro SP-220, China) 
through the average maximum absorbance at 448 nm¹ expressed 
in terms of its major carotenoid (β-carotene in petroleum ether with 

specific absorptivity of  = 2592), using equation 1 (Davies, 

1976).  
 

                                            (1) 

 
Where, specific TC is the total concentration of carotenoids (µg/g), 
A is absorbance, V is the volume (mL), msample is dried cell mass (g) 

and is specific absorptivity. To calculate the volumetric 

concentration of total carotenoids (µg/L) using the result of the 
concentration of total carotenoids (µg/g) and biomass concentration 
(g/L) a unit conversion was performed.  
 
 
Determination of pH  
 
The pH was determined by reading the sample in a potentiometer, 
according to AOAC (1995).  
 
 
Determination of biomass concentration  
 
The cell concentration throughout the bioproduction of carotenoids 
was estimated by reading the absorbance at 620 nm, through a 
previously constructed standard curve (Kusdiyantini et al., 1998).  
 
 
Determination of the concentration of total reducing sugars  
 
The concentration of total reducing sugars (ART) was determined in 
cell free supernatant previously centrifuged at 3439 x g for 10 min. 
One milliliter of culture medium with the agroindustrial byproducts 
were submitted to a hydrolysis with 2 mL of HCl 2.0 moL/L in a 
water bath at 55°C for 30 min, followed by the addition of 2 mL of 
NaOH 2.0 moL/L for acid neutralization (Liu et al., 2012). 
Subsequently, the total reducing sugars (ART) were determined

%1
1cmA

TC 
A*V *106

A1cm
1% *100 *msample

A1cm
1%
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Table 2. Results of the regression coefficients (RC), standard error (SE), t and p from the central composite rotational design (CCRD) for 
agroindustrial substrates, and maximum concentration response of total carotenoids and biomass concentration. 
 

CCRD 
Volumetric carotenoids (µg/L)  Biomass (g/L) 

RC SE t (2) p  RC SE t (2) p 

Raw glycerol  and corn steep liquor 
Mean** 822.39 0.53 1560.76 <0.01 Mean** 9.95 0.02 426.28 <0.01 
X1(L) -0.66 0.65 -2.05 0.20 X1(L)** -0.08 0.01 -5.93 0.03 
X1 (Q)** -112.59 0.77 -292.0 <0.01 X1 (Q)** -0.48 0.02 -28.13 <0.01 
X2 (Q)** -29.31 0.65 -90.70 <0.01 X2 (Q)** -1.12 0.01 -78.01 <0.01 
X2 (Q)** -141.24 0.77 -366.29 <0.01 X2 (Q)** -1.12 0.02 -65.69 <0.01 
X1xX2** -100.80 0.91 -220.89 <0.01 X1xX2** -0.43 0.02 -21.16 <0.01 
          
Sugar cane molasses and corn steep liquor 
Mean** 483.41 6.37 75.82 0.01 Mean** 8.02 0.09 84.44 0.01 
X3 (L)** 261.93 6.385 41.03 0.02 X3 (L)** 3.23 0.1 33.93 0.02 
X3 (Q)** -206.27 8.47 -24.36 0.03 X3 (Q)** -3.38 0.13 -26.81 <0.01 
X2 (L) -23.42 6.38 -3.67 0.17 X2 (L)* 0.87 0.1 9.15 0.07 
X2 (Q)** -143.69 8.47 -16.97 0.04 X2 (Q)** -2.30 0.13 -18.24 0.04 
X3xX2* 62.96 9.02 6.98 0.09 X3xX2 0.28 0.13 2.05 0.29 

 

X1 = Raw glycerol concentration (g/L), X2 = corn steep liquor concentration (g/L), X3 = sugar cane molasses concentration (g/L) *(p<0.1), **(p<0.05). 
 
 
 
levels (+1) of agroindustrial substrates, corroborates the 
analysis of effects resulting in higher responses for the 
bioproduction of carotenoids (640.54 µg/L) and biomass 
concentration (6.47 g/L). Thus, for the sequence of 
optimization of this production medium, the levels of 
agroindustrial substrates were expanded through a 
second experimental design (2² CCRD) with concen-
tration ranges of the raw glycerol from 10 to 50 g/L and 
corn steep liquor from 30 to 80 g/L (Table 1).  

The practice of wholly or partly replacing a complex 
commercial medium with byproducts is interesting, since 
the presence of microelements can enhance the desired 
bioproduction. The presence of vitamin B and several 
minerals (K, P, Mg, Na, Ca, Fe, Zn, Mn and Cu) was also 
found (Gao and Yuan, 2011) in the corn steep liquor; just 
as the presence of minerals Ca, K, Mg, Na and P in raw 
glycerol was determined by Quispe et al. (2013).  

The potential of the increase in the concentration of the 
raw glycerol has also been observed previously (Silva et 
al., 2012), in the production of carotenoids by the yeast 
Phaffia rhodozyma, in which the use of up to 40 g/L of 
this substrate did not differ significantly (p>0.05) from the 
pure glycerol. The composition of raw glycerol from 
biodiesel synthesis can be quite variable, however, the 
nutrients with higher content (K, Na and P) up to an 
optimal concentration, can positively influence the 
biosynthesis of carotenoids and cell growth (Santos et al., 
2011). 

In the CCRD (Table 1), the maximum concentration of 
carotenoids ranged from 338.03 (assay 4) to 822.57 µg/L 
(assay 9) and biomass concentration from 5.91 (assay 8) 
to 10.26 g/L (assay 7) in 168 h, except for assays 1 (144 

h), assay 7 (144 h) and assay 4 (120 h). With the CCRD, 
the maximum concentration of carotenoids and biomass 
were increased by approximately 28 and 59% respec-
tively as compared to CCD.  

A model fitting was accomplished for the second 
experimental design CCRD (Table 1). The independent 
variables (raw glycerol concentration and corn steep 
liquor concentration) and responses (total carotenoid 
concentration and biomass concentration) fitted the 
second-order model equations and examined in terms of 
the goodness of fit. The ANOVA were used to evaluate 
the adequacy of the fitted model. The R-squared value 
provided a measure of how much of the variability in the 
observed response values could be explained by the 
experimental variables and their interactions. A good 
model (values above 0.85 are considered good) explains 
most of the variation in the response. The closer the R-
squared value is to 1.00, the stronger the model and the 
better the response predictions (Haaland, 1989).  

Table 2 shows the regression coefficients, standard 
deviation, p and t values used in the construction of the 
models (Equations 2 and 3). On the basis of the analysis 
of variance (ANOVA), as shown in Table 3, a second 
order models Equations 2 and 3 were established, 
describing the total carotenoids concentration and 
biomass concentration, respectively, as a function of raw 
glycerol and corn steep liquor concentrations. The pure 
error was very low, indicating a good reproducibility of the 
experimental data. Based on the F test, the models are 
predictive, since its calculated F value is higher than the 
critical F value (1.29 and 1.41 times for carotenoid and 
biomass concentrations, respectively) and the regression
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Table 4. Validation responses of the empirical models for different 
agroindustrial substrates. 
 

Validation responses 
Medium 1  Medium 2 

Y1 Y2  Y1 Y2 

Response predicted by the model 755.44 9.95  492.07 7.52 
Experimental response * 779.60 11.65  520.94 7.82 
Deviation of the model 3.10 14.59  5.54 3.86 

 

*Results are means of triplicate assays (n=3). Medium 1 = 30 g/L raw glycerol 
and 52.9 g/L corn steep liquor, medium 2 = 40 g/L sugarcane molasses and 6.5 
g/L corn steep liquor, Y1 = total carotenoids (µg/L) and Y2 = biomass (g/L).  

 
 
 

Table 5. Real values and coded levels (in parentheses) for the CCRD using sugar cane 
molasses and corn steep liquor, and maximum concentration response of total carotenoids 
and biomass concentration. 
 

Assays 
Independent variables  Responses 

X3 X2  Total carotenoids (µg/L) Biomass (g/L) 

1 10 (-1) 3.5 (-1)  209.40 4.41 
2 50 (+1) 3.5 (-1)  340.22 5.87 
3 10 (-1) 9.5 (+1)  125.92 4.80 
4 50 (+1) 9.5 (+1)  382.66 6.81 
5 1.8 (-1.41) 6.5 (0)  89.52 1.03 
6 58.2 (+1.41) 6.5 (0)  555.52 7.70 
7 30 (0) 2.27 (-1.41)  403.29 4.68 
8 30 (0) 58.2 (+1.41)  366.16 6.20 
9 30 (0) 6.5 (0)  476.51 7.93 
10 30 (0) 6.5 (0)  489.26 8.12 

 

X3 = Sugar cane molasses (g/L); X2 = corn steep liquor (g/L).  
 
 
 

The pH showed a decrease during the first 12 h of 
cultivation, increasing up to 72 h (7.0 - 8.0) and remained 
almost constant until the end of the process. Similar 
behavior had been previously observed for other micro-
organisms (Silva et al., 2012; Frengova et al., 1994), 
where during the biosynthesis of carotenoids the changes 
in the pH of the culture medium occurred as a 
consequence of microbial growth and the release of 
compounds such as acetic acid, alcohol or intermediates 
of the citric acid cycle during the adaptation phase, 
causing a decrease in pH. At this point, this intermediate 
is then reassimilated and stimulates a strong caroteno-
genesis, resulting in an increase in pH. Thereafter, the 
pH remains constant indicating the end of cultivation. The 
sugar was almost totally consumed by yeast at the end of 
the process (0.30 g/L), achieving a maximum 
concentration of carotenoids 779.60 µg/L (65.64 µg/g) at 
168 h with a biomass concentration of 11.65 g/L  

The relative deviations obtained during the validation of 
the experimental results and those predicted by the 
model (Table 4) were lower than 5 and 15% (Rodrigues 
and Iemma, 2012), respectively, for total carotenoids and 
biomass concentrations, considered good for these 

bioprocesses (Rodrigues and Iemma, 2012). Therefore, 
Equations 2 and 3 predict the behavior of the production 
of carotenoids. 
 
 
Optimization of the composition of the production 
medium containing sugar cane molasses and corn 
steep liquor  
 
A third experimental design was made using another 
combination of agroindustrial substrates such as sugar 
cane molasses and corn steep liquor for the production of 
carotenoids by S. pararoseus. Table 5 shows the real 
and coded values of the 22 CCRD with respective 
responses of maximum carotenoid concentration and its 
respective biomass concentration.  

The maximum concentration of carotenoids ranged 
from 89.52 (assay 5) to 555.52 µg/L (assay 6) and 
biomass concentration of 1.03 (assay 5) to 8.12 g/L 
(assay 10), in 168 h for all experimental conditions (Table 
5). The same sequence of adjustment and predictive model 
validation of the optimal condition of medium composition 
for  the production of  carotenoids by S. pararoseus  was 



 
 
 
 
followed with agroindustrial substrates sugar cane 
molasses and corn steep liquor. 

Table 2 presented the regression coefficients, standard 
deviation, p and t values used in the construction of the 
models (Equations 4 and 5). On the basis of the analysis 
of variance (ANOVA), as shown in Table 3, a second 
order models Equations 4 and 5 were established, 
describing the total carotenoids concentration and 
biomass concentration, respectively, as a function of 
sugar cane molasses and corn steep liquor concen-
trations. The pure error was very low, indicating a good 
reproducibility of the experimental data. Based on the F 
test, the models are predictive, since their calculated F 
value is higher than the critical F value (2.05 and 2.41 
times for carotenoid and biomass concen-trations, 
respectively) and the regression coefficient (0.88 and 
0.87 for carotenoid and biomass concentrations, 
respectively). The coded models were used to generate 
response surfaces (Figure 2). 
 
Ctotal = 483.41 + 130.97.MEL - 103.13.MEL² - 71.84.CSL² 
+ 31.48.MEL.CSL                                                         (4)  
Bio. = 8.02 + 1.61.MEL – 1.69.MEL² + 0.44.CSL - 
1.15.CSL²                                                                  (5)  (5) 
 
Where, Ctotal is the concentration of total carotenoids 
concentration (µg/L), Bio. is the biomass concentration 
(g/L), MEL is sugar cane molasses concentration and 
CSL is corn steep liquor concentration.  

As can be seen, the culture medium may have between 
30 to 50 g/L of sugar cane molasses and 5.3 to 8.9 g/L 
for corn steep liquor to obtain a maximum concentration 
of carotenoids (Figure 2 a2) and biomass concentration 
(Figure 2 b2). 

Therefore, to determine the optimum culture medium 
for the production of carotenoids with agroindustrial 
byproducts (sugar cane molasses and corn steep liquor) 
by S. pararoseus, the levels were set at 40 g/L sugar 
cane molasses and 6.5 g/L of corn steep liquor (C/N ratio 
= 42.94), composition used in the validation of models. 

In Figure 3b, during the validation of the models 
(Equations 4 and 5), the pH showed the same behavior 
as the previous culture medium, decreasing up to 24 h of 
cultivation, increasing up to 36 h (5.0 - 6.0) and remained 
almost constant until the end of the process, as well as 
having the total reducing sugar practically depleted (0.85 
g/L in 168 h).  

A maximum biomass concentration of 7.82 g/L was 
achieved, while the total carotenoid concentration was 
522.62 µg/L. The agroindustrial mediums rich in 
molasses, which has greater complexity, containing 
nutrients (nitrogen, potassium, magnesium, manganese, 
iron, etc.), heavy metals, and salts, can cause changes in 
the pH as described by Valduga et al. (2009). The 
bioproduction of secondary compounds is also possible 
(Valduga et al., 2008). 

The relative deviations obtained during the validation of 
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the experimental results and those predicted by the 
models (Table 4), using molasses and corn steep liquor, 
were less than 6% (Rodrigues and Iemma, 2012). 
Therefore, Equations 4 and 5 predict the behavior of the 
production of carotenoids and biomass concentration. 

The advantages of optimizing the production medium 
using the Response Surface Methodology for obtaining 
maximum concentrations of microbial pigments observed 
in this study were also reported by Gharibzahedi et al. 
(2013), with a reduction in the number of experimental 
assays required to evaluate multiple variables and their 
interactions.  

In literature, some studies have reported the use of 
different substrates and process conditions for the 
bioproduction of carotenoids using different strains of 
Sporidiobolus pararoseus. Maldonade et al. (2008) 
isolated and identified Sporobolomyces roseus achieving 
237 (72 μg/g), and 3.3 g/L of biomass concentration in 
culture medium YM, at 25°C, 200 rpm, initial pH 6.0 and 
120 h. 

The effect of initial pH on the culture medium (YM) from 
3.0 to 5.0 for the production of carotenoids by S. 
salmonicolor (CBS 2636) was evaluated, achieving 455.4 
µg/L (111 µg/g) with 4.1 g/L of biomass concentration in 
120 h at 25°C, 180 rpm and with an initial pH of 4.0 
(Valduga et al., 2009).  

In another study, Cabral et al. (2011) isolated and 
identified the yeast S. pararoseus, optimizing the 
production of carotenoids, through an experimental 
design that studied variables glucose (26.4 to 93.6 g/L), 
peptone (6.6 to 23.4 g/L) and malt extract (6.6 to 23.4 
g/L). The maximum concentration was 856 µg/L (229.69 
µg/g) with 3.69 g/L of biomass concentration for 120 h at 
25°C, 180 rpm and an initial pH 4.0. Therefore, results 
are above those obtained in the present study, however 
with a formulation with 60 g/L glucose, 15 g/L peptone 
and 15 g/L of malt extract.  

Valduga et al. (2014) evaluated the production potential 
of carotenoids by S. salmonicolor optimizing the culture 
medium through experimental design, achieving 843 µg/L 
(181.26 µg/g) with glycerol (40 g/L), corn steep liquor (40 
g/L) and parboiled rice wastewater (20 g/L) for 96h at 
25°C, 180 rpm and an initial pH of 4.0. 

The supplementation of the production medium with 
raw glycerol derived from the synthesis of biodiesel (34 
g/L of raw glycerol, 2.0 g/L of KH2PO, 2.0 g/L of 
(NH4)2SO4, 1.7 g/L of K2HPO4, 0.1 g/L of MgSO4∙7H2O, 
0.1 g/L of MnSO4∙H2O and 0.1 g/L of NaCl, in 120 h at 
25°C, 200 rpm and initial pH 6.0) as compared to two 
commercial mediums (YM and BMP) by S. pararoseus 
(TISTR5213) was higher, showing that the growth 
stimulation of red yeast is probably due to the presence 
of oligoelements in this substrate (Manowattana et al., 
2012). 

The strain of yeast used for this study, S. pararoseus, 
was previously isolated, selected and identified by Otero 
(2011) and it stood out among the others. With 39.91 g/L  
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of parboiled rice wastewater and 17.31 g/L of raw 
glycerol, and a second medium containing 44.01 g/L 
parboiled rice wastewater and 23.6 g/L of sugar cane 
molasses, a total carotenoid concentration was achieved 
which is 710 (86.46 µg/g) and 820 µg/L (106.20 µg/g), 
respectively, at 25°C, 180 rpm for 168 h, and initial pH 
6.0.  

From the previous work by Cipolatti (2012) on 
modifying the nitrogen source in a production medium 
with 4.8 g/L raw glycerol and 35.6 g/L of corn steep liquor 
(C/N ratio = 6.20) 634.5 µg/L (87.3 µg/g) of carotenoids 
concentration with 7.3 g/L of biomass in 120 h, under 
similar conditions was observed. Therefore, in this work 
with the new optimized medium proposed (30 g/L of raw 
glycerol and 52.9 g/L corn steep liquor), there was a gain 
of 22.86% in carotenoid concentration and 26.26% in 
biomass concentration, showing the potential application 
of this yeast enabling a reduction in the costs of the 
production medium. 
 
 
Conclusions  
 
The optimization of the composition of two agroindustrial 
culture mediums for the production of carotenoids by a 
wild strain of S. pararoseus in shake flasks using 30 g/L 
of raw glycerol and 52.9 g/L of corn steep liquor (C/N 
ratio = 10.42) and another with 40 g/L of sugar cane 
molasses, 6.5 g/L of corn steep liquor (C/N ratio = 42.94) 
achieved, respectively, 779.60 (65.64 µg/g) and 520.94 
µg/L (73.19 µg/g) of carotenoids concentrations, at 25°C, 
180 rpm, initial pH of 6.0 at 168 h. Therefore, this yeast 
strain is an interesting source of biopigment production 
for future studies on scale up. 
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