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The formation mechanism of the growth of bacterial colony is studied by comparing the formation of 
the bacteria with the patterns obtained by Monte Carlo simulations using the diffusion limited 
aggregation algorithm. For this purpose, the morphological changes of the growing patterns are 
controlled by a sticking probability parameter, α, which represents the trajectories of the particles 
joining to the growing colonies, the complex reactions, and biological dynamics such as concentration 
of nutrient, temperature, and humidity in the growing environment. Specially, the sticking probability 
parameter is related to the biological activation and irreversible growth of the bacteria via growth 
energy for the mobility in the environment and perimeters of the colonies. Morphologies of the 
aggregation of the bacterial colonies have irregular, fractal, and compact structures. In this study, first, 
fractal dimensions are assessed for simulations and the real systems. The density of bacteria as ρ in 
region defined by circle of radius r centered at initial dropping seed from center through the perimeter 
is computed by using scaling method.  Second, critical exponents of patterns are calculated.  As a 

function of r, ρ reaches the asymptotic ρ0 (α) following power-law  = 0 + Ar
 –  with universal 

exponents γ = 0.47 for α = 1. The value of the main density for the bacterial patterns has ρ0 ~ α 
– β

, where 
β = 0.32 according to the scaling theory. Finally, the results obtained are found in good agreement with 
the experiments and can be useful for the researchers studying about bacterial colonization patterns.  
 
Key words: Monte Carlo simulation, diffusion limited aggregation, sticking probability parameter, critical 
exponent, bacterial colony formation. 

 
 
INTRODUCTION  

 
The phenomena of bacterial colonization according to the 
substrate softness and nutrient concentration have 
received considerable attention for about 50 years ago. 
Particularly, colony pattern of bacteria species Bacillus 
subtilis (BS) has been vigorously studied from both 
experimental and theoretical viewpoints. Experimentally, 
bacterial strain is incubated on the agar plate’s surface at 
the centre of a Petri dish with different concentration of 
nutrient, certain temperature, and certain humidity (Fujika 
and Matsushita, 1989). Another experimental study was 
performed  on a morphological phase diagram of colonies 

of BS determined by varying both the concentration of 
nutrient and substrate softness (Wakita et al., 2001). 
They are both composed of five different patterns such as 
Diffusion Limited Aggregation (DLA)-like, Eden-like, 
Dense Branches Morphologies-like (DBM-like), 
concentric ring, and homogenous disk-like.  

The structures of the colonies strongly depend on the 
dynamics of growth process such as nutrient 
concentration, temperature, and humidity. Many 
computer simulations have been carried out to 
investigate  the relationship between the colony geometry
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and the formation mechanism (Li et al., 1995; Morikawa 
et al., 2003). They showed that patterns and colonies of 
bacteria formed through the DLA processes that have 
open and random branched structures with no natural 
length scale, so it can be categorized into fractals (Witten 
and Sander, 1983). The other models have been 
proposed to explain the variety of BS. DLA-like patterns 
have been interpreted as growth controlled by diffusion of 
nutrients in the context of DLA model. Ben-Jacob and co-
workers proposed a ‘communicating walkers model’ to 
describe some parts of the morphological patterns of the 
bacterial colonization. This model reproduces the cross-
over between different morphologies by coupling random 
walkers to fields representing the nutrients (Ben-Jacob, 
1997). Other models were based on reaction-diffusion 
equations for bacterial density (Lacasta et al., 1999). But 
the scaling parameters for the bacterial patterns for both 
real and simulations were not determined in those 
models. It would also be useful to determine scaling 
parameters for the morphological changes of bacterial 
patterns using scaling method. 

In this work, we determined the morphological changes 
of the bacterial colonization using Monte Carlo (MC) 
simulation. For this purpose, first, bacterial colony 
patterns with DLA algorithm were generated to find out 
the relationship between the variations in morphology 
using the Sticking Probability Parameter (SPP), α, for the 
concentration of the nutrient, temperature, and humidity. 
Then, fractal dimensions and critical exponents using 
scaling method were computed by the pattern obtained 
by simulation and compared with the experimental results 
from Fujika and Matsushita (1989). By using this 
relationship parameter to simulate the spatial and the 
temporal fluctuation, the biological significance and its 
relation to the formation of bacterial colonies observed in 
many real biological processes were discussed. 
 
 
MATERIALS AND METHODS 

 
Model and simulation  

 
In this study, the MC simulation algorithm to determine 
morphological assessment was divided into two parts; one is the 
process of producing standard DLA patterns around the immobile 
incubated seed and the other is the DLA model that can be 
generalized by introducing a parameter called “SPP, α,” for the 
representation of the conditions in lieu of the growth of the bacteria 
in a Petri dish (Witten and Sander, 1983). SPPs are used to model 
the course of the particles joining to the growing colonies and the 

complex reaction and biological dynamics on the growing 
environment such as concentration of nutrient, temperature, and 
humidity, respectively.  Specially, SPP is related to the biological 
activation and irreversible growth of the bacteria via growth energy 
for the mobility in the environment and perimeters of the aggregate 
(Witten and Sander, 1983; Ben-Jacob, 1997). It allows us to vary 
both the morphological estimation and the fractal dimension D of 
the colony patterns. This is named as generalized DLA model for 

the azoic system. In the generalized DLA model, bacteria sticking to 
the colony on visiting active site in square lattice with sticking 
probability P:  

 
 
 
 

 P =  α3−B           
                                                                                                                 

 
Where, α is some positive and adjustable parameter less than 1 (0 

< α  1) and B is the number of nearest-neighbor occupied sites in 
the colony. For α = 1, it generates DLA patterns as fractals. For 

smaller values of α  0, it generates compact morphological 

patterns, D  2 since active sites, B = 3 are more likely to get 
occupied than that of B = 1. 

Numerical simulations are performed on a finite-size square 

lattice of L  L by Monte Carlo (MC) simulation. The length of the 
bacteria is chosen as linear dimension of ε = 1 lattice unit pixel. The 
occupied fraction as the bacterial density on the square lattice 
surface is given by:  
 

ρ0 = N L−d                                                                                                                
 
Where, N is the total number of bacteria on the square lattice 
surface, L is linear dimension of the square lattice, and d=2 is 
Euclidian Dimension, respectively. 

 
 
RESULTS  
 
It is simulated here as a generalized DLA model on a 2D 
square lattice used with the "SPP" α, which settled 
randomly down in square lattice surface. Comparing the 
patterns, one can see that it is statistically 
indistinguishable for the patterns. Linear dimension for 
the finite size square lattice in simulations is chosen to be 

10
3 
 10

3
 pixels. We generated about 150 colonies for the 

initial simulation parameters. Typical growth patterns are 
indicated in Figure 1A, B, C, and D for α = 0.009, 0.03, 
0.07, and 0.5, respectively. The number and thickness of 
the branches by simulation are extremely similar with the 
small number of particles compared with the former 
experimental studies (Fujika and Matsushita, 1989; 
Wakita et al., 2001). The scaling parameters of these 
simulation patterns are summarized in Table 1 (see the 
colony patterns 2, 4, and 7 which are congruent with 
Fujika and Matsushita, 1989 and Wakita et al., 2001).  If it 
is applied on a much larger-scale simulation, the number 
of branches would be increased and, accordingly the 
branches would become relatively thinner around the 
seeds (Ben-Jacob, 1997). Figure 1D shows a pattern 
generated by standard DLA model according to the 
sticking parameter α = 0.5. The standard DLA model in 
the non-azoic systems obtain the well-known pattern with 
a fractal dimension of about 1.71 in the square lattice 
(Witten and Sander, 1983).   

From the resulting patterns of aggregates, it is 
calculated as the quantitative parameters for those 
characterizing the fractals, and they are depicted in 
Figure 2. We consider the following parameters: (i) fractal 
dimension, D, which is determined by standard method 
through box-counting curves, (ii) the main density of the 
frozen region of the patterns and critical exponents for 
them; (iii) scaling pentameters. 

The fractal dimensions are computed via box-counting 
method  (Bayirli  and  Kockar,  2010).   In  their study, the  
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Figure 1. Typical morphological evaluations for bacterial pattern according to SPP α = 0.009, 0.03, 

0.07 and 0.5 as concentration of nutrient, temperature and humidity. 

 
 
 

Table 1. Values of the fractal dimension D, the SPP α, bacterial density ρ0 and the critical exponent γ for both the 

simulation and the real bacterial colony aggregation patterns (Fujika and Matsushita, 1989).    
   

Colony patterns 
Fractal dimensions 

(D) 
SPP 
(α) 

Density 
(ρ0) 

Critical exponents 
(γ) 

1 1.850 ± 0.018 0.009 0.827 
0.764 
0.572 
0.504 
0.326 

0.012 ± 0.005 
2 1.746 ± 0.012 0.030 0.423 ± 0.018 
3 1.719 ± 0.004 0.070 0.443 ± 0.043 
4 1.703 ± 0.006 0.090 0.417 ± 0.078 
5 1.679 ± 0.004 0.100 0.433 ± 0.085 
6 1.584 ± 0.023 0.500 0.278 

0.185 
0.464 ± 0.096 

7 1.531 ± 0.026 1.000 0.477 ± 0.027 
BS (Real) 1.711 ± 0.015 - 0.271 0.416 ± 0.014 

 
 
 
box-counting method is explained and they compute the 
fractal dimensions  of  the  manganese  dendrite  patterns 

growing on the surface of natural raw magnesite ore 
using   this    method.  The   box-counting   dimension   is 
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Figure 2. Fractal dimensions determined by box-counting method, for the different SPP.  Seven 

line slopes between 1.531 and 1.85 are also plotted for comparison with experiments. If the 
SPP is 0.01 < α, the morphologies of the pattern have the Eden-like pattern.  The colony of BS 
from experiment (Wakita et al., 2001) are computed as D = 1.711 ± 0.015 and as D =1.746 ± 
0.012 at α = 0.03 from simulation patterns. 

 

 
 

defined as: 
 

                                                                                                            
 
Where, N(ε) is the number of the box in the pattern. 

In Figure 2, we show, in log-log plot, the number N of 
boxes of size ε that contain any part of pattern, versus 
the size of the boxes. The slopes of the lines represent 
the fractal dimensions. We observed that the cases that 
correspond to low nutrient have fractal dimension of 
about D = 1.531 with α = 1 and 1.746 with α = 0.03, 
showing good agreement with experiments, respectively. 
If the SPP is 0.01 < α, the morphologies of the pattern 
have the Eden-like pattern. Results are also summarized 
in Table 1.  The value of the SPP α< 0.09 was counted 
as outlier for the critical exponent γ thus it was excluded 
from the analysis.   

Ferreira et al. (2006) determined the morphological 
transition from DLA to ballistic aggregation using scaling 
hypothesis. It can be applied to morphological transitions 
for the colonies of bacteria that were obtained from 
simulations and can be compared to experimental 
patterns. 

The morphological assessment of the BS colonies can 
be used for the scaling hypothesis. In order to quantify 
the morphological transition, the mean bacterial density in 
the inner regions of the colony can be assessed. The 

mean density ρ  is defined as the ratio between the 

number of the occupied sites and the total number of 
sites in a region delimited by a circle of radius r centered 
at the initial seed. Since one expects asymptotically non-
fractal patterns, the density must reach a finite value ρ0 
as r→∞. Nevertheless, the approach to the constant 
density is very slow and takes a scale in variant form: 
 

ρ = ρ
0

+ Ar−γ    
 
Where, γ is the universal critical exponent as a 
correlation to the fractal dimension according to the 
scaling hypothesis and A is the constant.  γ acts as an 
order parameter and a universal exponent for the 
morphological transition of bacterial patterns.       

In Figure 3, Double logarithm plots of  - 0 against r 
were fitted and its slope were obtained as α = 0.03. The 
linear fit of the data provided γ ≈ 0.45 for α = 0.03, and γ 
≈ 0.42 for the experimental result from Fujika and 
Matsushita (1989).   

In  Table 1,  the  smallest value found was γ = 0.416 for  
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Figure 3. The double-algorithm plots of  (r) - 0 as a function of r for distinct  = 
0.03 values are shown according to DLA algorithm.  The γ exponents for distinct 
values are presented in Table 1. The value of the critical exponent was computed as 
γ = 0.423 ± 0.018.  One can observe that γ fluctuates from 0.423 to 0.477. 

 
 
 
the real systems and the largest one was γ = 0.477 for 
the simulation respectively. This simulation suggests that 
the γ exponent and its value fluctuate about γ ≈ 0.439 ± 
0.023 according to SPP.  We also scanned the picture of 
the experimental result from Fujika and Matsushita (1989) 
and computed the mean bacterial density in the inner 
regions of the colony.  Figure 3 shows both the simulation 
α = 0.03 for the value of SPP and the result of the 
experiment in Fujika and Matsushita’s study. The 
densities were obtained by searching for the best linear fit 
in the larger linear region. To avoid the active region, we 
limited the fits to those data corresponding to half of the 
radial colony sizes.  

Depending on α =1, 0.5, 0.1, 0.09, 0.07, 0.03 and 0.009 
values, lattice with linear size L = 10

3
 and with N = 5.10

4
 

particles, and 10 to 20 independent runs were used, 
respectively. One can observe a power law regime for 10 
< r showing that the approaches to the stationary values 
obey the limit values.  In Figure 4, the main density ρ0 for 
the patterns is shown as a function of SPP α.  ρ0 acts as 
an order parameter, which changes at the critical values 
of the SPP α and they have the following relation: 
 

ρ
0

~ α−β                                                                                                                                
 

The universal exponent β for obtained slope of the data in 
Figure 4 was computed as 0.32(1) with variation from α = 
1 to α = 0.009.  

As the SPP α decreases, the main density ρ0 increases. 
In α = 1,  the  pattern had a sparse branches in Figure 1D.   

The main density of bacteria is quite small. The surface 
of covered bacteria in a Petri dish was reduced and the 
pattern have compact image.  The numbers of the 
numerical results in parenthesis represents the 
uncertainties.  

The difference between these values is inside the error 
margins indicated in the parenthesis.  The large 
uncertainties obtained in the exponents (5-10%) 
originated in the difficulty in the determination of the exact 
crossover points.   
 
 
DISCUSSION 
 
In the present work, the morphological growth of bacterial 
colony of BS was simulated using Monte Carlo 
simulations. Their scaling parameters for both the 
simulation and the real patterns were also computed. The 
patterns generated by standard DLA algorithm including 
the effects of biological conditions are concurred. Simply 
changing the SPP of the movement perpendicular to 
Monte Carlo movement incorporates the effects of 
concentration of nutrient, temperature, and humidity.  
Pattern formation in bacterial colony growth has mainly 
been explained by DLA growth mechanism. Furthermore, 
the fractal dimension of bacterial colony and the universal 
exponents at lower nutrient concentration was near that 
of a DLA pattern. The bacterial colonies can be compact 
and ring-structured in high nutrient concentration and 
humidity   according   to    the   experimental   results    of  
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Figure 4. Double logarithm plots of ρ0 against r for 0 < α ≤ 1. The linear fit of the data 

provides β ≈ 0.32. 

 
 
 
Wakita et al. (2001). Despite the importance and 
simplicity of the DLA mechanism, there is still no rigorous 
theory of a convincing experimental demonstration to 
confirm that bacterial colony patterns actually belong to 
the DLA universal class. The results are in good 
agreement with the experiments.  This model can explain 
bacterial colony patterns. It is a microscopic model and is 
found here that this model generates a wide variety of 
patterns under various conditions except for concentric 
ring-like patterns. Although size of bacteria relative to the 
overall pattern size in the experiment is smaller than that 
used in present computer simulation, growths of the 
obtained patterns can still be same as the observed real 
systems for the macroscopic scale.  Thus, the small size 
difference between the simulation and the experimental 
results can be ignored. In conclusion, this microscopic 
model with respect to BS can also be applied to the other 
bacteria species such as E. coli or other microorganisms.        
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